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ABSTRACT

In this paper, the control of a physical model of a trum-
pet is studied. Although this model clearly describes the
mechanical and acoustical phenomena that are perceptually
relevant, additional constraints must be imposed on the con-
trol parameters. In contrast with the model where the tube
length can be varied continuously, only seven different tube
lengths can be obtained with a real instrument. By studying
the physical model and its implementation, different rela-
tionships between the control parameters and signal charac-
teristics are identified. These relationships are then used to
obtain the best set of tube lengths with respect to a given
tuning frequency.

1. INTRODUCTION AND STATE OF THE ART

Physical modelling consists of describing the mechanical
and acoustical phenomena that take place in a musical in-
strument in terms of a system of equations and in solving
(numerically) these equations to obtain the sound output.
The sound signal is computed from a set of time-varying
control parameters that correspond with the gestures of the
player. When playing the physical model in order to sim-
ulate an acoustic instrument, the way it is controlled is as
important as the quality of the model itself. A physical
model that is capable of simulating any sound of an acous-
tic instrument will still sound very unnatural if it is not con-
trolled correctly. For synthesis techniques based on a sig-
nal model (for example additive synthesis), efficient estima-
tion techniques are available leading to sound manipulations
of a very high quality [1, 2]. For physical models, tech-
niques that determine automatically the control parameters
for a given sound are actively researched. We cite work on
plucked strings [3, 4], bowed strings [5] and trumpet models
[6, 7].

At the Analysis/Synthesis team of IRCAM a physical
model of a trumpet was developed [8, 9, 10, 11, 12, 13].

Also, a real-time implementation was provided for the con-
trol of the model with an adapted instrument-like interface
(sax MIDI, Yamaha WX7) [14]. Helie [7] proposed to invert
the equations on which the model is based, resulting in an
algorithm that automatically determines the lip frequency
and damping factor from a synthesized sound for which the
tube length and mouth pressure of the player are known. In
[6], the author proposed a non parametric estimation tech-
nique based on nearest neighbor classification. The com-
putation cost of the nearest neighbor search was reduced
significantly using an efficient branch and bound search
algorithm based on Principal Component Analysis (PCA)
[15]. A disadvantage of this approach was that no con-
straints were imposed on the control parameters of the phys-
ical model resulting in control parameter sequences that were
not physically acceptable. For example, when simulating a
sound with vibrato the control parameters tried to simulate
this by varying the tube length. This contradicts the control
of a real instrument where the tube length is fixed for each
note. By imposing this constraint, much better synthesis re-
sults were obtained.

2. DEFINING THE CONSTRAINTS

As stated in the introduction, the constraint that must be
imposed is that a constant tube length must be used for each
note. In contrast with the physical model where the tube
length can be varied continuously, a real trumpet can only
obtain seven different tube lengths. With the three valves,
eight combinations can be obtained of which two result in
the same tube length. In table 1 each column corresponds
with a tube length and each row with a mode, resulting in a
given note. As can be seen from the table, some notes can
be obtained with different tube lengths. For example G4 can
be obtained by exciting the sixth mode of tube length 1, the
seventh mode of tube length 4 or the eighth mode of tube
length 6. The following constraint is defined:
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tube length
mode N 1 2 3 4 5 6 7

1 C2 B1 B[1 A1 A[1 G1 F]1
2 C3 B2 B[2 A2 A[2 G1 F]2
3 G3 F]3 F3 E3 E[3 D3 C]3
4 C4 B3 B[3 A3 A[3 G3 F]3
5 E4 E[4 D4 C]4 C4 B4 B[4
6 G4 F]4 F4 E4 E[4 D4 C]4
7 B[4 A4 A[4 G4 F]4 F4 E4
8 C5 B4 B[4 A4 A[4 G4 F]4

Table 1: Notes obtained by exciting different modes of a
given tube length

Constraint 1: ”When a trumpet player inter-
prets a score he chooses a correct finger posi-
tion and excites the correct mode of the tube in
order to obtain the desired note.”

In other words, the player uses a mapping from the funda-
mental frequency to a mode and tube length couple. For
simplicity, we will assume that the same combination is al-
ways used. In reality, other combinations can sometimes
be preferred but this is considered beyond the scope of this
article.

A second factor that influences the obtained fundamen-
tal frequency is the tuning of the instrument. The tuning
valve adjusts all the tube lengths in order to correspond with
a given reference frequency fref . Typically A3 corresponds
with 440 Hz. This leads to a second constraint:

Constraint 2: ”Given a reference frequency,
a set of seven tube lengths must be determined
for the control of an entire trumpet performance”

3. THEORETICAL DERIVATION

3.1. The Physical Model

In this section, a (simplified) physical model of a trumpet
and its implementation is described briefly. The upper lip of
the trumpet player is modelled by a parallelepipedic mass
attached to a damped spring. When the lips close, the char-
acteristics of the spring change, introducing a non linearity
to the oscillation. The body of the instrument is modelled by
its impulse response function hλ measured from a real in-
strument. The coupling between the lips and the instrument
is obtained from the Bernoulli equation expressing the rela-
tion between volume flow u, lip position x, and pressure p.
Assuming that the propagation of the wave is plane (linear
propagation), p can be expressed as the sum of an incoming
pi and outgoing wave po [7, 11, 13].

In correspondence with the jMax implementation [14],
the control parameters of the model are:

• PM , pressure in the mouth

• PT , tube length parameter, related to the number of
times that the wave traverses the tube per second.

• PD, lip damping

• PL, lip resonance frequency

The algorithm for the sound synthesis from these pa-
rameters is given below:

λ = b Fs

2PT

c // Delay computation

pi,n =
∑K

k=1
po,n−khλ,k // Body Resonance

if xn > 0 // Lips opened
pn = 2pi,n − 1

2
Axn(Axn −

√

(Axn)2 + 4|PM − 2pi,n|)
un = (pn − pi,n)/Zc

xn+1 = 2
√

PD cos(2πPL/Fs)xn − PDxn−1

+γ(PM − pn)
else // Lips closed

pn = 2pi,n

un = 0
xn+1 = 2

√
PD cos(2π(2PL)/Fs)xn − PDxn−1

+ γ(PM − pn)
end
po,n = 1

2
(pn + Zcun)

Algorithm 1: Trumpet synthesis

where Fs is the sampling frequency, Zc the acoustic
impedance and A, γ being constants.

3.2. The Linear Response of the Body

The first two lines of the algorithm express the linear re-
sponse of the body of the instrument hλ. This reflection
function was measured at the mouthpiece of a real instru-
ment and was then simplified for computational reasons. It
consists of the following parts

• h1, the direct response at the mouthpiece

• a delay of λ zeros, corresponding with the cylindrical
part of the tube where there is almost no reflection

• h2, the reflection after travelling back and forth the
instrument body

An example of the total reflection function hλ is shown in
figure 1. By changing the number of zeros between these
two reflections, different tube lengths are simulated [8]. The
number of zeros λ is computed from the tube length control
parameter PT using

λ = b Fs

2PT

c (1)
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The interval between the two maxima in the reflection func-
tion can be computed approximatively by adding the num-
ber of samples from the peaks to the zeros and is denoted
λ0. This implies that the total time for the wave to run back
and forth the instrument body is given by

τ =
λ + λ0

Fs

(2)

Therefore the resonance frequencies of the tube tube will be
multiples of

fτ =
Fs

λ + λ0

(3)

As visualized in figure 1, these modes can be observed
in the frequency domain. Expressing the total reflection
function as

hλ,n = h1,n + h2,n−τ (4)

its fourier transform yields

Hλ(f) = H1(f) + H2(f)e−2πifτ (5)

Maxima and minima of |Hλ(f)| are obtained when H1(f)
and H2(f) are in phase or antiphase respectively, implying
that

|H1(f)| − |H2(f)| ≤ |Hλ(f)| ≤ |H1(f)| + |H2(f)| (6)

This shows that bounds of |Hλ(f)| are independent of λ.
Therefore, the expression |H1(f)| + |H2(f)| denotes the
spectral envelope of |Hλ(f)| as shown figure 1. Since h1,n

and h2,n are sharply peaked, their spectrum is very smooth.
Their phase difference is due to the modulator term e−2πifτ

which determines the position of the resonances which are
approximately equally spaced with an interval fτ .

3.3. Resonance phenomena of the physical model

When the model produces a stable periodic sound, each pe-
riod consists of an interval where the lips are opened and
an interval where the lips are closed. When looking closely
at the equation that calculates the pressure pn when the lips
are opened

pn = 2pi,n−
1

2
Axn

(

Axn −
√

(Axn)2 + 4|PM − 2pi,n|
)

(7)
one can derive by expressing the square root as a Taylor
expansion that pn approaches PM when xn is large. An
example is given in figure 2. In this case the value of the
mouth pressure PM is 5000 Pa which is exactly the value
that is obtained for pn when the lips are opened (x � 0).
For a large opening, the state variables take the values

pn = PM

un = (PM − 2pi)/Zc

po,n = PM − pi,n

PM − pn = 0 (8)
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Figure 1: Reflection function of the instrument body

Since the term γ(PM −pn) expresses the external force that
is exerted on the lips, it follows that the lips oscillate freely
when they are largely opened. When x < 0, which means
when the lips are closed, we obtain

pn = 2pi,n

un = 0

po,n = pi,n

PM − pn = PM − 2pi,n (9)

indicating that now an external force is exerted on the lips,
expressed by

γ(PM − 2pi,n) (10)

For small positive values of xn, transition values for
these state values are obtained. From this computation, it
can be concluded that these state variables have the same
period as the lip period. Therefore, when the fundamen-
tal frequency is measured from the sound signal produced
by the physical model (this is the high pass filtered out-
going pressure p0,n), the fundamental frequency of all the
state variables is known. A second conclusion that is drawn,
is that the lips are excited by an external force, essentially
when they are closed. Since the strength of excitation force
is dependent on PM − 2pi,n, the conditions are examined
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Figure 2: Periodicity of lip position and state variables

for which the excitation is the strongest, meaning that the
resonance is maximal. For a fixed value for PM this will
be obtained for a negative value of pi,n with a maximal ab-
solute value. Since pi,n is calculated from a convolution of
the outgoing wave po,n with the reflection function of the
body hλ,n the maximal strength is obtained when the pe-
riod of po is a multiple of the resonance frequency fτ of
the tube. In figure 3 an example is shown for the fourth
mode of a fixed tube length. Both peaks of hλ,n coincide
with negative values of po which results in a negative value
for pi with a maximal absolute value. In addition, the fact
that four periods of po correspond with twice the tube length
(the reflection function is measured at the mouthpiece) im-
plies that the fourth mode is excited. Thus, for a fixed tube
length, the trumpet model will resonate the strongest when
the produced sound is a multiple of the first tube mode, fτ .
This implies that the amplitude of xn is the highest when
f0 = Nfτ , where N is the mode index.
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Figure 3: pressure waves and reflection function

3.4. Relationship with Lip Frequency PL

It would be interesting to know which lip frequency is used
in order to obtain this optimal resonance. This is difficult
since the lip frequency does not correspond directly with the
produced fundamental frequency. When the lips are opened,
they oscillate freely, implying that the time interval that they
are opened is 1

2PL
. When the lips are closed, PL is doubled,

resulting in an interval of 1

4PL

when no external force is ex-

erted. As a result, the total period has a length of of 3

4PL

and a corresponding frequency of 4PL

3
. We will examine

whether this is still a good approximation for the fundamen-
tal frequency even when the external force is exerted. At the
bottom of figure 2 the lip position is shown in function of
time.

4. TUBE LENGTH DETERMINATION

4.1. Validation Experiment

The computations in the previous sections can be validated
by executing the following experiment. By varying the lip
frequency from its lowest to its highest value, the maximal
resonances of the lip position xn can be observed. If the
fundamental frequencies at these maximal resonances are
multiples of fτ , and the corresponding lip frequency is 3

4
PL,

then the previous reasoning is validated.
The experiment was performed for values of PT being

150 and 70. Fs and λ0 had the values 32000 and 128 respec-
tively resulting in the fτ -values of 136.7 and 89.9. From
the results listed in table 2, the following conclusions can
be drawn:

• For the high modes it is observed that fτ is very close
to f0/N , meaning that the fundamental frequencies
for the maximal resonances are very close to multi-
ples of fτ .

DAFX-160



Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

PT N f0 f0/N PL PL/f0

70 10 899 89.9 673.7 0.749
9 809 89.8 605.4 0.748
8 720 90.0 538.5 0.748
7 630 90.1 471.3 0.748
6 537 91.2 404 0.752
5 463 92.6 344 0.743
4 364 91.0 271 0.745
3 276 92.0 205 0.743
2 185 92.5 137 0.741

150 9 1231 136.7 922 0.749
8 1094 136.7 819 0.749
7 955 136.4 715 0.749
6 818 136.3 614 0.751
5 633 136.3 511 0.751
4 551 137.7 412 0.748
3 414 138 308 0.744
2 277 138.5 207 0.747

Table 2: Observations for different tube lengths

• The ratio PL

f0

seems to be a constant very close to 3

4

• These approximations are less accurate for the lower
modes. In this case, the actual fundamental frequency
is higher then the estimated value.

In the case of maximal resonance, the following rela-
tionships can be deduced for the physical model.

f0 = Nfτ (11)

f0 =
4

3
PL (12)

This corresponds with the first constraint that was expressed
in section 2. When a player wishes to play a given note,
a valve position must be chosen corresponding with a res-
onance frequency fτ so that the desired fundamental fre-
quency is a multiple of fτ . In order to excite the correct
mode N , the correct value of PL must be used according to
equation (12). This corresponds with the control of a real
instrument and yields therefore an extra validation of the
physical model.

4.2. Instrument Tuning

As indicated in table 1, seven different tube lengths are used
in order to obtain all notes. Therefore, we wish to determine
seven values for PT that correspond with these tube lengths.
The frequency f0 of a note is calculated from a note index
I and a reference frequency fref in the following manner

f0 = fref2
I

12 (13)

note I f0 fτ = f0

4
λ PT

C4 3 523.3 130.8 116.6 137.2
B3 2 493.9 123.5 131.2 122.0
B[3 1 466.2 116.5 146.6 109.2
A3 0 440 110 162.9 98.2
A[3 -1 415.3 103.8 180.2 88.8
G3 -2 392.0 98.0 198.5 80.6
F]3 -3 370 92.5 218.0 73.4

Table 3: Determination of PT

λ̂ fτ f0 I PT,min PT,max

117 130.6 522.4 2.97 135.6 136.7
131 123.6 494.2 2.01 121.3 122.1
147 116.4 465.5 0.97 108.2 108.8
163 110.0 439.9 -0.01 97.6 98.1
180 103.9 415.6 -0.99 88.4 88.9
199 97.6 391.4 -2.02 80.1 80.5
218 92.5 370 -3.00 73.1 73.3

Table 4: Determination of PT for λ̂

Taking 440 Hz as the reference frequency, meaning that
I = 0 corresponds with the medium A, the fundamental fre-
quencies of all notes are calculated. Knowing which notes
are played using the fourth mode (N = 4), the values of fτ

and PT can be deduced using equations (1) (neglecting the
floor operator) and (3) as shown in table 3. This satisfies the
second constraint that was imposed.

Furthermore, it must be taken into account that the value
of λ is an integer value. Therefore, the integer value λ̂ value
closest to λ is used in order to recalculate the obtained fun-
damental frequencies to determine wether this is admissi-
ble. This results in an interval PL ∈ [PL,min, PL,max] for
which all values result in the same value of λ̂. The results
are shown in table 4. The recalculation of I shows that the
floor function for the computation of λ introduces a maxi-
mal deviation of three percent of a half tone.

Using appropriate combinations of tube length and lip
frequency, as given in table 1, an ascending chromatic scale
was synthesized. Figure 4 shows the note index computed
from the fundamental frequency, according to equation (13).
This figure confirms the previously drawn conclusion that
the estimated f0 is less accurate for lower modes.

5. FURTHER WORK AND CONCLUSIONS

This paper describes the physical constraints that must be
imposed for the control of a physical model of a trumpet.
A real trumpet only uses seven tube lengths while the tube
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Figure 4: Note index of a chromatic scale played by the
physical model

length parameter PT of the physical model is continuous.
Although the physical model used in this article is quite
simplified, no significant changes in the synthesized sounds
were observed. By a detailed study of the implementation
of this physical model some very simple and approxima-
tive relationships between the fundamental frequency and
the control parameters were identified. These relationships
were then used in order to determine a set of seven tube
lengths with respect to a given tuning frequency fref .

In addition, a number of parameters had to be deter-
mined manually. Due to the simplification of the reflection
function hλ additional filters were used to amplify the lower
modes [8]. The resonance frequency of these filters was at
the second and third mode of the tube and the amplitude of
the filter was adapted manually in order to obtain a strength
comparable with higher modes.

Simple note sequences were synthesized with respect to
the physical constraints. Examples will be presented at the
conference. Future research will increase the expressivity
of the synthesis by integrating the physical constraints de-
scribed in this paper with the automatic parameter estima-
tion technique that is described in [6]. Also transient syn-
thesis can further be improved.
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