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ABSTRACT

Digital waveguide mesh structures have proved useful in a wide
variety of modelling applications.  When modelling the acoustics
of an enclosed space the accurate simulation of specific boundary
conditions is paramount but waveguide mesh related techniques
have as yet to provide an appropriate and reliable solution.  This
paper gives an overview of boundary types that have been
implemented by researchers to date and describes the application
of a higher order approximation for the particular case of an
anechoic boundary, that may prove useful as part of a more
general solution.

1. INTRODUCTION

When modelling the acoustic properties of a room geometrical
algorithms such as ray-tracing [1] or the image-source method [2]
are often used.  Alternative methods implement scattering
algorithms to model physical wave propagation and can be shown
to demonstrate typical wave phenomena such as diffraction and
interference that cannot be accounted for in a geometrical
solution.  Scattering algorithms as implemented using a digital
waveguide mesh model have provided an accurate and efficient
method of physically modelling 2D and 3D resonant systems
such as membranes and plates [3], drums [4] and rooms [5].

This work is particularly interested in using digital waveguide
mesh structures for reverberation and room acoustics modelling,
these being fundamental tools in the field of creative audio
processing.  The aim is to arrive at an accurate room impulse
response (RIR) measurement for the modelled space that can then
be used in a convolution operation with an arbitrary audio input.
As such the characteristics of the room will be imparted onto the
audio signal, effectively placing the listener within the modelled
space.  Despite some of the shortcomings of the waveguide mesh
technique the results obtained are encouraging although they are
let down in terms of their overall quality by poorly implemented
boundary conditions.  This also means that it is difficult to
compare the results with actual real world RIR measurements to
see how successful these models actually are.  The boundaries in
a room are a primary feature that help to determine its reverberant
characteristics and how it will affect the timbre of an audio event
(musical or otherwise) heard within its confines.  Smooth, flat
walls usually impart a bright or cold characteristic to the source
material, with a longer decay.  Softer materials give a sense of
warmth, and the increased absorption shortens the reverberation

time.  These boundaries are also invariably frequency dependent.
In geometrical or generic filter based reverb algorithms, the
effects of a boundary can be easily implemented or changed use
variable delay lines and combinations of high-pass/low-pass
filters.  In a physical model such as the digital waveguide mesh a
more considered analytical approach has to be taken.

This paper gives an overview of the methods that have been
used to date to implement accurate boundaries as part of a digital
waveguide mesh structure, with their associated advantages and
limitations.  It then goes on to look at the particular problem of
accurately modelling an anechoic boundary and how current
implementations can be improved by using a higher order
solution.

2. THE DIGITAL WAVEGUIDE MESH

A waveguide is any medium in which wave motion can be
characterised by the one-dimensional wave equation.  In the
lossless case, all solutions can be expressed in terms of left-going
and right-going travelling waves and can be simulated using a bi-
directional digital delay line.  A digital waveguide model is
obtained by sampling, both in space and time, the one-directional
travelling waves occurring in a system of ideal lossless
waveguides [6].  The sampling points in this case are called
scattering junctions, and are connected by bi-directional unit-
delay digital waveguides [7].  Figure 1(a) shows the general case
of a scattering junction J with N neighbours, i = 1,2,…N.

The sound pressure in a waveguide is represented by pi, the
volume velocity by vi and the impedance of the waveguide by Zi.
The input to a waveguide is termed pi

+ and the output pi
-.  The

Figure 1: (a) A general scattering junction J with N
connected waveguides for i = 1,2,…,N; (b) 2D
rectilinear mesh structure.
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signal pi,J
+ therefore represents the incoming signal to junction i

along the waveguide from the opposite junction J.  Similarly, the
signal pi,J

- represents the outgoing signal from junction i along the
waveguide to the opposite junction J.  The volume velocity vi is
equal to pressure, pi, divided by impedance, Zi.  The delay
elements are bi-directional and so the sound pressure is defined
as the sum of its input and output:

At a lossless scattering junction with N connected waveguides the
following conditions must hold:

1. The sum of the input volume velocities, v+, equals the sum of
the output volume velocites, v - :

2. The sound pressures in all crossing waveguides are equal at
the junction:

Using these conditions the sound pressure at a scattering junction
can be expressed as:

As the waveguides are equivalent to bi-directional unit-delay
lines, the input to a scattering junction is equal to the output from
a neighbouring junction into the connecting waveguide at the
previous time step.  This can be expressed as:

Note that using equations (1), (4) and (5) it is also possible to
derive an equivalent finite difference formulation for these
scattering equations in terms of junction pressure values only:

Where equation (6) is the finite difference formulation of the
scattering equations for a 4-port waveguide structure with equal
impedances.

By discretising the 2D plane, rectilinear and triangular mesh
structures can be constructed using unit delay waveguides and
lossless scattering junctions with N = 4 and N = 6 in Equation 4
respectively, forming a 2D medium that can sustain wave
propagation. Figure 1(b) shows the 2D rectilinear waveguide
mesh with N = 4.  A signal representing acoustic pressure
introduced to a waveguide will propagate in either direction along
the bi-directional delay lines until it comes to a junction.  The
signal then scatters according to the relative impedances of the
connected waveguides.  In the current model, as in Equation (6),
all impedances are set to be equal.

Wave propagation through the rectilinear mesh (as shown in
Figure 2) has been shown to exhibit direction and frequency

dependant dispersion [6].  This leads to wave propagation errors
and mis-tuning of the expected resonant modes for a 2D or 3D
structure.  Solutions have been proposed to minimise this
dispersion error, two of which use alternative triangular [8] or
bilinearly deinterpolated rectilinear mesh topologies [9].

3. BOUNDARY MODELLING

At the boundary of a mesh structure an interaction occurs
between the terminating junction (usually at or on the boundary
itself) and its immediate neighbour (within the main body of the
mesh structure).  In general, a boundary junction is defined as
having only one other neighbour - interaction is only allowed
between the boundary junction and junctions within the mesh,
with adjacent junctions lying on the boundary having no direct
influence on each other.  The effect of a boundary in a real room
is to produce a reflection of an incident sound wave, usually with
some frequency dependent absorption of the wave energy at the
boundary itself.  In a digital waveguide structure a reflection is
caused by a change in the impedance of the waveguide.  This can
be conceptualised by connecting a dummy junction on the other
side of the boundary junction, essentially within the boundary
itself, as in Figure 3.  The connecting waveguides on either side
of the boundary will have different characteristic impedances, Z1

and Z2 respectively.

If at a boundary the impedance changes from Z1 to Z2 the
reflection coefficient r is defined as:

Given that there is no contribution into the boundary junction, J,
from the dummy junction 2 and using (4) and (5), the sound
pressure for the boundary junction can be calculated as a function
of the sound pressures of the incident travelling waves, pi

+ giving:
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Figure 2. Wave propagation on the 2-D Rectilinear
Digital Waveguide Mesh.
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Figure 3: Termination of a waveguide mesh due to a
boundary resulting in a reflection.
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Or, in an equivalent finite difference formulation:

In general, simple absorption can be modelled at such a
boundary by replacing the junction adjacent to the boundary itself
with the equivalent n-port junction (where n = 1,2,…,5 for a
triangular mesh), according to the room/boundary geometry that
the mesh model has to fit.  The amount of energy reflected at the
boundary is determined by setting r equal to a value between 0
and 1.  With r = 0 boundary nodes assume the value of their
neighbour (free end) and anechoic conditions are simulated.
With r = 1 a phase preserving total reflection with no absorption
is simulated.  Additionally, setting r = -1 effectively fixes the
boundary junction to zero and results in phase reversing
reflection.

Although these boundary conditions are satisfactory in most
cases they are clearly an oversimplification of reality even though
they are consistent with mesh construction and offer a solution
that enables simple reflection and absorption to be modelled.
This non-ideal behaviour is most clearly evidenced when
modelling anechoic conditions, where significant reflections at
high frequencies can be seen [10], [5].  Additionally, real
acoustic boundaries are both frequency and direction dependent
and this has not been considered in the derivation of the boundary
conditions.

3.1. More Accurate Boundary Implementations

Using the derivation of a boundary for a digital waveguide mesh
as discussed above as a starting point, a number of improvements
have been suggested.  In [11], the boundary junction in Figure 4
is replaced with a boundary filter with transfer function H(z).
This transfer function is defined to optimally match given
frequency dependent reflection coefficient data for a particular
material, and implemented using a first order IIR filter.  The
results given are a good approximation to the required target
responses, but are again subject to the directional dependent
characteristics of the mesh structure itself, being less accurate for
certain angles of incidence.

For curved boundaries, where the perimeter of the structure
being modelled (such as a drum membrane) in not normal/parallel
to the axes of the mesh structure, rimguides have been suggested
as an appropriate solution [12].  Rimguides are non-integer
length waveguide elements, comprising an integer length
waveguide and a first order all-pass filter to model the fractional
part.  This method has been shown to be accurate for modelling
circular membranes using a triangular mesh at low frequencies
where the time for a wave to travel diametrically across the model
is the same as it would be in a real membrane.  The model
becomes less accurate with increasing frequency, although this is
most likely due to the frequency dependent dispersion
characteristics of the triangular mesh.

This method has been extended to model the effect of diffuse
reflections at a boundary [13].  At a smooth boundary the angle
of incidence is equal to the angle of reflection, resulting in

specular reflections.  At an irregular surface a diffuse reflection is
produced where energy is scattered in almost every direction
regardless of the angle of incidence.  This is a very important
property in room acoustics as very few surfaces act to produce
perfectly specular reflections.  A diffuse boundary has been
implemented by using circulant matrices to rotate and pre-alter
the angle of incidence of a wavefront by a random amount,
scattering energy in many directions regardless of initial angle of
incidence.  This is achieved by multiplying the incoming signals
to a junction adjacent to the boundary of the mesh with a
circulant matrix designed to ensure that the signal strength and
power of the wavefront is conserved.  The effect of this matrix
transformation is to rotate the incident wave about the junction it
is applied.  This rotation is then randomly altered for each time
step to achieve the diffusion effect.  The amount of diffusion
applied can be varied as required by changing this angle of
rotation.  Diffuse boundaries have been applied with some
success to a small circular mesh based on a triangular topology
using rimguides to connect the mesh to the required boundary.  It
has been suggested that it should be a small step to implement a
frequency dependent variation on this design by replacing the
coefficients within the circulant matrix with appropriately
designed filters.

4. ANECHOIC BOUNDARIES

An indication of the behaviour of a particular mesh structure and
its associated boundaries can be obtained by attempting to model
anechoic conditions, as all propagating wave energy within the
mesh should be absorbed as it arrives at the boundary.  An ideal
anechoic boundary (either the actual physical material or the
computationally modelled equivalent) is designed to simulate
free-field radiation such that the acoustic medium extends to
infinity, being ideally transparent to all incident acoustic waves.
This is simulated in an anechoic chamber by using an alternating
arrangement of absorbent wedges mounted on the interior
surfaces as shown in Figure 4.  The wedge shape is designed to
absorb all echoes or reflections by acting as a waveguide such
that all incident acoustic energy is internally reflected into the
wedge and its neighbours. The alternating pattern is used to give
more uniform angular absorption.

Clearly it is impractical to model an anechoic boundary
numerically along the same lines as they are constructed

+⋅+= 1,)1( JJ prp (8)
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Figure 4: The Music Technology Group at York's
Anechoic Chamber showing the alternating
arrangement of absorbing wedges.
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physically.  Rather a domain must be defined such that numerical
wave propagation in all directions can be modelled successfully
(in this case the actual digital waveguide mesh), together with a
boundary condition that permits outward propagation of this
simulated wave as if the interior computational domain was of an
infinite extent.  This boundary must also suppress spurious
reflections of the outgoing wave, something which currently
implemented boundaries are not capable of achieving [10].
Considerable effort has been spent examining this problem in
computational electrodynamics [14] and these types of boundary
conditions are generally termed Absorbing Boundary Conditions
(ABCs).  Problems in this area usually make use of a finite
difference algorithmic solution for Maxwell's curl equations in
the interior domain.  As the digital waveguide mesh has an
equivalent finite difference formulation it is appropriate to look
for suitable ABC solutions from this related subject area.  One
such method used in an acoustics context, makes use of a Taylor's
series expansion about the boundary junction, and has been
successfully implemented to model the open end of the vocal
tract [15].

4.1. The Taylor Series ABC

Consider a boundary junction pB and a stencil of pressure values
pi(t-i+1)  for junctions positions pi along a straight line
perpendicular to this boundary, being both equidistant in time
and space, as shown in Figure 5.

An approximation for the updated junction value, pB (W�ûW�, is
required.  Note that in Figure 5, as in the waveguide mesh
algorithm, it is assumed ût = 1.  Therefore we define the
following values:

Together with the associated sequence of backward differences
originating at P1:

Assuming that the function defined by these points is continuous,
and as the value p1(t) is known (as it is calculated within the
domain of the mesh) then it is possible to approximate the point
pB(t+1) as a Taylor series expansion about the point p1(t) with h =
ût = 1 as follows:

Using this Taylor series expression together with equations (10)
and (11) it is therefore possible to derive the pressure value at pB

in terms of the pressure values pi for time t = t+1 with increasing
orders of accuracy as follows:

Note that Equation (13), the zero order term, is equivalent to
Equation (9) with r = 0, being the currently implemented
anechoic boundary and as such it is clear that there would be
considerable error with this boundary implementation that should
be improved by using a higher order solution.

5. RESULTS

A 100x100 junction 2D rectilinear mesh has been constructed
and a smooth gaussian impulse has been applied as an input over
four time steps at junction (50,70) of this mesh.  All boundaries
are defined as being equivalent and have been implemented using
each of the successively more accurate anechoic boundary
solutions presented in Equations (13)-(16).  Impulse response
measurements have been made at junctions (50,100) and (50,85).
The first case being one of the anechoic boundary junctions, and
the second being just away from this same point in a
perpendicular direction, within the actual mesh domain. Care was
taken to ensure that boundaries not being examined were at an
appropriate relative distance from the measurement point to avoid
additional reflections influencing the results.

Figure 6 displays the measured impulse responses, with 6(a)
being the results for junction (50,100) (on boundary) and 6(b)
being the results for junction (50,85) (off boundary).  Note that in
both cases the two plots shown in each graph are for the zero

 p1  pB p2 p3 pi

 t+1 t t-1 t-2 t-i+1

 pi(t-i+1)

 p3(t-2)

 p2(t-1)
 p1(t)
 pB(t+1)

Figure 5: Boundary junction pB and connected
junctions pi with associated pressure values pi(t-i+1)
used in a Taylor Series approximation for junction
value pB(t+1).
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order case (Equation (13)), represented by the solid line, and the
first order case (Equation (14)), represented by the dotted line,
only.

Figure 6(a) demonstrates the significantly improved
absorption characteristics of the first order boundary over the
standard zero order implementation.  Once the incident wave has
arrived at the boundary junction the energy has effectively
dissipated by time t = 120 whereas in the zero order case the
boundary junction has as yet to return to rest. Figure 6(b)
demonstrates how the boundaries act to suppress reflected
components generated as the incident wave passes "through" the
boundary.  Note that distinct reflections can be evidenced at times
t = 50 and t = 130 for the zero order boundary that are not
apparent for the first order case.  The first reflection has been
generated from the boundary actually being tested with the
second being the constructive sum of the two reflections from the
two adjacent side boundaries.

Note that despite implementing Taylor series anechoic
boundaries of this type up to third order, no discernable
improvement in accuracy can be evidenced when the results are
plotted, with almost identical impulse responses being produced.
When the actual numerical results are investigated the differences
between first, second and third order become apparent, but this
improvement is insignificant when compared with the relative
measured difference between the results for zero and first order
boundaries.  This is beneficial from an implementation
perspective as the model is more efficient in terms of boundary
computation and total memory requirements.  Note that for
boundaries above second order, additional mesh history is
required, beyond that of the two previous time steps needed to
implement the standard 2D rectilinear junction within the actual
mesh domain.  However, the slight improvement that is offered
by higher order solutions may be significant for the modelling
scheme as a whole and as such a more considered error analysis is
required, together with a high sample rate implementation
suitable for audio processing purposes to investigate any possibly
related perceptual effects.

6. CONCLUSIONS

An anechoic ABC based on a Taylor series approximation of the
pressure value at a junction on a boundary of a simple 2D
rectilinear digital waveguide mesh has been derived and tested.
The zero order approximation has been shown to be equivalent to
the standard waveguide mesh implementation of an anechoic
boundary based on a change of impedance in the mesh structure.
The first order approximation has been shown to offer a
significant improvement over this zero order case, demonstrating
a much higher absorption of incident wave energy together with
the successful suppression of additional spurious reflections from
the boundary itself.  Second and third order approximations do
not seem to offer any significant improvement on the first order
case based on the impulse response measurements obtained,
although analysis of the numerical data shows some slight
improvement may be evident that is worthy of further
investigation.  Therefore, it would seem that the first order
approximation is the most applicable implementation of an
anechoic ABC offering improved performance with low
computational overhead.

From a room acoustics modelling perspective, an accurate
anechoic ABC is of limited use.  However this work has a
number of advantages within the field of digital waveguide mesh
modelling.  Clearly there are parallels with the comparable fields
of finite difference and transmission line modelling, and this
study shows that boundary solutions as implemented for these
similar algorithms can be applied with some success in a digital
waveguide mesh.  This would therefore indicate that other similar
boundary models might be worth investigating further.  Currently
the state of the art in computational electromagnetics is the
Berenger Perfectly Matched Layer ABC [14] although it is not
obvious how this might be applied in an acoustics context.  In
addition, a numerical approximation, having been successful in
this particular case, may prove to be a valid approach for
modelling a general boundary junction with more realistic
reflection/absorption characteristics.  Finally, if a more complex
real-world boundary is to be simulated and tested, accurately
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Figure 6: Impulse response measurements
demonstrating the Taylor series formulation of an
anechoic boundary junction with zero order (solid
lines) and first order (dotted lines) results plotted. (a)
For a junction on the boundary itself; (b) for a
junction within the mesh, being close to the actual
boundary.
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modelled anechoic conditions at boundaries on the mesh other
than that under investigation will ensure the results will be free
from the influence of reflections from other non-critical sources.

Future work will involve a more comprehensive investigation
and error analysis of the higher order boundary conditions,
together with an examination of audio examples produced from
mesh structures subject to these conditions for evidence of any
related effects.  Work is already under way on the implementation
of this anechoic ABC for both the triangular and bilinearly
deinterpolated mesh topologies, as both of these structures offer
significant improvements in terms of dispersion error and wave
propagation characteristics over the rectilinear mesh.  A broader
study will look at how this anechoic ABC might be extended to
the more general case and examine how other potentially
promising boundary modelling solutions might be successfully
implemented for a digital waveguide mesh structure.
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