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ABSTRACT

This paper presents a special window function for a Fast Fourier
Transform (FFT) based spectral modeling approach for signals
consisting of sinusoids plus noise. The main new idea is to choose
a time window function with a simple Fourier transform. With the
knowledge of the Fourier transform of the window function we are
able to extract the parameters (frequency, amplitude, and phase) of
sinusoids in real-time with a digital signal processor.

1. INTRODUCTION

For any application that deals with power spectrum estimation
and harmonic analysis, it is important to extract the line spectrum
components before performing any spectral noise “smoothing” be-
cause otherwise the lines would lose their sharpness [1]. Also in
speech and audio coders, an important task is to extract harmonic
signals and to calculate masking thresholds for adaptive bit alloca-
tion.

Many approaches [2] have been proposed for this task, e.g. time-
domain Prony’s method, subband modeling, least-square fitting [3]
and frequency domain methods. For the various methods the ac-
curacy and the computational complexity differs significantly. The
algorithm presented in [4] is based on the FFT and offers moderate
complexity. We will use this algorithm as a reference and intro-
duce a new robust harmonic analysis algorithm, which is fast and
performs better on extracting noisy sines. It is also a block-based
approach and uses the FFT. First we will discuss the analysis al-
gorithm, explain the synthesis algorithm for the harmonic compo-
nents and then present a comparison and some simulation results.

The main analysis/synthesis structure is shown in Figure 1. The
input signals(n) is divided into blocks of lengthN and after
weighting by a window, anN -point FFT is performed. The FFT
lengthN should be chosen that the bin frequencyfb = fS=N
is aboutfb � 20 : : : 50 Hz; fS denotes the sampling frequency.
Magnitude maxima (“peaks”) are searched in the obtained spec-
trum. Applying an appropriate algorithm, estimates of frequency,
amplitude, and phase of corresponding superimposed sinusoids
are calculated. After performing a subsequent peak tracking only
those sinusoids are used which belong to the “real” signal, i.e.
which are not part of the noise. The spectrum is reconstructed
using the extracted data (frequency, amplitude, phase), and apply-
ing an IFFT (inverse FFT) yields the deterministic partsdet(n) of
the signal. The described structure is similar to the one used in [5],
but we are using a constant window.
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Figure 1: Main structure block diagram.

2. ANALYSIS

We present a novel algorithm to calculate frequency, amplitude,
and phase of sinusoids from the FFT data. The estimated sine
frequency is much more exact than just taking the bin frequency
of the FFT magnitude maximum. For comparison another already
proposed algorithm is described.

2.1. Triangle Algorithm

Our algorithm is named after the shape of the analysis window in
the frequency domain. The idea is to use a window whose mag-
nitude response can be determined by a simple function. Since
the window is shifted by the sine frequency when applied to a si-
nusoid, the parameters of the function can be calculated from the
FFT data. We choose here a triangular frequency response which
can be described by two lines.

2.1.1. Choice of the Window

The absolute values of the frequency response should follow a tri-
angle function; we choose the zero-phase frequency response1

A(ej
) =

�
1 �

�� 


c

�� ; j
j < 
c
0 ; otherwise

(1)

for j
j < � whereA(ej
) is 2�-periodic, see Figure 2(a). Be-
cause of the desired even symmetry of the window in the time
domain this results in a non-causal time window with an odd num-
ber of taps. With the even FFT length ofN we get aN � 1 tap
window. Delayinga(n) Æ—� A(ej
) by N=2 samples yields the
windoww(n) = a(n�N=2) with w(0) = 0. Figure 2(b) shows

1
=2�fTS denotes the normalized frequency with the sampling fre-
quencyfS=1=TS .
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Figure 2: Triangular amplitude response (a) and corre-
sponding causal window (b) forN = 64.

w(n) for N = 64 and
c = �=8. Applying anN -point FFT
(evaluation at frequencies
k = 2�

N
k) tow(n) gives

Wd(k) =W (ej
k ) = e�j
kN=2A(ej
k) = (�1)kAd(k): (2)

Thus, the valuesWd(k) are real valued and the sign alters. Analy-
zing the input signals(n) = cos(
0n + ') results in the win-
dowed frame (0 � n � N � 1)

x(n) = s(n) �w(n) = w(n)
1

2

�
ej(
0n+') + e�j(
0n+')

�
: (3)

Assuming that the spectraA(ej(
�
0)) andA(ej(
+
0)) do not
overlap, we get for0 � k � N=2 the FFT ofx(n) according to

Xd(k) =
1

2
ej('+
0N=2)(�1)kA(ej(
k�
0)): (4)

Hence the phase ofXd(k) at frequency indexk is given by

�(k) = '+
0N=2 + k�: (5)

The choice of
c (see Eq. (1)) influences the properties of the
algorithm: for greater values of
c noisy sines can be detected
better while the frequency resolution is higher for a small
c. In
the discrete-frequency domain we choose the length of the triangle
basis toD = 8, i.e.Ad(k) = 0 for 4 � k � N�4, which has
shown to be a good compromise.

The triangle is described by two lines,h1(k) in the left half and
h2(k) in the right one as expressed by Equations (6) and (7).

h1(k) = a � k + b with a > 0 (6)

h2(k) = �a(k �D)� b (7)

Notice that here the parameterk is not restricted to be an integer;
the gradient of the lines isa or�a, respectively.

2.1.2. Algorithm Overview

The algorithm works as follows.

1. The input signals(n) is multiplied by theN -tap window
w(n). The resultingx(n) is transformed to the frequency
domain using anN -point FFT. Since the time-domain sig-
nalx(n) is real-valued, the FFT can be performed using an
N=2-point complex-valued FFT. The magnitude values are
computed byXm(k) = jXd(k)j.

2. It is searched for a frequency indexkm with

Xm(km � 2) < Xm(km � 1) < Xm(km) ;
Xm(km + 2) < Xm(km + 1) < Xm(km):

(8)

The FFT magnitudeXm(k) has therefore a local maximum
at the frequency indexkm.

3. The phase is evaluated. According to Equation (5) first the
corrected phase (k 2 fkm � 1; km; km + 1g)

�c(k) =

�
�(k) ; k even
�(k)� � ; k odd

(9)

is computed where�(k) 2 [0; 2�) is assumed. The phase
�� is the obtained by taking the mean value of�c(km � 1),
�c(km), and�c(km+1). Notice that�� is the phase at time
indexn = N=2.

4. If the deviationsj�c(km + i) � ��j, i 2 f�1; 0; 1g, are
beyond a defined threshold, the calculation of the triangle
parameters is performed (step 5), otherwise in step 2 the
search for other FFT maxima is continued.

5. From the six highest spectral values surroundingXm(km)
the parametersa and b for Equations (6) and (7) are cal-
culated by minimizing the squared error. The peak of the
resulting triangle is located at

k0 =
D

2
�
b

a
= 2�

b

a
: (10)

In the current implementation the amplitude evaluation is
performed by calculating the energy in the frequency do-
main. The squared values of the obtained triangle at the six
considered points are accumulated and the obtained sum is
scaled. The scaling is necessary, because only three of four
points of each line are used to reduce the influence of noise.
Since this gives a systematic error depending on the posi-
tion of k0 between two frequency bins, a subsequent error
correction is performed. The amplitude could also be ob-
tained by calculating

h1(k0) = h2(k0) = D=2 � a: (11)

An appropriate error correction has to be performed in this
case as well, since Eq. (11) does not give the correct value,
as it will be seen in the example shown in Figure 3(b).

6. Continue in step 2 and search for other FFT maxima.

2.1.3. Example

Fig. 3 shows an example for the FFT lengthN = 64 with the input
signals(n) = 0:6 cos(10=64 � 2�n) + 0:8 cos(20:5=64 � 2�n).
Part (a) shows the magnitude spectrum (divided byN ) of the input
signal windowed by a rectangular window, in part (b) on the right
the values ofjXd(k)j (Æ) and the calculated triangles are shown.
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Figure 3: Triangle algorithm example forN = 64.
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2.2. Derivative Algorithm

In the approach by S. Marchand [4] the property of continuous-
time signal derivatives is exploited. The derivative of a sinusoid
is again the sinusoid multiplied by the sine frequency and with a
different phase, e.g. the continuous-time signalsc(t) = cos(!0t)
has the derivatives0c(t)=�!0 sin(!0t). For the discrete-time sig-
nal s(n) = sc(nTS) the approximations0(n) = s(n)�s(n�1)

TS
6=

s0c(nTS) of the derivative is used. For thez-transforms we get

S0(z) = fSH(z) � S(z) = fS � (1� z�1) � S(z) (12)

with
jH(ej
)j =

p
2� 2 cos(
): (13)

For the evaluation of the frequency
0 = !0=fS we compute the
FFTs

Xd(k) �—Æ x(n) = s(n) � g(n) (14)

X 0

d(k) �—Æ x0(n) = [s(n)� s(n� 1)] � g(n) (15)

with the windowg(n) Æ—� G(ej
), whereg(n) 6=0 for 0 � n <
N andG(ej0) = 1. Fors(n) = a�cos(
0n) the Fourier transform
of x(n) is given by

X(ej
) =
a

2
G(ej(
�
0)) +

a

2
G(ej(
+
0)): (16)

x0(n) is according to Eq. (15) a superposition of two sines with
different phases windowed byg(n). A first approximation of
0

is
k = 2k�=N ; k is the frequency index where bothjXd(k)j and
jX 0

d(k)j have maxima. AssumingjG(ej(
k+
0))j � 0 we get

X 0

d(k) = X 0(ej
k ) �
a

2
(1� e�j
0)G(ej(
k�
0)) (17)

~
0 =
jX 0

d(k)j

jXd(k)j
�
p

2� 2 cos(
0) (18)


0 = arccos(1� ~
2
0=2): (19)

The amplitude of the sine is obtained by

a = 2
jXd(k)j

jG(ej(
k�
0))j
: (20)

3. SYNTHESIS

The aim of the synthesis stage is to create a time-domain signal
which is the superposition of sinusoids with amplitudes, frequen-
cies, and phases computed in the analysis stage. We are perform-
ing the synthesis using an IFFT. Thus, we have to calculate the
values in the frequency domain which have to be transformed to
the time domain. For a real-valued time signalŝ(n) only the val-
uesŜd(k) for 0 � k � N=2 have to be known since

Ŝd(k) = Ŝ�d(N � k) (21)

is satisfied (the superscript� denotes complex conjugation). Fur-
thermore theN -point IFFT can be performed using anN=2-point
IFFT; the samples of̂s(n) can then be extracted from the real and
imaginary part of the result.

A frame of a synthesized sinusoid is the sinusoid windowed by
a rectangular windowr(n). r(n) is equal to one for0 � n < N
and zero otherwise. Its Fourier transform is given by

R(ej
) = e�j

N�1

2 �
sin(
N=2)

sin(
=2)
= e�j


N�1

2 �sincN (
): (22)

If the frameŝ(n) = cos(
0n + ') � r(n) has to be synthesized,
we have to calculate the valuesŜd(k) before performing the IFFT.
These values can be obtained by

Ŝ(ej
) =
1

2
ej'R(ej(
�
0)) +

1

2
e�j'R(ej(
+
0)) (23)

Ŝd(k) =
1

2
(�1)kej

k�

N [ej f�(k) + e�j f+(k)] (24)

with the terms = '+ N�1
2


0 andf�(k) = sincN( 2�
N
k�
0).

To reduce the computation amount, for each detected sinusoid only
the “highest” spectral values are calculated, e.g. 40 values around
each detected sinusoid at an FFT length of 1024. To avoid artifacts
at the frame borders, overlapping frames should be analyzed and
synthesized. The synthesized frames are then added after weight-
ing with appropriate fade in/ fade out windows.

When the sinusoidal signal component has been determined
(sdet(n) in Figure 1), the noise component is obtained by
sstoch(n) = s(n � L) � sdet(n). The delay byL samples of
the input signal compensates the delays caused by the FFT/IFFT
operations.
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Figure 4: Time-frequency planes of tin whistle sound, ori-
ginal (a) and sinusoidal part extracted by using the triangle
algorithm (b).

Figure 4 shows two time-frequency planes from a sample of a
tin whistle sound (sampling ratefS = 6 kHz). The darkness of the
points corresponds to the spectrum magnitude values. The origi-
nal signal is depicted in Figure 4(a) while Figure 4(b) shows the
extracted sinusoidal signal, using a block length ofN = 128 with
a frame overlap ofN=2. The triangle analysis is used and a full
synthesis (use of all frequency points for each detected sine) is
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applied. The only audible difference is the absence of the low-
frequency component which happens to be undesired noise in this
example.

4. SIMULATION RESULTS

The performance on noisy sines and the computing expense have
been examined for both analysis algorithms. Both algorithms share
the problem that they require a certain bandwidth for each sine,
which means that two sines must have a minimum frequency dif-
ference that their spectra do not overlap (frequency resolution).
For the same reason they both have a certain minimum frequency.
Table 1 shows that the triangle algorithm performs better at high
noise levels while the derivative algorithm is superior at low noise
levels.

adv./diasadv.

computing time +
frequency resolution –
miss rate (large SNR) +
miss rate (small SNR) –
mean frequency error +
mean amplitude error +
RMS-error frequency –
RMS-error amplitude (large SNR) –
RMS-error amplitude (small SNR) +
max. error frequency –
max. error amplitude +
total error (large SNR) –
total error (small SNR) +

Table 1: Advantages(+) and disadvantages(–) of the trian-
gle algorithm compared to the derivative analysis algorithm
(RMS = root mean square).

There were some artifacts left; mainly the appearance of “spuri-
ous peaks”. This is noise which is misclassified as a sine. The dif-
ference between a real sine tone (a piano note e.g.) and those spu-
rious peaks is that the latter ones are much more unstable. So an al-
gorithm is necessary which tracks the peaks in the time-frequency
plane to decide which peaks are stable enough to be real sines.

4.1. Peak Tracking

We are using a peak tracking algorithm similar to the one pre-
sented in [6]. The main difference is that our algorithm considers
not only stability in the terms of frequency, but also of amplitude.
The algorithm is a two-step algorithm as [6], and it uses the same
“birth-death-concept”.

In the first step (forward search), each peak in the current frame
that has not yet found a continuation in the next frame picks out
the one of the following frame that matches best, i.e. among those
whose frequencies do not differ more than a fixed range, the one
with the least differing amplitude (in logarithmic sense) is chosen.

In the second step (backward search), all peaks in the next frame
choose among those who had chosen them in the first step by mini-
mizing the logarithmic amplitude difference. Both peaks of such a

trajectory pair are marked so that they are not considered anymore.
Then, the two steps are repeated. The algorithm terminates

when in step one no new possible connection is found. If in step
one a peak does not find a partner in the next frame, a trajectory
dies; if there are unmatched peaks in the next frame, new trajecto-
ries are “born”. The lifetime is the number of frames that a trajec-
tory exists.

The minimum lifetime of “real” sines has to be about three
frames (with a bin frequency of aboutfb � 20 : : : 50 Hz). The use
of this lifetime in the peak tracking algorithm avoids the “blurring”
which occurs when analyzing noisy sines without peak tracking.

5. CONCLUSION

In this paper, a new approach for extracting sinusoids from har-
monic signals is presented. Two different analysis algorithms and
an efficient synthesis algorithm are discussed. The two analysis
algorithms are compared under various aspects. For minimizing
the artifacts of classifying noise as sines a peak tracking algorithm
is incorporated.

The triangle analysis algorithm (without peak tracking) has been
implemented on a Motorola fixed-point DSP. With an 80 MHz pro-
cessor the algorithm requires 51% of the available instruction cy-
cles, where the following settings are used: frame lengthN =
1024, frame overlapping ofN=2, a maximum number of 102 si-
nusoids is modelled, and 32 frequency points around each detected
sine frequency are used in the synthesis.

For detecting very low frequency sines (pitch frequency below
100; : : : ; 200 Hz), the algorithm may be applied to a low-pass fil-
tered and downsampled version of the input signal. For a better
time resolution a longer frame overlap has to be chosen.
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