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ABSTRACT

In this paper we address the problem of the real-time
implementation of time-varying frequency warping. Frequency
warping based on a one-parameter family of one-to-one warping
maps can be realized by means of the Laguerre transform and
implemented in a non-causal structure. This structure is not
directly suited for real-time implementation since each output
sample is formed by combining all of the input samples.
Similarly, the recently proposed time-varying Laguerre transform
has the same drawback. Furthermore, long frequency dependent
delays destroy the time organization or macrostructure of the
sound event.

Recently, the author has introduced the Short-Time Laguerre
Transform for the approximate real-time implementation of
frequency warping. In this transform the short-time spectrum
rather than the overall frequency spectrum is frequency warped.
The input is subdivided into frames that are tapered by a suitably
selected window. By careful design, the output frames correspond
to warped versions of the input frames modulated by a stretched
version of the window. It is then possible to overlap-add these
frames without introducing audible distortion.

The overlap-add technique can be generalized to time-varying
warping. However, several issues concerning the design of the
window and the selection of the overlap parameters need to be
addressed. In this paper we discuss solutions for the overlap of
the frames when the Laguerre parameter is kept constant but
distinct in each frame and solutions for the computation of full
time-varying frequency warping when the Laguerre parameter is
changing within each frame.

1. INTRODUCTION

Frequency warping is a general signal processing technique
consisting in remapping the frequency axis to obtain a signal with
desired characteristics. The spectral content of the signal is
modified by displacing bands or partials to other frequency
supports. Recently, a renewed interest in this technique led to
interesting applications in audio signal processing [6, 8] and to
new representations of sounds. Transforms based on frequency
warping methods are the Frequency Warped Wavelet Transform
and its pitch-synchronous version [3, 4, 7, 10], which allow for a
flexible design of the basis elements that can be based on
perceptual scales [5, 9].

Frequency warping is per se an interesting effect, which can
be employed in sound morphing, detuning of partials, pitch-
shifting in inharmonic or quasi-harmonic sounds. While general
maps can be in principle designed, the exact implementation is
possible for the one-parameter family of Laguerre warping
curves. Laguerre warping leads to a unitary signal representation
in terms of an expansion in orthogonal bases [1,2]. The
implementation of this transform can be given in terms of a
sampled dispersive delay line, shown in Fig. 1, in which the delay
elements are allpass filters with frequency dependent
characteristics. In recent papers the author generalized the
Laguerre transform to a time-varying version implemented in a
space-varying dispersive delay line formed by non-uniform
allpass filter sections [8,11]. An interesting class of modulation
effects and expression controls, such as vibrato, Flatterzunge,
flanging, etc., can be implemented by means of this biorthogonal
transform. While the Laguerre transform and its generalized time-
varying versions can be implemented in standard DSP operations,
their structure does not allow for real-time implementation since,
in principle, all the signal samples are involved in the
computation of the output samples. Another drawback of the
frequency-warping algorithm, particularly critical in the ordinary
Laguerre transform, is that the macrostructure of the signal is
modified due to long frequency dependent delays. Thus, events
are spectrally decomposed and different spectral regions “travel”
at different speed along the line. According to the parameter of
the transform, high frequency bands are perceived long before or
long after low frequency bands pertaining to the same event. This
effect is reduced in the time-varying Laguerre transform if the
parameters vary in an oscillatory fashion. In order to circumvent
this problem and, at the same time, obtain a warping algorithm
suitable for real-time implementation, the author has recently
proposed an overlap-add method on a running window version of
the Laguerre transform [12].
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Figure 1.  Dispersive delay-line structure for frequency
warping via the Laguerre transform.
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2. OVERLAP-ADD TECHNIQUES FOR STATIC
FREQUENCY WARPING

The Short-Time Laguerre Transform (STLT) is computed by
Laguerre transforming windowed frames of the signal ( )s n . This
gives rise to a 2D representation of a 1D signal obtained by
orthogonal projection over a local Laguerre basis. Therefore, the
STLT is the collection of the frequency-warped versions of the
windowed input frames. Given a finite-length N window
sequence ( )w n and an integer L N≤ , we define
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is the Laguerre transform (LT) of ( )s n , i.e., a normalized
frequency warped version of the input signal. In the frequency
domain this corresponds to
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is the sign-reversed phase of the allpass filter (4) and 0 ( )ωΛ  is

the causal square root of the first derivative of ( ) θ ω . Equation
(5) represents an approximate way of computing frequency
warping by overlap-adding several short-time warped frames. In
principle, for any fixed r, each sequence ( )rq n  has infinite
length. However, by a minimum group delay argument one can
show that at most the first
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samples are essentially non-zero, independently on the signal.
Therefore, for computational purposes, the warped frames may be
considered to have finite length. However, the length of the
output frame is not conformal to that of the input frame. For this

reason the frame spacing M in (5) is generally different from the
input frame spacing L in (1). Our goal is achieved if we are able
to show that

ˆ( ) ( ) ( )rq n h n s n rM≈ + ,                             (10)

where ( )h n is a finite-length window satisfying
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Clearly, from (1) and the completeness and orthogonality of the
Laguerre basis, we have
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is obtained from 0( )ωΛ  by reversing the sign of the parameter b
and it corresponds to the causal square root of the derivative of

1( )θ ω− . By performing the change of variable
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is a warped version of the input frame window. If ( )W ω  is

narrow band then also ( )W ω
)

 is narrow band and the largest
contributions to the integral are for α ω≈ . Hence
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In this approximation
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where
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Comparing equation (22) with (10), we can identify ( )h n  with

( )w n) . If ( )W ω is narrow-band then the map 1( )θ ω−  can be
linearized in a neighborhood of 0ω =  to obtain
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In this case, the window ( )h n  is approximately a shrunk or
dilated version of the input frame window ( )w n  by a factor

1
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In principle, the window ( )h n  has infinite length. However,
following our considerations in (9), the window has a finite
effective length. Furthermore, for narrow-band lowpass windows,
the effective length is approximately equal to the delay in

0ω = times the length of the input window, i.e., to

( )P round Nβ= .                                        (26)

This result is reported in Fig. 2 where the difference error
between a stretched version of the Hanning window
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and its warped version is displayed. One can show that among the
class of windows satisfying (11) the Hanning window is optimal
for our frequency warping technique. Intuitively, this is explained
by the fact that, except for finite-length effects, this window
contains just a constant term and a sinusoidal one. Warping
preserves the zero frequency, while the frequency of the sinusoid
is altered, resulting in pure stretching.

Concerning the term ˆ ( )rs n  in (22), notice that
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Figure 2. Difference error between warped and scaled
256-samples Hanning window for a warping parameter
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Figure 3. Warped frame of trumpet sound with
superimposed stretched Hanning window.
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Figure 4. Short-time warping of sinusoids: frequency-
dependent effects on the effective window length.

while for the term ˆ( )s n rM+  in (10) we have:
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At low frequencies, these two terms are equal if we let, in the
same approximation as in (24),

( )M round Lβ= .                                (30)

Within these approximations, equation (5) represents an alternate
way of computing the Laguerre transform by overlap-add of the
STLT (1). The overall behavior can be estimated from Fig. 3,
where a warped trumpet frame and the stretched Hanning window
are shown. Actually, from a perceptual point of view, this new
form of frequency warping can be preferred over the pure
Laguerre transform since in the latter the frequency dependent
term in 1( )Lθ ω−  introduces a strong time spreading of the signal
components pertaining to different areas of the frequency
spectrum. On long signals, this effect destroys the time
organization of the sound event. In the overlap-add STLT method



 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-4

this term is replaced by a linear phase term. In this way one can
frequency warp the short-time frequency spectrum while
preserving the long-term evolution of the signal.

Each output frame ( )rq n  is approximately equal to a warped
version of the input frame modulated by a scaled version of the
window. Property (11) ensures that the shape of the amplitude
envelope of the signal is preserved, except for a natural dilation
or shrinkage produced by warping. The effective length of the
output frame depends on the spectral region occupied by the
input signal. This is shown in Fig. 4, where, the length of the
output frame varies according to the frequency of the sinewave.
This effect can cause unbalancing in the amplitude of the
different frequency components. Its extent can be controlled by
the window length and frame spacing, which are parameters of
the algorithm.

3. OVERLAP-ADD TECHNIQUES FOR DYNAMIC
FREQUENCY WARPING

In this paper we approach the problem of generalizing the
overlap-add STLT algorithm presented in the previous section to
time-varying frequency warping. Two main issues are considered.
The first one concerns the frame boundary transition when the
Laguerre parameter is constant within each frame but different in
adjoining frames. The other issue concerns the design of the
window and the corresponding output overlap parameter when
the Laguerre parameter is varying within each frame. In this case
the overlap parameter is selected in terms of the average window-
stretching factor.

3.1. Piecewise dynamic frequency warping

The overlap-add frequency warping technique is easily
generalized to the case where the warping parameter is changing
in time but remains constant within each input frame. Due to the
different window stretching factors, overlapping introduces
amplitude distortion, particularly relevant on abrupt Laguerre
parameter changes. Property (11) is no longer verified. In order to
circumvent this difficulty one can set constant output frame
spacing and modify the input frame spacing accordingly. In
practical applications, the range of the warping parameters is
small so that variable size frame buffering does not constitute a
problem. Often, as in vibrato, the Laguerre parameters vary on a
zero-mean oscillatory curve. In this case, only a slow frame
buffer length modulation is needed. If the output frame spacing is
fixed to M samples, the time-varying input spacing parameter rL
is obtained by reversing equation (30):
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where, as usual, the integer r denotes the frame index and
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Since the warping parameter is frame dependent, the input frame
window ( )rw n  depends on the frame index r as well. In our
overlap-add frequency-warping algorithm, the output window can
be chosen as a Hanning window of fixed length and the window

( )rw n  can be computed by unwarping ( )h n with parameter rb .
Alternately, unwarped versions of the output window in the range
of the warping parameters can be precomputed and stored in a
lookup table to avoid computing an extra inverse Laguerre
transform on the fly. As shown in the previous section, these
windows can be approximated by a stretched version of the
Hanning window, which can be simply generated by means of a
sinusoidal oscillator.

The piecewise dynamic frequency-warping algorithm is
suitable for applications where the rate of variation of the
warping parameter is slow. It can be effectively employed for
modulating the pitch of the original sound, to edit phrases and/or
to add embellishments.

3.2. Dynamic frequency warping

In order to increase the flexibility of the overlap-add technique
for frequency warping one can use the methods illustrated in
conjunction with the time-varying version of the Laguerre
transform [8,11]. Time-varying warping is obtained by means of
a biorthogonal transform in which the signal is analyzed by
orthogonal projection over a set of sequences ( )n kψ  whose z-
transform are
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The warped signal is the sequence of the analysis coefficients

ˆ( ) ( ) ( )n
k

s n s k kψ= ∑                            (35)

and the signal itself can be recovered from its warped version via
the inversion formula

ˆ( ) ( ) ( )n
n
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where ( )n kϕ  are the inverse z-transforms of (34). ( )n zΦ  is the
transfer function of a chain of allpass filters with overall
frequency response
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where each ( )kθ ω  has the form (8) with parameter kb  changing
from section to section. Consequently, (35) and (36) form a pair
of time-varying warping and unwarping transformations
generalizing the Laguerre transform. One can show that the
functions ( )n zΨ  satisfy the following recurrence:

1( ) ( ) ( )n n nz T z z−Ψ = Ψ ,    1n ≥                        (38)
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where
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and 0 0b = . Hence, the structure for computing time-varying
frequency warping reported in Fig. 5 can be deduced, with simple
modifications, from that of Fig. 1.

Time-varying warping shares the computational problems
with the Laguerre transform. In order to be able to compute the
transform in real time we have to resort to an overlap-add method
based on a generalization of the STLT. The degree of
controllability of the time-varying warping algorithm based on
the biorthogonal transform (35) and (36) is however much higher
that that of the version illustrated in section 3.1 since here the
parameter b can vary on each sample. This makes it possible to
use rapidly varying parameter modulation sequences or even
white noise in order to edit effects such as Flatterzunge in flute or
trumpet sounds or al ponticello expressions in string sounds.
Furthermore, the use of mixed parallel time-varying warping
sections plus the original signal allows for interesting extensions
of flanging or phasing effects with full parameter control.

The major difficulty in extending our overlap-add STLT
technique to time-varying warping lies in the fact that the
parameters are allowed to change within the input frame length.
As illustrated in section 3.1, one can fix both the output frame
length P and the output frame spacing M. The parameter
sequence nb  is organized in frames of length P with the same
overlap as the output frames. The frame-dependent input window

( )rw n  is obtained by unwarping the unique output window ( )h n
by means of the inverse time-varying warping formula (36).
Clearly, the sets ( )n kϕ  and ( )n kψ  can be interchanged as
analysis or synthesis bases since they satisfy the following
biorthogonality conditions:

, '( ) ( ')k k n n
k

n nϕ ψ δ=∑                               (40)

' , '( ) ( )n n n n
k

k kϕ ψ δ=∑ .                             (41)

Therefore, the time-varying warping transform of the time-
varying unwarped window still yields a suitable output frame
window satisfying (11). The low-frequency approximation
described in section 2 still holds for the time-varying case.
However, since the warping parameter is varying within the
frame, the shape of the unwarped window ( )rw n  may be heavily

altered. The effective length rN  of the window can be estimated

from the length P of the output frame window ( )h n by inverting
(26) and taking as scaling parameter rβ  the average of the zero-
frequency delay terms
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where k ranges over the indices of the parameters used to
compute the output frame r, i.e.,
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Figure 5. Structure for computing time-varying frequency
warping.

r k r
dβ =  ,                                   (43)

where the symbol 
r

• denotes average over the r-th frame. The

input frame-spacing integer rL  is computed following the same

reasoning as in (31), except that rβ  is replaced by its new
definition (43).

The overlap-add time-varying frequency warping algorithm
can be summarized as follows:

• Initialize the output frame-length P and the output frame
spacing M.

• Generate the normalized output window (Hanning).
• For any input frame of index r do the following:

◊ Compute the length rN  unwarped input window ( )rw n
using the inverse time-varying warping algorithm (36)
on the current parameter set { }kb  pertaining to the

output frame r.
◊ Multiply the current input frame by the window ( )rw n

and use the time-varying warping algorithm (35) on the
current parameter set { }kb  to compute the output

frame.
◊ Overlap-add with the previous output frames.
◊ Advance both input and output frame pointers.

In order to assess the quality of the overlap-add time-varying
frequency warping algorithm we compared the sounds obtained
by this method with those edited by applying the pure
biorthogonal transform (35) on a variety of instrument sounds
and controlling sequences. In most cases, the sounds obtained by
the computationally appealing short-time method were not
perceptually distinct from those obtained by applying the pure
method, even in fast parameter transition conditions.

An example of applying vibrato to a trumpet sound is
reported in Figs. 6 and 7. In that case we used a sinewave
amplitude modulated by a ramp to generate the control parameter
sequence, thus inserting vibrato with increasing depth.
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4. CONCLUSIONS

In this paper we presented new algorithms for time-varying
frequency warping sound signals. We focused on the real-time
approximation of previously presented off-line techniques. The
key idea in developing these algorithms was the introduction of a
Short-Time Laguerre Transform and its time-varying version in
the form of a biorthogonal basis determined by the control
parameters kb .

Although frequency warping a finite-length signal yields an
infinite-length signal, we showed that the essential length of the
warped signal is bounded.  Furthermore, in good approximation
the output signal is equal the product of a warped version of the
input window times the warped signal.
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Figure 6. Spectrogram of trumpet tone.
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Figure 7. Spectrogram of trumpet tone with increasing
depth vibrato obtained by overlap-add time-varying
frequency warping.

We found relationships for transforming the input frame
length and spacing parameters into the corresponding output
quantities. We showed that well-behaved time-varying warping
algorithms are obtained by fixing the output frame window and
parameters and computing the input window by unwarping.
Time-frequency warping proves to be an interesting editing tool
for inserting or deleting expressive effects in musical sounds. The
computationally efficient overlap-add algorithms presented in this
paper allow for real-time implementation of these effects.
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