
Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

FAST SINUSOID SYNTHESIS FOR MPEG-4 HILN PARAMETRIC AUDIO DECODING

Nikolaus Meine, Heiko Purnhagen

Laboratorium f̈ur Informationstechnologie
University of Hannover

Schneiderberg 32, 30167 Hannover, Germany
{meine,purnhage }@tnt.uni-hannover.de

ABSTRACT

Additive sinusoidal synthesis is a popular technique for applica-
tions like sound synthesis or very low bit rate parametric audio
decoding. In this paper, different algorithms for the efficient syn-
thesis of sinusoids on general purpose CPUs as found in today’s
PCs are investigated. Fast algorithms for time domain synthesis
of constant and linearly changing frequencies are presented and
compared to frequency domain synthesis approaches. Execution
time and accuracy (SNR) of the algorithms are reported for differ-
ent CPU types. Finally, the algorithms are implemented in a fast
MPEG-4 HILN parametric audio decoder in order to evaluate their
performance in a real world application.

1. INTRODUCTION

Sinusoidal modeling of audio signals is a popular technique be-
cause it nicely combines an efficient signal representation with
the possibility of easy and intuitive signal modification. Further-
more, it is suitable for a broad range of real world audio signals,
as these are mostly dominated by tonal signal components. Sinu-
soidal modeling has been utilized in musical applications for sound
analysis/modification/synthesis, e.g. [1], [2], as well as in efficient
(low bit rate) coding of speech and audio signals, e.g. [3], [4].

The generation of sinusoidal signals accounts for most of the
computational complexity in additive sinusoidal synthesis. Both,
time and frequency domain approaches to this problem have been
presented, e.g. [5], [6], [7], [8]. The focus of this paper is on very
efficient time domain synthesis of sinusoids on general purpose
CPUs as found in today’s PCs. This work was carried out in the
course of the development of a fast decoder for HILN parametric
audio coding as defined in the MPEG-4 standard [9], [10], [11].

In HILN coding, which stands forHarmonic and Individual
Lines plus Noise, the input signal is separated into a series of over-
lapping frames which are decomposed into different signal com-
ponents and then the model parameters for the components are
estimated:individual sinusoidsare described by their frequencies
and amplitudes, aharmonic toneis described by its fundamental
frequency, amplitude, and the spectral envelope of its partials, and
a noisesignal is described by its amplitude and spectral envelope.
The modeling of transient components is improved by optional pa-
rameters describing their temporal amplitude envelope within a
frame. Finally, the component parameters are quantized, coded,
and multiplexed to form a bitstream. The target bitrate range of
HILN is approximately 6 to 16 kbit/s, and typically an audio band-
width of 8 kHz and a frame length (hop size) of 32 ms are used.

Because HILN supports sinusoidal trajectories with (slowly)
varying amplitude and frequency that persist over several frames,

the synthesis of sinusoids with constant frequency as well as syn-
thesis of “sweeps” is addressed here. The proposed algorithms are
implemented in floating point in order to utilize the FPU of mod-
ern CPUs and to achieve the required accuracy for 16 bit PCM
waveforms.

This paper is structured as follows. Sections 2 and 3 present
very efficient time domain synthesis algorithms for sinusoids with
constant frequency and for sweeps, respectively. Section 4 dis-
cusses aspects of frequency domain sinusoidal synthesis. Experi-
mental results for the execution time and the accuracy of the dif-
ferent algorithms are reported in Section 5. In Section 6, imple-
mentation in a fast MPEG-4 HILN parametric audio decoder is
discussed. Finally, conclusions are drawn in Section 7.

2. TIME DOMAIN SYNTHESIS OF SINUSOIDS

2.1. Simple Oscillator

The signalx[n] to be synthesized is a sampled sinusoid of ampli-
tudeA, frequencyω0, and start phaseϕ0. The parameters remain
constant for one frame of lengthN .

x[n] = A cos(ω0n+ ϕ0) for n = 0, 1, . . . , N − 1 (1)

Exploiting the following property of thecos() function

2 cosα cosβ = cos(α+ β) + cos(α− β) (2)

cos(α+ β) = 2 cosα cosβ − cos(α− β) (3)

with α = ω0(n− 1) + ϕ0 andβ = ω0, an iterative calculation of
x[n] as described by Eq. 1 is possible. It consists of the initializa-
tion

x[0] = A cos(ϕ0) (4)

x[1] = A cos(ω0 + ϕ0) (5)

and the iteration step

x[n] = 2 cos(ω0)x[n− 1]− x[n− 2] (6)

for n = 2, 3 . . . , N − 1.
The first two valuesx[0] andx[1] and the constant coefficient

2 cos(ω0) have to be calculated in a “setup” step before the actual
iteration can start. Eachx[n] calculated by the iteration requires
one multiplication and one addition. Even though only two float-
ing point operations per sample are needed, the iteration gives very
poor performance on modern general purpose CPUs. The reason
is the dependency between the operations. Both operations need

DAFX-239

mailto:meine@tnt.uni-hannover.de

Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

the result of the preceding operation to proceed. Loop unrolling
does not get around this problem, it is a property of the algorithm
itself. So the algorithm must be modified in order to improve the
performance.

2.2. Performance Optimization

To overcome the data dependencies, an additional hierarchy level
is introduced. In the top level, only everyl-th value ofx[n] is
calculated using Eq. 7.

x[lm] = 2 cos(lω0)x[l(m− 1)]− x[l(m− 2)] (7)

The intermediate values can be obtained by interpolation of
the two neighboring values. Forl = 2 this requires only one addi-
tional constant which is revealed from Eq. 2 withβ = ω0.

cosα =
cos(α+ β) + cos(α− β)

2 cosβ
(8)

The highest speed has been achieved withl = 4. Using Eq. 7
to calculate every fourth value and interpolating these by applying
Eq. 8 recursively two times results in an iterative algorithm with
the initialization

x[n] = A cos(ω0n+ ϕ0) (9)

for n = 0, 1, . . . , 4, the iteration step

x[n] = 2 cos(4ω0)x[n− 4]− x[n− 8] (10)

for n = 8, 12, . . . , N , and the interpolation step

x[n− 2] =
1

2 cos(2ω0)
(x[n− 4] + x[n]) (11)

x[n− 3] =
1

2 cos(ω0)
(x[n− 4] + x[n− 2]) (12)

x[n− 1] =
1

2 cos(ω0)
(x[n− 2] + x[n]) (13)

for n = 4, 8, . . . , N − 4.
This iteration produces four new values by executing 8 floating

point operations, which means two operations per value, as for the
algorithm based on Eqs. 4 to 6. Nevertheless, an algorithm based
on Eqs. 9 to 13 runs remarkably faster (more than twice as fast).
Most of the operations are independent and can be executed in
parallel. To achieve maximum speed, the iteration loop can be
unrolled by a factor of three which makes it possible to eliminate
any data move instructions.

2.3. Numerical Stability

Algorithms based on Eq. 6 represent an IIR filter with two poles
zp = exp(±jω0) located on the unit circle. Rounding errors in the
parameters do not change this property but may cause amplitude,
phase and frequency to differ from the desired values. The opti-
mized algorithm presented in Subsection 2.2 fails ifcos(ω0) = 0
or cos(2ω0) = 0 because of the denominators in Eqs. 11 to 13.
To guarantee numerical accuracy for allω0, a fallback algorithm is
required if| cos(ω0)| or | cos(2ω0)| go below a certain limit. For
further details, see Subsection 5.3.

3. TIME DOMAIN SYNTHESIS OF SWEEPS

3.1. Basic Algorithm

This Section presents an algorithm to synthesize a sweepx[n],
i.e., a cosine function with a start phaseϕ0 and an instantaneous
frequency that changes linearly fromω0 atn = 0 to ω0 + ∆ω at
n = N

x[n] = A cos (ϕ[n]) (14)

ϕ[n] =

∫ n

0

(
ω0 +

∆ω

N
t

)
dt + ϕ0 (15)

=
∆ω

2N
n2 + ω0n+ ϕ0 (16)

for n = 0, 1, . . . , N − 1. The instantaneous phaseϕ[n] can be
calculated incrementally by

ϕ[n] = ϕ[n− 1] + δ1[n− 1] (17)

δ1[n] = δ1[n− 1] + δ2 (18)

resulting in

ϕ[n] = δ2
n(n− 1)

2
+ δ1[0]n+ ϕ[0] (19)

=
δ2
2
n2 +

(
δ1[0] +

δ2
2

)
n+ ϕ[0] (20)

where Eq. 20 must resemble Eq. 16. This gives the following ini-
tial values for the variables in Eqs. 17 and 18.

ϕ[0] = ϕ0 (21)

δ1[0] = ω0 +
∆ω

2N
(22)

δ2 =
∆ω

N
(23)

The complex functionX[n] is now defined as the analytic sig-
nal corresponding tox[n].

X[n] = A exp (jϕ[n]) (24)

x[n] = Re (X[n]) (25)

Applying the complex exponential functionexp(jα) to Eqs. 17
and 18 and to the start valuesϕ[0] andδ1[0] and the constantδ2
given in Eqs. 21 to 23 allows an iterative calculation ofX[n] with
the initialization

X[0] = A exp (jϕ0) (26)

D1[0] = exp

(
j

(
ω0 +

∆ω

2N

))
(27)

D2 = exp

(
j

∆ω

N

)
(28)

and the iteration step

X[n] = X[n− 1]D1[n− 1] (29)

D1[n] = D1[n− 1]D2 (30)

for n = 1, 2 . . . , N − 1. Finally, x[n] is obtained as the real part
of X[n] according to Eq. 25.

A complex multiplication requires six floating point opera-
tions, leading to a total computational complexity of 12 operations
per sample.

DAFX-240

Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

3.2. Performance Optimization

Some optimization is possible by calculating only every second
X[n] and introducing a second phase difference to calculateX[n+
1] fromX[n]. This leads to the initialization

X[0] = A exp (jϕ0) (31)

D1a[0] = exp

(
j

(
ω0 +

∆ω

2N

))
(32)

D1b[0] = exp

(
j

(
ω0 +

3∆ω

2N

))
(33)

D2a = exp

(
j

∆ω

N

)
(34)

D2b = exp

(
2j

∆ω

N

)
(35)

and the iteration step

X[n− 1] = X[n− 2]D1a[n− 2] (36)

X[n] = X[n− 2]D1b[n− 2] (37)

D1a[n] = D1a[n− 2]D2a (38)

D1b[n] = D1b[n− 2]D2b (39)

for n = 2, 4 . . . , N .
In this iterative algorithm,X[n − 1] andX[n] are calculated

fromX[n−2], andD1a[n] andD1b[n] are calculated fromD1a[n−
2] andD1b[n−2]. There are four complex multiplications for two
samples, resulting in 12 floating point operations per sample, as
above. But since the imaginary part ofX[n − 1] is not needed,
its calculation can be omitted. So three floating point operations
are saved and the computational complexity becomes 10.5 floating
point operations per sample.

4. FREQUENCY DOMAIN SYNTHESIS

4.1. Synthesis Algorithm

A sinusoid is highly localized in the frequency domain. This al-
lows for an efficient approach to synthesize signals composed of
many simultaneous sinusoids [7], [12, Section 2.5]. First, all si-
nusoids are accumulated in their frequency domain representation
and then a single inverse fast Fourier transform (FFT) is applied to
obtain the time domain representation of the composed signal.

For the frequency domain synthesis, an overlap-add approach
with 50 % overlap has been chosen. For each frame of lengthN ,
2N samples are synthesized (using an FFT with transform length
2N) and then windowed by a windowing functionw(n). The first
N samples of the current frame are added to the lastN samples of
the previous frame, and the lastN samples of the current frame are
saved for the next overlap-add step, resulting in a hop size ofN
samples.w(n) must fulfill the condition of perfect reconstruction

w(n+N) + w(n) = 1 for n = 0, 1, . . . , N . (40)

For the frequency domain synthesis, this windowing function
is split into two factorsw0(n) andw1(n). The first one is applied
in the frequency domain in the form of a convolution while the sec-
ond one is explicitly applied in the time domain after the transform
has taken place. To maintain the perfect reconstruction property,

w0(n) andw1(n) are chosen as follows, wherec is an arbitrary
constant.

w0(n) = w(n)c (41)

w1(n) = w(n)1−c (42)

For the synthesis, an oversampled frequency prototypeW0(f) is
generated by transforming the windowing functionw0(n) into the
frequency domain. For each sinusoid to be synthesized, this proto-
type is weighted by the desired complex amplitudeA0 and shifted
to the position corresponding to the desired frequencyf0 (which
generally does not fall exactly on the frequency grid of the2N
transform). The prototypeW0(f) real-valued (due to symmetry of
w0(n)), but the amplitude and the Fourier spectrum are complex.
The phaseϕ0 of the sinusoid to be synthesized corresponds to the
argument of the complex amplitudeA0. Since the bandwidth of
the prototype is small (i.e., the frequency domain representation is
highly localized), only a few values in the surrounding of this posi-
tion have to be calculated by sampling the prototype at the integer
positions of the transform bins. The prototype is sampled by linear
interpolation between its pre-calculated, oversampled values. Fig-
ure 1 shows the synthesis process. A more detailed discussion of
prototype oversampling and shifting can be found in [11].

sample
Spectrum
Fourier

Fourier
Spectrum

Frequency

Frequency

scale, shift
W (f)0

0 0

f

0

0

A W (f−f)

Figure 1:Frequency domain synthesis.

These spectral samples are added to a buffer which was ini-
tially set to zero. After all sinusoids have been added an inverse
Fourier transform is applied to get a time domain signal. This sig-
nal is windowed byw1(n) and used in the overlap-add algorithm
without further windowing to get the final output signal.

4.2. Windowing Function

A general approach for a windowing function that fulfills the con-
ditions of perfect reconstruction is given by:

w∞(n) =
1

2
−
K−1∑
k=0

ak cos
(

(2k + 1)
π

N
n
)

(43)

w(n) =

{
w∞(n) if 0 < n < 2N

0 else
(44)

To achieve a high SNR (i.e., minimize the error caused by only
using the central part ofW0(f) as a prototype with limited width)

DAFX-241

Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

the bandwidth ofw0(n) = w(n)c must be minimized. Since the
Fourier transform ofw0(n) is mathematically hard to handle, the
bandwidth ofw(n) is minimized instead.

The Fourier transform ofw(n) is the product of a sine func-
tion and a rational function. To achieve the lowest bandwidth, the
coefficientsak are calculated to minimize the order of the numer-
ator. This condition is equivalent to one that demands as many
derivatives ofw(n) as possible to be zero at the positionsn = 0
andn = N . The solution forK = 4 is

ak =
1

2048
{1225,−245, 49,−5} . (45)

For all experiments, the orderK = 4 and coefficients shown in
Eq. 45 were used. A simple numerical optimization for best SNR
gavec = 0.82. With these parameters and a prototype width of 20
transform bins, more than 100 dB SNR is reached.

4.3. Synthesis of Sweeps

For sweep synthesis, the frequency domain approach cannot be
applied in the same way easily. Instead of only one prototype sev-
eral would be needed, one for each sweep rate. Furthermore the
bandwidth of the sweep prototypes is much higher so the main
advantage of the frequency domain syntheses disappears.

A simple approach to synthesize sweeps is to use smaller hop
sizes and treat the frequency as constant. The performance and
accuracy of this approach are discussed in Subsection 5.2.

5. RESULTS

5.1. Test Setup and Execution Times

The presented algorithms were implemented in ANSI C, compiled
bygcc 3.1 with optimization enabled, and tested on three different
platforms running Linux:

• Intel Pentium III, 866 MHz (referred to as PIII)

• AMD Athlon XP1800+, 1533 MHz (referred to as K7)

• Compaq Alpha EV67, 667 MHz (referred to as Alpha)

The execution times are given in CPU clock cycles in Tables 1 and
2. The first part of the result pairs gives the clock cycles for the ini-
tial setup of the iteration, the second is the average number of clock
cycles per synthesized sample in the iteration loop (N = 1024).
Each test was run two times. In the first run, the calculated values
were stored in memory (“store”) while in the second run they were
added to the values in the memory (“add”). The test routine runs
the algorithm under test eleven times and takes the median execu-
tion time. The whole test program was invoked 10,000 times and
the mean of the execution times is given here. Execution times for
a “straight forward” implementation calling thecos() function are
given as reference.

5.2. Comparison with Frequency Domain Synthesis

Figure 2 shows the performance of the frequency domain algo-
rithm compared to the time domain algorithm. The frequency
domain algorithm always the overlap-add process as explained in
Section 4. However, to synthesize sinusoidal trajectories that per-
sist over several frames, no overlapping is needed for the time do-
main algorithm. In this case, time domain algorithm is the fastest
for up to about34 simultaneous sinusoids. For sinusoids existing

Algorithm PIII K7 Alpha

cos() function store 0 / 93 0 / 102 0 / 72
cos() function add 0 / 95 0 / 105 0 / 73

simple iteration store 324 / 8.4 300 / 8.0 255 / 12.0
simple iteration add 324 / 9.2 300 / 8.0 264 / 13.0

optim. iteration store 397 / 3.8 369 / 2.9 394 / 2.0
optim. iteration add 397 / 5.1 338 / 4.2 382 / 2.5

Table 1:CPU clock cycles for constant frequency sinusoid synthe-
sis (setup / per sample).

Algorithm PIII K7 Alpha

cos() function store 0 / 98 0 / 105 0 / 74
cos() function add 0 / 98 0 / 106 0 / 74

optim. iteration store 535 / 16.2 470 / 14.2 404 / 7.5
optim. iteration add 535 / 16.7 472 / 13.6 393 / 7.8

Table 2:CPU clock cycles for sweep synthesis (setup / per sample).

in just a single frame, the HILN decoder uses a Hanning window
of length2N to achieve a smooth fade-in and fade-out. Hence, a
50 % overlap-add procedure is also required for time domain syn-
thesis, so that the breakeven point lies at about15 sinusoids.

Using a shorter transform length reduces the time for the trans-
form itself but increases the synthesis time because the width (in
bins) of the prototype must remain the same to get the same SNR.

The FFT implementation used here is based on an optimized
radix-4 algorithm. It has about the same performance as the FFTW
algorithm by Matteo Frigo and Steven G. Johnson [13] for the
transform lengths used here.

As noted in Subsection 4.3, the synthesis of sweeps in the fre-
quency domain is difficult. Figure 3 shows the SNR that can be
reached by approximating sweeps by short blocks of constant fre-
quency sinusoids, i.e., a reduced hop size. Figure 4 shows the
performance that can be achieved by this approach. HILN typi-
cally uses a frame length of 32 ms, corresponding to a default hop
size of 512 samples for 16 kHz sampling rate. Hence, for practical
hop sizes, the SNR is not sufficient to fulfill the MPEG-4 HILN
conformance criteria [14]. The fundamental frequency of a speech
signal, for example, can exhibit sweep rates of several 100 Hz/s.

5.3. Accuracy

Figures 5 and 6 show the SNR of the algorithms presented in Sec-
tions 2 and 3 respectively. The tests were carried out on a SUN Ul-
traSPARC CPU which seems to have the most IEEE 64 bit floating
point conform FPU. The x86-class CPUs generally achieve higher
SNRs because they actually use 80 bit arithmetic. However, this
advantage is only valid if the working set of variables can be hold
in CPU registers, which is true for the sinusoid algorithm but not
for the sweep algorithm. All tests use a frame length ofN = 1024
an no overlap-add. In all diagrams, the y-axis displays the SNR
in dB while the frequencyω0 approaches one of the four critical
points0, π

4
, π

2
, andπ. The x-axis shows the distance to the cor-

responding critical frequency (measured in terms of2π). For each
diagram, the lower bound of all curves represents the minimum
SNR that is achieved by this algorithm.

DAFX-242

Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50

C
P

U
 c

yc
le

s
pe

r
ou

tp
ut

 s
am

pl
e

Number of simultaneous sinusoids

Time domain synthesis (with overlap−add)
Time domain synthesis (without overlap−add)

Frequency domain synthesis (hop size = 2048)

Figure 2:Constant frequency sinusoid synthesis speed.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

S
N

R
 [d

B
]

Sweep rate [Hz/s]

hop size: 4 ms
8 ms

16 ms
32 ms

Figure 3: Sweep approximation by overlap-add of constant fre-
quency sinusoids.

If using 64 bit arithmetic, the basic sinusoid algorithm (Sub-
section 2.1) gives an accuracy of more than 200 dB. The opti-
mized algorithm (Subsection 2.2) fails to achieve 200 dB SNR
when the frequency approaches the two critical points atω0 = π

2
andω0 = π

4
(lower curves). Forω0 = 0 andω0 = π the ac-

curacy stays above 200 dB for both algorithms (upper curves). If
falling back to the basic algorithm for frequencies whose distance
to ω0 = π

2
andω0 = π

4
is less than10−4, an accuracy of 200

dB is always achieved and the fallback algorithm is called in less
than one out of 1000 cases. In case of 32 bit arithmetic both al-
gorithms do not achieve a sufficiently high SNR to generate 16 bit
PCM waveforms.

For the sweep synthesis algorithm (Subsection 3.1), there are
no critical frequencies The optimized algorithm (Subsection 3.2)
performs even better than the basic one because of less error prop-
agation. The SNR stays well above 200 dB for 64 bit arithmetic
and reaches about 100 dB for 32 bit arithmetic.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30

C
P

U
 c

yc
le

s
pe

r
ou

tp
ut

 s
am

pl
e

Number of simultaneous sinusoids

Time domain synthesis
Frequency domain synthesis (hop size = 128)
Frequency domain synthesis (hop size = 512)

Figure 4:Sweep synthesis speed.

 0

 50

 100

 150

 200

 250

 300

 350

 1e−08 1e−06 1e−04 0.01

S
N

R
 [d

B
]

Distance to critical frequency

Optimized 64 bit

 0

 50

 100

 150

 200

 250

 300

 350

 1e−08 1e−06 1e−04 0.01

S
N

R
 [d

B
]

Distance to critical frequency

Basic 64 bit

 0

 50

 100

 150

 200

 250

 300

 350

 1e−08 1e−06 1e−04 0.01

S
N

R
 [d

B
]

Distance to critical frequency

Optimized 32 bit

 0

 50

 100

 150

 200

 250

 300

 350

 1e−08 1e−06 1e−04 0.01

S
N

R
 [d

B
]

Distance to critical frequency

Basic 32 bit

Figure 5:Constant frequency sinusoid synthesis SNR.

6. FAST HILN PARAMETRIC AUDIO DECODER

For the application in an MPEG-4 HILN Audio Decoder the time
domain synthesis has several advantages. To be MPEG-4 conform
[14], a decoder must exactly apply the prescribed windowing func-
tions to the synthesized signal frames which may include an arbi-
trary triangular envelope. This is easily possible when using the
time domain approach because all sinusoids are synthesized indi-
vidually but it would require additional Fourier transform opera-
tions in the frequency domain approach. Even if strict MPEG-4
conformance is given up, the performance of the frequency do-
main synthesis does not reach the performance of the time domain
synthesis in an MPEG-4 HILN decoder.

Based on the time domain synthesis algorithms presented here,
a fast MPEG-4 HILN parametric audio decoder was implemented.
For typical bit streams encoded at 6 to 16 kbit/s, a CPU load of
approximately 10 to 20 MHz on a Pentium III was required for

DAFX-243

Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

 0

 50

 100

 150

 200

 250

 300

 350

 1e−08 1e−06 1e−04 0.01

S
N

R
 [d

B
]

Distance to critical frequency

Optimized 64 bit

 0

 50

 100

 150

 200

 250

 300

 350

 1e−08 1e−06 1e−04 0.01

S
N

R
 [d

B
]

Distance to critical frequency

Basic 64 bit

 0

 50

 100

 150

 200

 250

 300

 350

 1e−08 1e−06 1e−04 0.01

S
N

R
 [d

B
]

Distance to critical frequency

Optimized 32 bit

 0

 50

 100

 150

 200

 250

 300

 350

 1e−08 1e−06 1e−04 0.01

S
N

R
 [d

B
]

Distance to critical frequency

Basic 32 bit

Figure 6:Sweep synthesis SNR.

decoding.
Table 3 shows the distribution of the CPU cycles while decod-

ing a set of typical bitstreams. Even though the sinusoid and sweep
synthesis take the largest part of CPU cycles, nearly half the cycles
are consumed by other parts of the decoder. The mean synthesizer
load per frame was 18.6 constant frequency sinusoids (i.e. 9.3 with
overlap) and 8.1 sweeps.

Part Execution Time

setup for sinusoids 4.94 %
iteration for sinusoids 18.34 %
setup for sweeps 3.94 %
iteration for sweeps 32.29 %
parameter decoding 5.74 %
audio output 10.80 %
everything else 23.95 %

Table 3: Execution times in an HILN decoder.

7. CONCLUSIONS

The presented algorithms are optimized for general purpose CPUs
and give good performance here. For high precision, 64 bit float-
ing point arithmetic is needed. This does not cause performance
problems on most modern CPUs because their FPU hardware can
handle at least 64 bit floating point values and the signal buffers
fit into the CPU’s primary cache which has enough bandwidth for
this application.

Dedicated digital signal processors (DSP) typically provide
less accuracy, e.g. 24 bit fixed point or 32 bit floating point. For
these systems, various other sinusoid synthesis algorithms have
been developed that can be more appropriate ([5], [6]).

The algorithms presented here are well suited for MPEG-4
HILN parametric audio decoding on general purpose CPUs as well

as for software audio synthesizers utilizing sinusoidal representa-
tions. The flexibility, accuracy, and performance of the presented
time domain synthesis algorithms is superior to frequency domain
based algorithms in the given environment, i.e. for the synthesis of
a few ten simultaneous sinusoids or sweeps. Both the sinusoid and
sweep synthesis algorithm allow real time parameter modifications
by re-calculating the state variables from updated parameters. For
the sweep algorithm, the amplitude and sweep rate can be changed
instantly without affecting the other state variables, which may be
an interesting feature for sound synthesis.

8. REFERENCES

[1] J. L. Flanagan and R. M. Golden, “Phase vocoder,”Bell
System Technical Journal, pp. 1493–1509, Nov. 1966.

[2] J.-C. Risset and M. V. Matthews, “Analysis of musical instru-
ment tones,”Physics Today, vol. 22, pp. 22–30, Feb. 1969.

[3] R. McAulay and T. Quatieri, “Speech analysis/synthesis
based on a sinusoidal representation,”IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 34, no. 4, pp. 744–754, Aug.
1986.

[4] H. Purnhagen, “Advances in parametric audio coding,” in
Proc. IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), Mohonk, New Paltz, Oct.
1999, pp. 31–34.

[5] S. A. Azizi, “Implementation of quadrature sinusoidal oscil-
lator with reduced round off noise,” inAES 100th Conven-
tion, Copenhagen, May 1996, Preprint 4237.

[6] J. Dattorro, “Effect design – part 3 oscillators: Sinusoidal
and pseudonoise,”J. Audio Eng. Soc., vol. 50, no. 3, pp.
115–146, Mar. 2002.

[7] A. Freed, X. Rodet, and P. Depalle, “Synthesis and control of
hundreds of sinusoidal partials on a desktop computer with-
out custom hardware,” inProc. Int. Conf. Signal Processing
Applications & Technology, Santa Clara, CA, US, 1993.

[8] T. Hodes and A. Freed, “Second-order recursive oscilla-
tors for musical additive synthesis applications on SIMD
and VLIW processors,” inProc. Int. Computer Music Conf.
(ICMC), 1999.

[9] ISO/IEC, “Coding of audio-visual objects – Part 3: Audio
(MPEG-4 Audio Edition 2001),” ISO/IEC Int. Std. 14496-
3:2001, 2001.

[10] ISO/IEC JTC1/SC29/WG11, “MPEG-4 Audio Web
Page,” available:http://www.tnt.uni-hannover.
de/project/mpeg/audio/ .

[11] H. Purnhagen, N. Meine, and B. Edler, “Speeding up HILN –
MPEG-4 parametric audio encoding with reduced complex-
ity,” in AES 109th Convention, Los Angeles, Sept. 2000,
Preprint 5177.

[12] M. M. Goodwin, Adaptive Signal Models: Theory, Algo-
rithms, and Audio Applications, Kluwer, Boston, MA, USA,
1998.

[13] M. Frigo and S. G. Johnson, “FFTW – Fastest Fourier Trans-
form in the West,” available:http://www.fftw.org/ .

[14] ISO/IEC, “Coding of audio-visual objects – Part 4: Confor-
mance testing AMENDMENT 1: Conformance testing ex-
tensions (MPEG-4 Conformance Version 2),” ISO/IEC Int.
Std. 14496-4:2000/Amd.1:2001, 2001.

DAFX-244

http://www.tnt.uni-hannover.de/project/mpeg/audio/
http://www.tnt.uni-hannover.de/project/mpeg/audio/
http://www.fftw.org/

	1 Introduction
	2 Time Domain Synthesis of Sinusoids
	2.1 Simple Oscillator
	2.2 Performance Optimization
	2.3 Numerical Stability

	3 Time Domain Synthesis of Sweeps
	3.1 Basic Algorithm
	3.2 Performance Optimization

	4 Frequency Domain Synthesis
	4.1 Synthesis Algorithm
	4.2 Windowing Function
	4.3 Synthesis of Sweeps

	5 Results
	5.1 Test Setup and Execution Times
	5.2 Comparison with Frequency Domain Synthesis
	5.3 Accuracy

	6 Fast HILN Parametric Audio Decoder
	7 Conclusions
	8 References

