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Abstract

This paper deals with the fundamental frequency estimation for monophonic sounds in the SMS

analysis environment. The importance of the fundamental frequency as well as some uses in SMS

is commented. The particular method of F0 estimation based on a two-way mismatched measure is

described as well as some modifications. Finally we explain how pitch-unpitched decision is

performed.

1 Introduction

The particular approach of SMS is based on modeling

sounds as stable sinusoids (partials) plus noise

(residual component), therefore analyzing sounds

with this model and generating new sounds from the

analyzed data. The analysis procedure detects partials

by studying the time-varying spectral characteristics

of a sound and represents them with time-varying

sinusoids. These partials are then subtracted from the

original sound and the remaining “residual” is

represented as a time-varying filtered white noise

component [1].

This article is part of the current work at the

Audiovisual Institute of the Pompeu Fabra University

by the Music Technology Group to improve the

original SMS system developed by X. Serra.

2 Importance of the fundamental

frequency in SMS

In SMS, an input sound, without any harmonic

assumption, is modeled by

[ ] )()(cos)()(
1

tettAts
R

r

r += ∑
=

θ

where Ar(t) and θr(t) are the instantaneous amplitude

and phase of the r
th

 sinusoid, respectively, and e(t) is

the noise component at time t.

However, when the input sound is pseudo-harmonic,

it is useful to take advantage of this and group the

partials related harmonically and leave to the residual

both non-harmonic and noisy contributions to the

sound.

The sound is modeled then by:
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where Ak(t) and ψk(t) are the instantaneous amplitude

and phase of the k
th

 sinusoid, respectively, ∆k is the

frequency deviation of the k
th

 sinusoid to a perfect

harmonic series normalized to the fundamental

frequency f0, and e(t) is the noise component at time t.

This representation is far more flexible and allows for

more and better transformations but it raises the

question of what to do if a portion of the sound

becomes inharmonic or noise-like. Our choice has

been to perform time segmentation on the sound with

a pitch-unpitch detector. If a frame is classified as

unpitched, the whole spectrum is considered residual

and is treated with a different model. If, on the other

hand, a frame is considered pitched the separation

between harmonic and noisy components relies,

besides the general peak detection and continuation

routines, on the fundamental frequency estimation.

The selection of sinusoidal components is heavily

based on the fundamental frequency estimation.

A part from allowing for a more musically meaningful

representation, dealing with harmonic signals has

more advantages; a frequent problem in sinusoidal

representation is the selection of a window for a good

frequency trade-off. With the knowledge of the

fundamental frequency, an approach to pitch-

synchronous analysis can be performed by adapting

the window size to a specific number of pitch periods.

The fundamental frequency can also be used to

transform the residual component. If for instance, a

pitch scaling is performed in a sound, unless we do

something on the residual, we will find that harmonic

and residual do not mix well. A possible way to solve

this is by comb-filtering the residual, subtracting the

old tonality and adding in the new one so that the

sounds mix better.



There is not a unique solution when determining a

period of a quasi-periodic signal. In the context of

SMS, we look for the F0 of the pure periodic sound

that best resembles locally to the input sound. A

possible search for F0 could be accomplished by

minimizing the residual energy of the signal once the

harmonic partials are subtracted. This is the common

approach of analysis by synthesis systems [2] in the

frequency domain or the Least-square algorithm

proposed by Choi [3] in the time domain. For our

purposes, we wanted a technique with a good trade-

off between accuracy and computation time. Thus,

what we do is the following: given the set of spectral

peaks calculated as part of the SMS analysis, with

magnitude and frequency values for each one, we

estimate the fundamental frequency by measuring the

“goodness” of the possible harmonic series with the

actual spectral peaks, in a way similar to the method

proposed by Maher and Beauchamp as the Two-Way

Mismatch (TWM) procedure [4].

3 The TWM Procedure

In the Two-Way Mismatch procedure the estimated

F0 is chosen as to minimize discrepancies between

measured partial frequencies and harmonic

frequencies generated by trial values of F0. For each

trial F0 mismatches between the harmonics generated

and the measured partial frequencies are averaged

over a fixed subset of the available partials.

In the original algorithm they propose using a short-

time Fourier transform analysis of an acoustic signal

input  using fixed window size (typically, 46 ms). For

each time frame (typically, 5.8 ms), they obtain the

magnitude spectral peaks and apply the TWM

procedure.

The predicted to measured error is defined as:
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where ∆fn is the difference between a predicted and its

closest measured peak, fn and  are the frequency and

magnitude of the predicted peaks, and Amax is

maximum peak magnitude.

The measured to predicted error is defined as:
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where ∆fk is the difference between a measured and

its closest predicted peak, fk and ak are the frequency

and magnitude of the measured peaks, and Amax is

maximum peak magnitude.

The total error is:

KErrNErrErr pmmptotal // →→ += ρ

The values they  propose are p=0.5, q=1.4, r=0.5 and

ρ=0.33. We have validated this values experimentally

and tested that they work optimally for most sounds.

As a simple example of the TWM calculation

consider the measured sequence of partials {200, 300,

500, 600, 700, 800}. In this example we would like to

determine whether 50, 100, or 200 Hz is the best F0

Figure 1. In this figure it is easy to see how the two errors, measured to predicted

and predicted to measure, complement each other to avoid octave errors and to

find the correct F0. Note that the predicted to measured presents a minimum in

the octaves superior to the correct F0 (around 530 Hz) and the measured to

predicted does it in the lower octaves (around 130Hz).



assuming all the measured partials are approximately

equal in amplitude. In the following table (Table 1)

we show the formula results.

Errpm Errmp Err

50 Hz 122.58 -3.0 7.49

100 Hz 32.0 -3.0 3.83

200 Hz 10.0 30.66 4.2

Table 1. Example of error measures based

on the TWM calculation.

Note that neither of the errors acting alone can

achieve an unambiguous F0 choice. This can also be

checked in the graph of Figure 1, where the ErrpÆm (in

darker gray), ErrmÆp (in lighter gray) add up to a total

error (in black) with the correct solution.

4 Modifications

Although the method described works well for a

general purpose application, in the context of SMS we

have made some changes to better suit our needs.

4.1 Pitch dependent analysis window

Some of the analysis steps in SMS help to improve

the performance of the fundamental frequency

estimation as a side effect. The analysis window, for

instance, adapts its size and type depending on the

fundamental frequency. Doing so, the accuracy of the

result is less depending on pitch than using a fixed

window.

In order to change the window to get a good time-

frequency trade off, the algorithm has to be sure that

the F0 detected is a reliable one. In our case, we

consider a good F0 when the pitch error is sufficiently

low and the pitch estimate has been relatively

constant for a few frames. There is also a hystheresis

cycle to avoid changing windows back and forth if F0

is around a changing point.

In our current implementation of SMS, the way that

the window size and the window type change as a

function of the period detected is selectable by the

user. The values in Figure 2 have proven to work

correctly and result in a minimum latency analysis

and good time resolution. There are reasons why

window size is not a constant number of periods of

the signal. For low fundamental frequency sounds, in

order to avoid the delay caused by using a big

window and also, to improve time resolution, the

window size is chosen to be less than 3 periods. As

fundamental frequency rises, each pitch period is

represented by fewer samples and to keep a sufficient

frequency resolution we have to increase the size of

the window, which reaches 3.5 periods at 500Hz. For

the above configuration to work is necessary to

change the window type as well. We thus select a

window with a narrow main lobe, for example the

Kaiser-Bessel 1.8. for low pitches while we can afford

a smoother window with a wider main lobe, like the

Kaiser-Bessel 2.5. for the higher pitches.

Figure 2. Windows size and window type as

a function of fundamental frequency. KB

stands for Kaiser-Bessel and the number

refers to the α.

4.2 Optimization in the search for

candidates

The original TWM method is computationally quite

costly because it sweeps through all the possible

fundamental frequency range with very small

frequency increments. It is faster to first find possible

candidates and apply the algorithm to these ones only.

By only considering as candidates the frequencies of

the measured spectral peaks, frequencies related to

them by simple integer ratios (e.g., 1/2, 1/3, 1/4), and

the distances between well defined consecutive peaks,

the search is simplified enormously.  From the best

candidates we can also refine the measure by

searching around them with small frequency

increments for a better fundamental frequency.

4.3 Peak selection

The TWM error, which works optimally when all the

peaks are partials, is corrupted by side lobes and

noise peaks. It is useful then to improve the peak

selection step, discarding peaks that are clearly not

partials, thus not using all the spectral peaks. A good

approach to perform this selection is correlating the

spectrum with the transform of the window [5], but

that is time consuming and it also implies losing

frequency resolution [2]. For monophonic sounds

from a good recording is enough using some simple

rules. In our case, in order for a peak to be accepted it

has to be less than 40 dB below the highest peak and

it has to have a minimum bandwidth. Another criteria
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that is useful in some cases is to accept peaks whose

phase slope around the peak is close to zero.

4.4 Fundamental frequency tracking

F0 estimators and TWM algorithm as well work with

the analysis based on a narrow time segment. Since it

works only from local details, it may myopically track

irrelevant details or event mistake the estimation. The

musical signals we use, on the other hand, have

smooth F0 trajectories. With the purpose of avoiding

gross errors or simply to have smoother track, it is

useful to move to higher levels of processing and

consider neighbor frames.

We use the history of the pitch to choose between

candidates with similar TWM Error. There is the

option to take into account future frames to help us

decide the best F0, both in describing the signal at the

local frame, and having a smooth evolution with

neighbor frames. As additional information to modify

the search among F0 candidates we have the phase:

The second derivative of the phase in a peak is

positive if a partial is decreasing its frequency and

negative if the partial is increasing. This information

is used as well when deciding best F0 trajectory to

use. Note that the pitch contour is not smoothed

independently of the knowledge of the sound as

median techniques do.

4.5 Knowledge-based rules

The general method described so far is independent of

the type of sound. However context specific

optimization can be done when knowledge on the

signal is available. Knowing, for instance, the spectral

range of the F0 in a particular sound helps both the

accuracy and the computational cost. Then, there are

sounds with specific characteristics, like in a clarinet

where the even partials are softer than the odd ones.

From this information we can define a set of rules that

will improve the performance of the estimator.

5 Pitched-Unpitched decision

As explained above, the portions of a sound that

cannot be well represented with the harmonic model

are considered as residual. There is then a strict

segmentation in time with routines that use the error

measure of the TWM along with other measures that

are easily computed as part of the SMS analysis. In

particular we have used: Zero Crossing, Energy,

Noisiness and Harmonic Distortion [9].

6 Conclusions

Fundamental frequency estimation is an old problem

with many approaches and solutions depending on the

particular target application. In our case, the main

goal is to estimate parameters for the harmonic model

in SMS while describing a reliable and smooth track

that allows us to use F0 for many other applications.

There is room for many improvements, specially

incorporating the knowledge of particular sound

families and the use of the phase information.
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