
Making Sounds with Numbers:

A tutorial on music software dedicated to digital audio

Nicola Bernardini (1), Davide Rocchesso (2)

(1) Conservatorio \C. Pollini" di Padova, Italy

nicb@axnet.it

(2) Dipartimento Scienti�co e Tecnologico, Universit�a di Verona, Italy

rocchesso@sci.univr.it

Abstract

A (partial) taxonomy of software applications devoted to sounds is presented. For each category

of software applications, an abstract model is proposed and actual implementations are evaluated

with respect to this model.

1 Introduction

In recent years, the increased power and a�ordability

of personal workstations has fostered a vast variety

of software applications devoted to sounds and their

musical use.

The aim of this tutorial is to present currently

available applications in the �eld stressing the taxo-

nomical aspect of di�erent approaches and functions.

The following categories will be introduced and de-

veloped:

� Languages for sound processing

� Inline sound processing

� Software to teach signal processing

� Processing libraries, plugins and toolkits

The tutorial will show abstract models for each

category describing di�culties and problems encoun-

tered in actual implementations, while attempting to

illustrate and evaluate user interaction and control in

diverse situations. Examples of actual programs will

be shown, stressing the functionalities they intended

to ful�ll by design and their usage in real-world situ-

ations.

Finally, some issues that still lie partially unre-

solved such as fast network interoperability, paral-

lelization and musical control will be mentioned; fu-

ture directions of development will be proposed.

2 Languages for sound process-

ing

2.1 Abstract models

The most successful model for languages dedicated

to sound processing dates back to the late �fties,

when Max Mathews developed a collection of pro-

grams (called Music I{II{: : :{N) at the Bell Labo-

ratories

1

. One of these programs is the Music V

sound-synthesis language, which established a stan-

dard based on the concept of unit generator (UG).

The UGs are primitive modules for generating, mod-

ifying, and acquiring audio or control signals: UGs

that can perform cyclic or acyclic readings of sample

tables are essential to produce audio signals whereas

UGs for envelopes and low-frequency oscillators are

available to produce control signals. To modify audio

signals in the time or frequency domain, it is useful to

have UGs which implement various forms of digital

�lters, such as delay lines or resonators.

According to the Music-N tradition, the UGs

are connected as if they were modules of an analog

synthesizer, and the resulting patch is called an in-

strument. The actual connecting wires are variables

whose names are passed as arguments to the UGs.

An orchestra is a collection of instruments. For every

instrument, there are control parameters which can

be used to determine the behavior of the instrument.

These parameters are accessible to the interpreter of

a score, which is a collection of time-stamped invo-

cations of instrument events (called notes). Fig. 1

shows a schematic description of how Music-N lan-

guages work: a) is a Music-V source text

2

while b)

is its graphical representation.

The orchestra/score metaphor, the decomposi-

tion of an orchestra into non-interacting instruments,

and the description of a score as a sequence of notes,

are all design decisions which were taken in respect

of a traditional view of music. However, many mu-

sical and synthesis processes do not �t well in such

a metaphorical frame. As an example, consider how

di�cult it is to express modulation processing e�ects

1

For a good historical survey of sound and music languages

we recommend the textbook by C. Roads [14].

2

picked up from [10, page 45]

INS 0 1 ;

OSC P5 P6 B2 F2 P30 ;

OUT B2 B1 ;

END ;

GEN 0 1 2 0 0 .999 50 .99 205 −.999 306 −.999

461 0 511 ;

COM P2 P3 P4 P5 P6 ;

NOT 0.00 1 .50 125 8.04 ;

NOT 0.75 1 .17 250 8.04 ;

NOT 1.00 1 .50 500 8.04 ;

NOT 1.75 1 .17 1000 8.05 ;

NOT 2.00 1 .95 2000 8.07 ;

NOT 3.00 1 .95 1000 8.04 ;

NOT 4.00 1 .50 500 8.05 ;

NOT 4.75 1 .17 500 8.05 ;

NOT 5.00 1 .50 700 8.05 ;

NOT 5.75 1 .17 1000 9.00 ;

NOT 6.00 1 1.95 2000 8.11 ;

TER 8.00 ;

OUT

B2

OSC

F2

P5 P6

S
C

O
R

E
IN

S
T

R

a) b)

Figure 1: Music-V �le description

that involve several notes played by a single synthe-

sis instrument (such as those played within a single

violin bowing): it would be desirable to have the pos-

sibility of modifying the intrument state as a result

of a chain of weakly synchronized events (that is, to

perform some sort of per-thread processing).

Currently, the most widely used language for

sound synthesis is Csound

3

, which is strictly adherent

to the original dictates of Music V while improving

it on the symbolic aspect and versatility. There are

several graphic helpers running on di�erent platforms

to assist musicians in writing Csound orchestras and

scores: the most widely used are Cecilia

4

and Wc-

Shell

5

.

Another popular Music-N-like language is Cmu-

sic

6

[11, 12], which we will mention again in section 5

as an example of integration of a sound-processing

language into a software environment making exten-

sive use of the facilities provided by unix operating

systems.

Other models have been proposed for dealing

with less rigid descriptions of sound and music events.

One such model is tied to the language Nyquist

7

[4].

This language provides a uni�ed treatment of music

and sound events and is based on functional program-

ming (Lisp language). Algorithmic manipulations of

symbols, processing of signals, and structured tem-

poral modi�cations are all possible without leaving a

consistent framework. In particular, Nyquist exploits

the idea of behavioral abstraction, i.e. time-domain

transformations are interpreted in an abstract sense

and the details are encapsulated in descriptions of be-

haviors [2]. In other words, musical concepts such as

duration, onset time, loudness, time stretching, are

speci�ed di�erently in di�erent UGs. Modern com-

positional paradigms bene�t from this uni�cation of

control signals, audio signals, behavioral abstractions

and continuous transformations.

Placing some of the most widely used languages

for sound manipulation along an axis representing

3

ftp://ftp.maths.bath.ac.uk/pub/dream/

4

http://www.musique.umontreal.ca/electro/CEC/

5

http://www.axnet.it/edison/wcshell.zip

6

http://www-crca.ucsd.edu/cmusic/cmusic.html

7

http://www.cs.cmu.edu/~rbd/nyquist.html

exibility and expressiveness, the lower end is proba-

bly occupied by Csound while the upper one is prob-

ably occupied by Nyquist. Another notable language

which lies somewhere in between is Common Lisp

Music

8

(CLM), which was developed as an exten-

sion of Common Lisp [15]. If CLM is not too far

from Nyquist (thanks to the underlying Lisp lan-

guage) there is another language closer to the other

edge of the axis, which represents a \modernization"

of Csound. The language is called SAOL

9

and it

is being adopted as the formal speci�cation of struc-

tured audio for the MPEG-4 standard [17].

2.2 Design Issues

2.2.1 Samples Vs. Blocks

Since the introduction of early computer music soft-

ware, there has been some debate about the way of

computing samples by means of signal processing al-

gorithms. Control signals vary with a rate lower than

the audio sample rate and it makes sense to collect

blocks of samples produced by tight loops and pass

these blocks along the signal processing
owgraph.

In general purpose architectures, this strategy in-

troduces signi�cant savings (up to a factor of 7 in

Csound [5]) connected to the better use of registers

10

.

Another source of savings comes from the fact that

control signals are updated at control rate, typically

at block boundaries. This coarse time-discretization

often produces audible artifacts which can be reduced

either by reducing the block size (thus loosing some

of the bene�ts in performance) or by introducing in-

terpolation in control signals. It appears that the

most e�cient strategy is to incorporate control-signal

interpolation within UGs [5]. We think that this

kind of signal degradation due to blocking is gener-

ally acceptable, especially if one uses large blocks for

preparatory sketches and small or no blocking for the

�nal rendering. However, there is a much more seri-

ous category of artifacts due to blocking that cause

serious headaches to many sound designers [12, page

37]. These appear whenever there is feedback in a

signal processing patch. For instance, explicit com-

putation of a recursive �lter often requires feeding

back signals which are delayed by one sample only.

This can not be done unless the block size is set to

one. If the block size takes di�erent values, the re-

sulting spectra are wildly a�ected by imaging and

aliasing. This second species of artifacts are particu-

larly bad because they are all but the kind of gentle

degradation that can be tolerated during preparatory

sketches. Since these artifacts have a semantic na-

ture and it is not easy to extend a language to deal

with them, we prefer the solution taken by CLM and

8

http://www-ccrma.stanford.edu/CCRMA/Software/

clm/clm.html

9

http://sound.media.mit.edu/~eds/mpeg4

10

Dannenberg and Thompson have shown that blocking is

almost insensitive to the memory hierarchy due to prefetching

of long cache lines [5]

SAOL where all audio signals are computed sample-

by-sample. In particular, SAOL keeps the distinc-

tion between audio rate and control rate, using it

only to have sparse updating of control signals and

not for dividing audio-rate computations into blocks.

This doesn't exclude the possibility of implementing

block-oriented UGs (such as FFTs): they simply put

a sample in a bu�er every time they are called and

compute the operation when the bu�er is full.

2.2.2 Performance

Nowadays, general purpose computer architectures

are fast enough to accomodate real-time performance

of medium-size sound processing algorithms. In

the recent past, it was thought that computation-

intensive chores could take advantage of boards con-

taining Digital Signal Processors. This was the ap-

proach taken by CLM, which could bene�t of UGs

coded in the assembly language of the DSP Motorola

56000, present in NeXT computers. Currently, the

speed and processing power of CPUs has increased so

much that
oating-point C-language CPU implemen-

tations are often faster than �xed-point assembly-

language implementations on DSPs. And of course it

is much easier to implement a UG in C using
oating-

point arithmetic.

Benchmarks on implementations of various

sound-processing languages show that there are no

dramatic di�erences in performance [12, 3] when the

same blocking policy is chosen. In particular, it is

interesting to note that the expressiveness of Nyquist

as compared to Csound is obtained with no e�ciency

losses. Just to mention a few of the advantages shown

by Nyquist, sounds can be treated as any other ar-

gument in function calls and they can be tempo-

rally transformed on the
y by means of behavioral

abstractions. Moreover, blocking in Nyquist is not

subject to the restrictions of Csound, where note

quantization matches the control rate [3]. However,

Nyquist is designed to perform well when used with

large block sizes, thus incurring in the semantic pit-

fall mentioned above where patches with feedback are

designed. Problems are also likely to arise when using

Nyquist in real-time sound processing, where tolera-

ble I/O latencies impose small blocks, and interactive

control (e.g. via MIDI) doesn't seem to agree too well

with the internal representation of sounds as atomic

entities [4].

So far, the designers of sound languages have not

cared much of the characteristics of modern architec-

tures when performing their optimizations. Again, a

notable exception is found in [5]. Current computers

have an organization of memory hierarchy such that:

(i) reads are more expensive than writes, (ii) space

locality in a memory reference pattern improves per-

formance, (iii) access to tables whose addresses �t all

in the Translation Look-aside Bu�er is faster. These

features can be exploited when designing the UGs.

Other improvements, such as good use of the pipeline,

loop unrolling, replacement of expensive operations,

are typically performed by the compiler when it ana-

lyzes the code of UGs. The languages where instru-

ments are actually compiled rather than interpreted

can bene�t from compiler-based global optimizations.

In fact, the chances for optimization and extraction of

parallelism increase with the increased mean length

of basic blocks. For instance, CLM tries to translate

instruments into C code which can then be compiled.

In the future, architectures having multiple

CPUs will become widely available

11

. Therefore,

it is important that sound languages can take ad-

vantage of multiprocessing by assigning loosely con-

nected threads of computation (e.g. di�erent notes)

to di�erent CPUs. This can be done fairly easily by

using compilers that support parallel blocks, paral-

lel loops, and shared variables. We can expect most

future sound languages to be able to distribute com-

putations automatically among the available CPUs.

2.2.3 Extensibility

A very important point driving the choice of a sound

language is its extensibility. This feature is twofold:

on the one hand it can be seen as the possibility

of using syntactic structures of a high-level language

within an instrument de�nition; on the other hand it

can be seen as the possibility of enriching the set of

UGs. The former feature is provided, among the lan-

guages mentioned so far, only by CLM and Nyquist,

since any Lisp statement can be used within instru-

ments. The latter feature is somewhat provided by

all the languages, with varying degrees of
exibility.

For example, extending the set of UGs of Csound

is a matter of adding some C code and recompiling

the sources. Unfortunately, this task can be daunting

due to the intricacy of the source code. We also regret

the fact that, since this is the only way of extending

Csound, a plethora of extensions blossomed during

the last decade, with the double e�ect of leading to

unmanageable code and creating many incompatible

versions. In this respect, an orthogonal approach is

taken by the ISO Committee which is going to adopt

SAOL as the standard language for specifying struc-

tured audio in MPEG-4: extensibility is limited by

the fact that the set of UGs is standardized

12

. The

hope of the proponents is that a sound-processing

language \carved in stone" will be widely adopted

by most multimedia-device manufacturers, as it hap-

pened with MIDI in the eighties.

In CLM, user-de�ned generators can be writ-

ten in C language and interfaced by means of Lisp

macros. Moreover, since general programming struc-

tures can be used within instruments and these can be

translated into fast C code, the need of user-provided

additions to the core language is alleviated.

11

E.g. the forthcoming Intel-Merced architecture should

support inexpensive and extensive multiprocessing

12

However, new UGs can be de�ned using the standard

SAOL syntax and a macro mechanism

In Nyquist, integrating user-de�ned generators

implies using a tool which translates speci�cations

of behaviors into actual C code, which is then com-

piled and linked into Nyquist. Without this tool, the

complexity of behavioral abstractions would make it

very di�cult for a user to write a UG from scratch

and to integrate it into Nyquist.

2.2.4 Dealing with Audio E�ects

It is interesting to see how di�erent sound languages

deal with digital audio e�ects, i.e. instruments de-

signed for modifying rather than generating sounds.

In Csound, e�ects are like any other instrument:

they are invoked as \notes" from the score, and they

receive input sounds through the use of global vari-

ables.

In CLM, any e�ect is assimilated to a reverber-

ator. The macro with-sound, which is responsible

for producing a note, operates a clear distinction be-

tween generation and processing. For example, the

following statement instantiates a note from the in-

strument sweep and sends the result to the processing

unit echo:

(with-sound

(:reverb echo

:reverb-data(1.0 0.1))

(sweep "march.wav" :duration 25.0

:freq-env '(0 0.0 100 1.0)))

Incidentally, note that the instrument sweep ac-

cepts as parameters a string representing a �lename,

a
oating point number, and a list of points repre-

senting an envelope.

The approach to e�ect processing taken by

Nyquist is the most elegant. Since scores and in-

struments are speci�ed using the same high-level lan-

guage, one can write functions that perform scores

and use the result (which is a variable of type

SOUND) as argument to functions that perform ef-

fects. For instance, with the properly de�ned func-

tions flanger and arpeggio, the following statement

would be valid in Nyquist:

(flanger (arpeggio c2 e2 g2 c3))

If elegance and generality has been achieved in

Nyquist by devising a rather complicated internal

representation of sounds and behaviors, a neat rep-

resentation of audio-processing connections can also

be encapsulated within a Music-N framework. This

is best shown by SAOL, which makes use of the

metaphor of the mixing console with its \send" and

\return" audio busses. The descriptions of complex

audio patches turn out to be very terse and highly

communicative, at least to someone previously ex-

posed to some live audio-engineering practice (see

sec. 6.2). As an example, consider the following code

declaring a connection between a generator and an

echo, the latter having two parameters, delay and

amplitude:

route (bus1, generator);

// delay amplitude

send (echo; 0.1, 1.0; bus1);

It is worth noticing how a suite of programs based

on piped communication, such as those described in

sec. 5, leads naturally to an elegant way of expressing

chains of sound e�ects.

3 Inline sound processing

A completely di�erent category of music software

deals with inline sound processing. The software in-

cluded in this category implies direct user control over

sound on several levels, from its inner microscopic de-

tails up to its full external form.

In its various forms, it allows the user to: (i)

process single or multiple sounds (ii) build complex

sound structures into a sound stream (iii) view dif-

ferent graphical representations of sounds. Hence,

the major di�erence between this category and the

one outlined in the preceding paragraphs lies perhaps

in this software's more general usage at the expense

of less 'inherent' musical capabilities: as an exam-

ple, the di�erence between single event and event

organization (the above-mentioned orchestra/score

metaphor and other organizational forms) which

is pervasive in the languages for sound processing

hardly exists in this category. However, this software

allows direct manipulation of various sound param-

eters in many di�erent ways and is often indispens-

able in musical pre-production and post-production

stages.

Compared to the Music-N-type software the one

of this category belongs to a sort of \second gen-

eration" computer hardware: it makes widespread

and intensive use of high-de�nition graphical de-

vices, high-speed sound-dedicated hardware, large

core memory, large hard disks, etc. . In fact, we will

shortly show that the most hardware-intensive soft-

ware in music processing - the digital live-electronics

real-time control software - belongs to one of the sub-

categories exposed below.

3.1 Time-Domain Graphical Editing

and Processing

The most obvious application for inline sound pro-

cessing is that of graphical editing of sounds. While

text data �les lend themselves very conveniently to

musical data description, high-resolution graphics

are fundamental to this speci�c �eld of applications

where single-sample accuracy can be sacri�ced to a

more intuitive sound event global view.

Most graphic sound editors allow to splice and

process sound �les in di�erent ways.

As �g. 2 shows

13

the typical graphical editor dis-

13

The editor in this example is the Digital Au-

dio Processor, an open-source public-domain audio edit-

Definition

Region
Sound Display

Time Scale

Controls

Figure 2: A typical sound editing application

plays one or more sound�les in the time-domain, al-

lowing to modify it with a variety of tools. The im-

portant concepts in digital audio editing can be sum-

marised as follows:

� regions - these are graphically selected portions

of sound in which the processing and/or splicing

takes place;

� in-core editing versus window editing - while sim-

pler editors load the sound in RAM memory for

editing, the most professional ones o�er bu�ered

on-disk editing to allow editing of sounds of any

length: given the current storage techniques,

high-quality sound is fairly expensive in terms of

storage (ca. 100 kbytes per second and growing),

on-disk editing is absolutely essential to serious

editing;

� editing and rearranging of large sound�les can

be extremely expensive in terms of hardware

resources and hardly lend themselves to the

general editing features that are expected by

any multimedia application: multiple-level un-

dos, quick trial-and-error, non-destructive edit-

ing, etc.: several techniques have been devel-

oped to implement these features - the most

important one being the playlist, which allows

sound�le editing and rearranging without actu-

ally touching the sound�le itself but simply stor-

ing pointers to the beginning and end of each

region. As can be easily understood, this tech-

nique o�ers several advantages being extremely

fast and non-destructive;

In �g. 3, a collection of sound�les is aligned on the

time axis according to a playlist indicating the start-

ing time and duration of each sound�le reference (i.e.

ing and processing application written by Richard Kent

(http://www.cee.hw.ac.uk/~richardk/) for unix workstations.

Amplitude Sound FilePlaylist
Region

References

Scalings

Figure 3: A snapshot of a typical ProTools

c

 editing

session

a pointer to the actual sound�le). Notice the on-the-

y amplitude rescaling of some of the sound�les

14

Graphical sound editors are extremely

widespread on most hardware platforms: while

there is no current favourite application, each plat-

form sports one or more widely used editors which

may range from the US$ 10000 professional editing

suites for the Apple Macintosh to the many free

open-source programs for unix workstations. In the

latter category, it is worthwile to mention the snd

application by Bill Schottstaedt

15

which features

a back-end processing in CLM (see sec. 2). More

precisely, sounds and commands can be exchanged

back and forth between CLM and snd, in such

a way that the user can choose at any time the

most adequate between inline and language-based

processing.

3.2 Analysis/Resynthesis Packages

Analysis/Resynthesis packages belong to a closely

related but substantially di�erent category: they

are generally medium-sized applications which o�er

di�erent editing capabilities. These packages are

termed analysis/resynthesis packages because edit-

ing and processing is preceded by an analysis phase

which extracts the desired parameters in their most

signi�cant and convenient form; editing is then per-

formed on the extracted parameters in a variety of

ways and after editing, a resynthesis stage is needed

to re-transform the edited parameters into a sound

in the time domain. In di�erent forms, these appli-

cations do: (i) perform various types of analyses on a

sound (ii) modify the analysis data (iii) resynthesize

the modi�ed analysis.

Many applications feature a graphical interface

that allows direct editing in the frequency-domain:

14

ProTools

c

 is manufactured by Digidesign

(http://www.digidesign.com)

15

ftp://ccrma-ftp.stanford.edu/pub/Lisp/snd.tar.gz

the prototypical application in this �eld is Au-

diosculpt developed at the IRCAM

16

for the Apple

Macintosh platform. Based on a versatile FFT-based

phase vocoder called SVP, Audiosculpt is essentially

a drawing program which allows the user to \draw"

on the spectrum surface of a sound.

Time-Domain
Envelope

Current
FFT Frame

-60

Editing Regions
Spectrogram

Graphic Editing Palette

-35

Figure 4: A typical AudioSculpt session

In �g. 4, some portions of the spectrogram have

been delimited and di�erent magnitude reductions

have been applied to them.

Other applications, such as Lemur

17

, running on

Apple Macintoshes) [7] or Ceres (developed at No-

Tam

18

) perform di�erent sets of operations such as

partial tracking and tracing, logical and algorithmic

editing, timbre morphing, etc.

The contemporary sound designer can also bene-

�t from tools which are speci�cally designed to trans-

form sound objects in a controlled fashion. One such

tool is SMS

19

, designed by Xavier Serra as an o�-

spring of his and Smith's idea of analyzing sounds

by decomposing them into stochastic and determin-

istic components [16] or, in other words, noise and

sinusoids. SMS uses the Short-Time Fourier Trans-

form (STFT) for analysis, tracking the most relevant

peaks and resynthesizing from them the determinis-

tic component of sound, while the stochastic com-

ponent is obtained by subtraction. The decompo-

sition allows
exible transformations of the analysis

parameters, thus allowing good-quality time warping,

pitch contouring, and sound morphing. SMS comes

with a very appealing graphical interface under Mi-

crosoft Windows, with a web-based interface, and is

available as a command-line program for other op-

erating systems, such as the various
avors of unix.

SMS uses an implementation of the Spectral Descrip-

16

http://www.ircam.fr

17

http://datura.cerl.uiuc.edu/Lemur/

18

http://www.NoTam.uio.no/

19

http://www.iua.upf.es/~sms/

tion Interchange Format

20

, which could potentially

be used by other packages operating transformations

based on the STFT. As an example, consider the fol-

lowing SMS synthesis score which takes the results

of analysis and resynthesizes with application of a

pitch-shifting envelope and an accentuation of inhar-

monicity:

InputSmsFile march.sms

OutputSoundFile exroc.snd

FreqSine 0 1.2 .5 1.1 .8 1 1 1

FreqSineStretch 0.2

3.3 Interactive Graphical Building

Environments

In recent times, several software packages have been

written to ease the task of designing sound synthe-

sis and processing algorithms. Such packages make

extensive use of graphical metaphors and object ab-

straction reducing the processing
ow to a number of

small boxes with zero, one or more audio/control in-

puts and outputs connected by lines, thus replicating

once again the old and well known modular synthe-

sizer interface taxonomy.

Initially, many such packages where created to

tame the daunting task of writing specialized code

for dedicated signal processing tasks. In these pack-

ages, each object would contain some portion of DSP

assembly code or microcode which would be loaded

on-demand in the appropriate DSP card. With a

graphical interface the user would easily construct,

then, complex DSP algorithms with detailed controls

coming from di�erent sources (audio, MIDI, sensors,

etc.). Several such applications still exist and are

fairly widely used in the live-electronics music �eld

(just to quote a few of the latest (remaining) ones):

the Kyma/Capybara environment written by Carla

Scaletti and Kurt Hebel

21

, the ARES software devel-

oped by the software team at IRIS-Bontempi

22

, the

Fly30 environment written by Michelangelo Lupone

and Laura Bianchini at CRM-Rome

23

, and the soon-

to-be-released Scope package announced by the ger-

man �rm Creamware

24

.

While these specialized packages are bound to

disappear with the rapid and manifold power in-

crease of general purpose processors

25

, the concept

of graphic object-oriented abstraction to easily visu-

ally construct signal processing algorithms has spur

an entire new line of software products.

The most widespread one is indeed theMax pack-

age suite conceived and written by Miller Puckette at

20

http://cnmat.cnmat.Berkeley.edu/SDIF/

21

http://www.symbolicsound.com

22

http://aimi.dist.unige.it/IRIS/index.html

23

http://www.axnet.it/crm

24

http://www.creamware.de

25

This is not a personal but rather a classic darwinian con-

sideration: the maintenance costs of such packages added to

the intrinsinc tight binding of such code with rapidly obsoles-

cent hardware exposes them to an inevitable extinction.

IRCAM. Born as a generic MIDI control logic builder,

this package has known an enormous expansion in its

commercial version produced by Opcode Inc.

26

and

maintained by Dave Zicarelli

27

. A recent extension

to Max is MSP which features real-time signal pro-

cessing objects on Apple PowerMacs (i.e. on general-

purpose RISC architectures). Another interesting

path is being currently followed by Miller Puckette

himself who is now developing Pure Data (PD) [13],

an open-source public domain counterpart of Max

which handles MIDI, audio and graphics. PD is de-

veloped keeping the actual processing and its graph-

ical display as two cooperating separate processes,

thus enhancing portability and easily modeling its

processing priorities (sound �rst, graphics later) on

the underlying operating system thread/task switch-

ing capabilities. PD is currently a very early-stage

work-in-progress but it already features most of the

graphic objects found in the experimental version of

Max plus several audio signal processing objects. Its

tcl/tk graphical interface makes its porting extremely

easy (virtually \no porting at all")

28

.

Audio Modules

Audio Path

Data Path

Figure 5: A Pd screen shot

4 Software to Teach Audio Sig-

nal Processing

Audio signal processing is essentially an engineering

discipline. Since engineering is about practical real-

izations the discipline is best taught using real-world

tools rather than special didactic software. At the

roots of audio signal processing there are mathemat-

ics and computational science: therefore we strongly

26

http://www.opcode.com

27

http://www.cycling74.com

28

Pure Data currently runs on Silicon Graphics work-

stations, on Linux boxes and on Windows NT plat-

forms; sources and binaries can be found at ftp://crca-

ftp.ucsd.edu/pub/msp/

recommend using one of the advanced maths soft-

wares available o� the shelf. In particular, we expe-

rienced teaching with Matlab, or with its open-source

counterpartOctave

29

. Even though much of the code

can be ported from Matlab to Octave with minor

changes, there can still be some signi�cant advantage

in using the commercial product. However, Matlab is

expensive and every specialized toolbox is sold sep-

arately. True, there is an inexpensive student edi-

tion, but with a very severe limitation on vector size

precluding any serious manipulation of sounds. On

the other hand, Octave is free software distributed

under the GNU public license. It is robust, highly

integrated with other tools such as Emacs for editing

and GNUPlot for plotting.

In Matlab/Octave, monophonic sounds are sim-

ply one-dimensional vectors, so that they can be

transformed by means of matrix algebra, since vec-

tors are �rst{class variables. In these systems, the

computations are vectorized, and the gain in e�-

ciency is high whenever looped operations on ma-

trices are transformed into compact matrix-algebra

notation [1]. This peculiarity is sometimes di�cult

to assimilate by students, but the theory of matrices

needed in order to start working is really limited to

the basic concepts and can be condensed in a two-

hours lecture.

Matlab and Octave are great tools for illustrat-

ing the concepts of sampling, quantization, aliasing,

windowing, etc. It is possible to visualize spectra

and signals under di�erent conditions with very small

scripts. A Signal Processing Toolbox with plenty

of routines for signal manipulation and �lter design

is purchasable for being used within Matlab. How-

ever, pedagogical needs can be largely satis�ed by

public-domain routines

30

. By using these routines it

is possible, for example, to plot a time-frequency rep-

resentation of a sound S by introducing the two lines:

SS = stft(S);

mesh(20*log10(SS));

A course reader (in italian) on sound processing

with several examples produced using Octave is avail-

able on line

31

.

An application devoted to digital �lter design

with pedagogical purposes in mind is called ein [9]. It

is essentially a front end to a C/C++ library of func-

tions dealing with signal processing in both time and

frequency domain. Currently, an open-source imple-

mentation is available for Silicon Graphics worksta-

tions while a linux port is well on the way at the time

of this writing

32

.

29

http://www.che.wisc.edu/octave/

30

see, e.g. http://www.tsc.uvigo.es/GTS/Octave

31

http://www.dei.unipd.it/ricerca/csc/roc/web/es.html

32

a web page on ein may be found at

http://www.music.princeton.edu/PSK/ein.html

while the linux port will soon be available from

ftp://musart.dist.unige.it/pub/CSOUND/ein-1.xx.tar.gz

and ftp://mustec.bgsu.edu/pub/linux/

5 Processing Libraries, Plug-

ins and Toolkits

Aside from complete and self-contained applications,

another musical �eld in which several energies

are being spent is that of tools and toolkits to

perform speci�c processing tasks in a cooperative

environment made of several small instances of

such programs. These tools have di�erent names

(e.g. libraries, plug-ins, toolkits, etc.) and take up

di�erent forms (e.g. libraries of C functions and

modules, dynamically linked modules, full-blown

applications, etc.) but they essentially serve the

same purpose. One of the most e�ective ways

of providing extensibility to a software system is to

design it as a suite of independent programs, and

to let them communicate by means of mechanisms

of the underlying operating system, e.g. unix pipes

and Inter-Process Communication. An interesting

example of this kind of design is found in pipewave,

a suite of programs designed to arrange and analyze

psychoacoustic tests. Data are passed between

programs as ASCII streams using unix pipes. The

choice of ASCII as a format for signals allows surgical

operations via text editors, e�ective compression

via regular compression tools, and manipulation by

independently-conceived programs, such as Octave

(see sec. 4). As an example of pipewave in action,

consider the task of plotting and storing to �le the

lowpass-�ltered version of a 1-second gaussian white

noise sampled at 22050 Hz. This can be easily

achieved by the following script, where �ltering is

performed in the frequency domain:

gaussian -s 22050 22050 | fft -p |

ffilt -c 0 -10 2000 -40 | ift |

store -o fnoise | plot

A strong advantage of using pipes is that the

communicating programs can be written in entirely

di�erent programming languages and environments,

so that it is possible to overcome the limitations of

every single programming system.

Pipes have been used extensively in the CARL

software environment of the University of California,

San Diego too [12]. This environment includes the

Cmusic sound-processing language and a plethora of

tools such as reverberators, a spatializer, table gen-

erators, all communicating via
oating-point streams

passed through pipes. In practice, the Cmusic lan-

guage can be extended without modifying the Cmusic

program itself.

Cmix is another sound-processing system which

is based on the idea of having many small programs

rather than a monolithic software

33

. However, while

in the CARL software environment there are satellites

of a Music-N-like core, in Cmix there is not such a

33

http://www.music.princeton.edu/cmix

core, as there are just C functions which can be called

within regular C programs. This greatly increases the

possibilities of the sound designer, even though ex-

tensive knowledge of the C programming language is

required. In particular, compact scores can be writ-

ten using complex control structures, thus extending

the crude note-list habit of Music-N-like languages.

Cmix has been recently turned into a C++ system

of classes, �tted with an e�cient scheduler and with

support for remote client requests via TCP/IP sock-

ets. The new system is called RTcmix

34

[8], to em-

phasize the fact that sound computations can be

done in real-time on stand-alone or networked work-

stations. A similar system is Perry Cook's Synthe-

sis Toolkit (STK)

35

: a collection of sound-processing

modules written as C++ classes which are particu-

larly e�ective for representing complex sound synthe-

sis patches, such as those found in physical models.

STK runs under unix or Microsoft Windows, and sup-

ports real-time input/output audio and MIDI stream-

ing.

Other widely di�used tools (in the Macintosh

world) are the GRM Toolkit [6] and Soundhack, a

stand-alone set of processing algorithms written by

Tom Erbe

36

. The GRM Toolkit was initially designed

as a stand-alone application to replicate in the digital

domain the e�ects that were a special feature of the

Groupe de Recherches Musicales active at the french

radio since 1948. The e�ects included many types of

�ltering, delay and resampling modules and algorith-

mic splicing. In recent times these tools are being

o�ered (commercially) as plug-in modules for popu-

lar Macintosh editors/sequencers like ProTools

c

 and

Cubase VST

c

. SoundHack is a well-designed stand-

alone application (see �g. 6) which o�ers traditional

tools coupled with less traditional processings like

hybrid mutations, binaural placement and wavetable

convolution.

6 Other issues

There are several general software development issues

that do not belong to any particular music software

approach or category. However, in music software

these issues have often been underestimated: with

few exceptions in both the commercial and the open-

source domains music software is known to be badly

designed, poorly developed and consequently often

bugged by ill-de�ned problems.

6.1 Portability and availability under

di�erent platforms

Portability problems manifest themselves di�erently

in the commercial and in the open-source domains.

34

http://www.music.columbia.edu/RTcmix

35

http://www.cs.princeton.edu/~prc

36

http://shoko.calarts.edu/~tre/SndHckDoc

Information
Soundfile

Input
Sonogram

Run-Time
Control

Figure 6: A SoundHack screen shot

In the commercial domain, up until very recently

the software houses assumed that a musician would

be such a computer illetterate to be forced to choose

her/his computer platform according to the software

used (and not the opposite, as normal logic would

lead to think). In the best case, interoperability,

�le exchange, inter-application communication were

words allowed only among the same �rm's products

on the same platform (and often the same version

number too). With recent changes in commercial op-

erating system trends and politics (combined with

musicians becoming a little pickier about computers)

these software houses were faced with some manda-

tory multi-platform software shift, which will prob-

ably lead, in some future, to better thought-out de-

signs. Another problem that plagues the design of

many commercial applications is the need to ful-

�ll many radically di�erent functions to satisfy the

widest customer base: the applications are often too

big, slow and non-homogeneous.

Since Computer Music is fairly di�used in the

academic �eld, it is perfectly natural to �nd a large

pool of high-quality open-source applications devoted

to signal processing in the public domain (and in-

deed, a good 70% of the software mentioned in

this document belongs to the open-source public do-

main). As usual, the very nature of success-

ful open-source applications

37

implies a large base

of users/debuggers/experts; hence, successeful open-

source applications often grow more rapidly and are

better debugged. However, even in this domain mu-

sic applications do not yet follow the standards: while

a lot of the open-source software constitute a model

for coding and development, for some obscure reason

many open source music software developers do not

analyze nor code in a professional way and they re-

frain from using all the powerful development tools

37

which is well explained in Eric Raymond's ar-

ticle Homsteading the Noosphere, available from

http://sagan.earthspace.net/~esr/writings/homesteading/

that the public-domain and the internet feature

38

.

Professional music software development is still a rare

(and welcome) instance in the open-source commu-

nity. On the positive side, as all other open-source

software, music applications stem from some precise

real-world needs and are generally better suited to

face sophisticated musical requests. Furthermore the

widespread use of ASCII (text) data description en-

coding makes inter-application operation extremely

easy and natural.

6.2 Integration with existing practice

and working enviroments

Existing practice is a very di�used statement in mu-

sic: existing practices are important in music com-

position, typography, interpretation, rehearsals, per-

formance, analysis, concert habits - almost any mu-

sical �eld operates in conformance (or in opposition)

to some existing practice

39

. Computer music soft-

ware is no exception: even though it is a very recent

�eld there are indeed several consolidated practices

in electro-acoustic music performance (we even made

some passing reference to some of them in this pa-

per: the orchestra-score metaphor, the modular syn-

thesizer model, etc.).

While it is often (wrongly) assumed that musi-

cians will prefer simpler software with friendlier in-

terfaces and lack of deeper complexity, it is interest-

ing to notice (even if it could sound a bit obvious)

that music software designed with existing practices

in mind is often more easily accepted and used by

musicians and therefore more successeful - no matter

how complicate its operation is. Music production is

a complex task full of many-layered implications and

musicians are certainly not afraid of facing it every

day - musical instruments are complicate interfaces

which require years of practice at all levels: in this

context, computers are certainly among the simplest

instruments (even mere toys at times) and musicians

are certainly eager to learn them if the software is

designed with the musical context and the existing

practices in mind.

References

[1] D. Ar�b. Di�erent ways to write digital audio ef-

fects programs. In Proc. Conf. Digital Audio Ef-

fects (DAFX-98), Barcelona, Spain, Nov. 1998.

[2] R. B. Dannenberg. Abstract time warping of

compound events and signals. Computer Music

J., 21(3):61{70, 1997.

38

Perhaps a musician that devotes time to music thinks

she/he doesn't have the time to learn software tools; unfortu-

nately that very same time (and much more) gets spent hunting

for hard-to-catch bugs and rewriting code.

39

this probably means that the music world is very conser-

vative.

[3] R. B. Dannenberg. The implementation of

Nyquist, a sound synthesis language. Computer

Music J., 21(3):71{82, 1997.

[4] R. B. Dannenberg. Machine tongues XIX:

Nyquist, a language for composition and sound

synthesis. Computer Music J., 21(3):50{60,

1997.

[5] R. B. Dannenberg and N. Thompson. Real-time

software synthesis on superscalar architectures.

Computer Music J., 21(3):83{94, 1997.

[6] E. Favreau. Les outils de traitement GRM Tools.

In La Terra Fertile, pages 95{98, L'Aquila, Italy,

Sept. 1998.

[7] K. Fitz and L. Haken. Sinusoidal modeling and

manipulation using lemur. Computer Music J.,

20(4):44{59, 1997.

[8] B. Garton and D. Topper. RTcmix { using

CMIX in real time. In Proc. International Com-

puter Music Conference, pages 399{402, Thessa-

loniki, Greece, 1997. ICMA.

[9] P. Lansky and K. Steiglitz. Ein: A signal

processing scratchpad. Computer Music J.,

19(3):18{25, 1995.

[10] M. Mathews, J. E. Miller, F. R. Moore, J. R.

Pierce, and J.-C. Risset. The Technology of

Computer Music. MIT Press, Cambridge, MA,

1969.

[11] F. R. Moore. Elements of Computer Music.

Prentice-Hall, Englewood Cli�s, N.J., 1990.

[12] S. T. Pope. Machine tongues XV: Three pack-

ages for software sound synthesis. Computer Mu-

sic J., 17(2):23{54, 1993.

[13] M. Puckette. Pure data. In Proc. Interna-

tional Computer Music Conference, pages 224{

227, Thessaloniki, Greece, Sept. 1997. ICMA.

[14] C. Roads. The Computer Music Tutorial. MIT

Press, Cambridge, Mass., 1996.

[15] B. Schottstaedt. Machine tongues XVII: CLM:

Music V meets common lisp. Computer Music

J., 18(2):30{37, 1994.

[16] X. Serra and J. O. Smith. Spectral modeling syn-

thesis: A sound analysis/synthesis system based

on a deterministic plus stochastic decomposi-

tion. Computer Music J., 14(4):12{24, 1990.

[17] B. L. Vercoe, W. G. Gardner, and E. D. Scheirer.

Structured Audio: Creation, Transmission, and

Rendering of Parametric Sound Representations.

Proc. IEEE, 86(5):922{940, May 1998.

