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ABSTRACT
A new estimation technique is proposed which computes
the control parameters of a physical model of a trumpet in
order to simulate a recording of a real instrument. First, the
physical constraints of the instrument and the prior knowl-
edge about how a player controls a trumpet are described.
This is taken into account during the design of the data set
and guarantees that these constraints are respected. Then, an
estimation procedure minimizes two perceptual similarity
criteria in function of the control parameters. The first cri-
terium expresses the difference of the spectral envelopes and
the second one the difference in fundamental frequency. An
optimization technique is proposed that yields an optimal
solution for the fundamental frequency, and a conditional
suboptimal solution for the spectral envelope. A robust im-
plementation of the technique was developed for which it is
shown that the estimated parameters are unique and that the
optimization does not suffer from local minima.

1. PHYSICAL CONSTRAINTS AND PRIOR
KNOWLEDGE

In the dissertation of Christophe Vergez a physical model
is developed that computes the sound produced by a trum-
pet from time varying control parameters of a player [14].
Recent research focusses on the automatic determination of
control parameters in order to simulate a recorded sound
[5, 8]. Also for other physical models, control parameter
estimation is actively researched [9, 12, 13].
The control parameters P̄ of this physical model, consist of
the pressure in the mouth PM , the lip frequency PL, the tube
length PT and damping factor of the lips PD. In previous
work, the conditions were derived for which the maximal
resonance for this non linear system with delayed feedback
was obtained [6]. There, it was shown that the resonance
frequency fτ of the tube controlled with a the parameter PT

could be computed using

fτ =
Fs

b Fs

2PT

c + λ0

(1)

with Fs being the sampling frequency and λ0 a constant.
By keeping all parameters constant and varying the the lip

frequency it was observed that a maximal resonance was
obtained at multiples of fτ with a value of PL being three
fourth of the frequency yielding

PL =
3

4
Nfτ (2)

where N is an integer value expressing the mode index.
Equations (1) and (2) express the relationship between PL

and PT for which the resonance is maximal.
An important physical constraint is that the tube length of
the instrument must remain constant for each note. In ad-
dition, only seven different tube lengths can be used for an
entire trumpet performance. Seven tube lengths were de-
termined such that the optimal resonance was achieved for
notes tuned to a frequency fref of 440 Hz. This constraint
was not respected by the instance-based approach in previ-
ous work [5].
For each note, the player chooses a combination of tube
length and mode in order to obtain the desired frequency.
The choice of this combination is the prior knowledge that
a player uses when he plays the instrument and is modelled
by the series PT,i and Ni. When the fundamental frequency
f is expressed in half tones using

I = 12 log2

(

f

fref

)

+ 16 (3)

then index of the series i corresponds with the rounded value
of I . The value 16 is added to make the index of the lowest
trumpet note (low F]) correspond to 1.
Evidently, the player does not always excite the tube at the
exact frequency for which the resonance is maximal. For
instance when vibrato is played, the lip frequency varies pe-
riodically. To express this deviation we introduce a real val-
ued parameter ∆N ∈ [−0.5, 0.5] that expresses this devia-
tion. In order to play a given note with index i when using
a deviation ∆N , the lip frequency is computed by

PL =
3

4
fτ,i(Ni + ∆N) (4)

where fτ,i is computed from the control parameter PT,i us-
ing Eq. (1).
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2. FORMALIZATION OF THE ESTIMATION
TECHNIQUE

2.1. Distance Metrics

The perceived distance between two short time spectra is
defined by two components. To express the perceptual sim-
ilarity in timbre, the difference between the log spectral en-
velopes was used. This envelope was expressed in terms of
Mel Frequency Discrete Cepstrum Coefficients (MFDCC)
[2, 3, 7, 11]. In this work a stabilized version was used,
computed with posterior warping and a lower bound thresh-
old [4]. An elegant property of the discrete MFDCC’s is that
the log difference between the Mel scale spectral envelopes
is equivalent with the Euclidean distance between the cep-
strum coefficients. In other words, when two spectral en-
velopes are considered, defined by two cepstrum vectors c̄1

and c̄2 respectively, the spectral similarity D1 is given by

D1(c̄1, c̄2) = (c̄1 − c̄2)
T (c̄1 − c̄2) (5)

The square difference of the log fundamental frequency yields
the second distance metric.

D2(f1, f2) = (log(f1) − log(f2))
2 (6)

One can imagine to use a weighted combination of D1 and
D2, but since the physical meaning of such a combined dis-
tance metric is questionable and it is not known how these
weights should be determined, we choose to keep the crite-
ria separated.

2.2. Data Set Design and Feature Extraction

The data set was designed by using a fixed set of seven tube
lengths that were optimized for a given tuning frequency of
440 Hz (see [6]). This automatically imposes the physical
constraints of the acoustic instrument. For every note, and
for a range of values of ∆N from −0.06 to 0.06 in steps
of 0.01, crescendos were synthesized by varying the pres-
sure PM slowly from the 0 Pa to 30000 Pa. This data set
design guarantees that all the intensities for each note are
available and that a variation in fundamental frequency can
be realized for the synthesis of vibrato. These are all the
elements that are needed to simulate an expressive trumpet
performance.
After an additive analysis of the synthesized sounds [10],
the discrete MFDCC’s and fundamental frequencies were
computed. The extraction of the discrete MFDCC’s is rep-
resented formally by a 2 dimensional function of the control
parameters for a given note i

Ci(∆N, PM ) (7)

and the estimation of the fundamental frequency as

F i(∆N, PM ) (8)

2.3. Estimation

Given a vector of cepstrum coefficients c̄ and a fundamen-
tal frequency f computed from a short time window of a
recorded sound, the goal of the estimation consists of deter-
mining the values of ∆N and PM which minimize

D1

(

c̄, Ci(∆N, PM )
)

(9)

and
D2

(

f,F i(∆N, PM )
)

(10)

Many parameter optimization techniques exist [1], but this
case is quite particular since there are two criteria that need
to be optimized.
The first step consists of classifying the fundamental fre-
quency to the best note index i. This index is computed by
taking the rounded value of I obtained from Eq. 3 and iden-
tifies the data that will be used for a given note. It follows
directly from the inner working of the physical model that
the pressure in the mouth PM has the largest influence on
the spectral envelope while ∆N has a predominant influ-
ence on fundamental frequency. Therefore, we propose an
estimation procedure that consists of two steps. In each step
one distance metric is optimized. First, the mouth pressure
is optimized for each ∆N with respect to D1. This results
in a function P i(∆N ; c̄) yielding the mouth pressure PM in
function of ∆N for which D1 is minimized given c̄ and i.
Note that this yields a conditional optimum, since it yields
the best value of PM for a given ∆N .

P i(∆N ; c̄) = argmin
PM

D1

(

c̄, Ci(∆N, PM )
)

(11)

Inserting Eq. (11) in Eq. (10), the distance criterium D2

only depends on ∆N for a given f and c̄. When the value
∆N∗ is determined which minimizes the second distance
metric D2 for a given f , the estimation procedure is com-
pleted.

∆N∗ = arg min
∆N

D2

(

f,F i(∆N,P i(∆N ; c̄))
)

(12)

Still, the control parameter values need to be computed from
∆N∗ and i using

P ∗

M = P i(∆N∗; c̄) (13)

P ∗

L =
3

4
fτ,i(Ni + ∆N∗) (14)

P ∗

T = PT,i (15)

It is important to note, that the optimization with respect to
D2 is optimal for a given f . By contrast, the value P ∗

M only
optimizes D1 in a suboptimal way for c̄. This is justified by
the fact that small differences in spectral envelope, or tim-
bre, are less disturbing than deviations of the fundamental
frequency.
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3. IMPLEMENTATION

3.1. Estimation Example

In the previous section, the estimation procedure was de-
scribed in terms of continuous functions. Since no paramet-
ric or analytic forms of these functions are available they are
practically realized by piecewise linear functions. Instead
of repeating the entire derivation for these discrete sampled
functions, a practical example is described for a given c̄ and
f . In this example, f has a value of 786,65 Hz for which
Eq. (3) yields a value of 26,0588. This implies that i = 26,
meaning that the 26th data set will be used (see Eq. (7) and
(8)). This data set corresponds with a high G which has
been produced by exciting the sixth mode of the tube with
a length corresponding with the fingering where all valves
are released. This is how the prior knowledge is taken into
account and the physical constraints are imposed.
Fig.1 shows a plot of D1

(

c̄, C26(∆N, PM )
)

in function of
PM for different values of ∆N . One can observe that for
each ∆N a global optimum is available but that the error
function is quite noisy. In order to make an accurate and ro-
bust estimate of the minimum, D1 is modelled locally by
a quadratic approximation for each ∆N that is fit to the
observed values by a least mean squares procedure. This
results in

D1

(

c̄, Ci(∆N, PM )
)

' a(∆N)P 2

M +b(∆N)PM +c(∆N)
(16)
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Figure 1: Spectral similarity in function of the mouth pres-
sure for different ∆N values. Left, raw data. Right, local
quadratic approximation.

In order to realizeP i(∆N ; c̄) as defined in Eq.(11), the min-
imum of the fit is taken for each ∆N value yielding.

P i(∆N ; c̄) =
−b(∆N)

2a(∆N)
(17)

The piecewise linear realization of this function is given on
the left side of in Fig. 2. Now, the corresponding values of
the fundamental frequencies can be retrieved from the data
set which was expressed in the previous section by

F i(∆N,P i(∆N ; c̄)) (18)
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Figure 2: Left, piecewise linear function denoting
P i(∆N ; c̄). Right, inverted piecewise linear function of
F i(∆N,P i(∆N ; c̄))
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Figure 3: Suboptimal value for D1 in function of ∆N

In Fig. 2, the inverse of this function was plot, since we wish
to determine ∆N from the given f . This was expressed by
Eq. (12) and is realized by evaluating the inverse piecewise
linear function. The result is depicted by the dashed line in
the figure. In this example, the value of f expressed in half
tones was 26, 0588, and yielded a value of ∆N ∗ = 0.0082.
When P i(∆N ; c̄) is evaluated a value of PM was obtained
being 13756. Fig. 3 shows that ∆N ∗ yields a suboptimal
value with respect to the spectral envelope similarity D1.

3.2. Conclusion

It is shown that for each ∆N a global optimum can be found
that can be determined in a robust manner using a local
quadratic approximation [1]. This motivates the function
P that expresses the optimal PM in function of ∆N with
respect to D1. The function F i(∆N,P i(∆N ; c̄)) modelled
by a piecewise linear function was observed to be increas-
ing monotonously. Evidently, its inverse function is also
increasing monotonous and therefore a unique solution of
∆N∗ is obtained for a given f . Also, the function P returns
a single value of P ∗

M . This implies that the obtained solu-
tion is unique and that the optimization technique does not
suffer from local minima.
In the example, it is shown that an exact solution with re-
spect to D2 was obtained for f using the inverse piecewise
linear function. By contrast, the retrieved value of ∆N did
not globally optimize D1, and only a suboptimal solution
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was obtained. We name this the conditional optimum with
respect to D1, since it yields the optimal value of PM , given
the condition that D2 is optimized first for a given f . The
motivation of this optimization is the fact that the accuracy
of the fundamental frequency has a higher priority than the
optimization of the spectral envelope.

4. RESULTS

In Fig. 4, the results are shown for a musical trumpet phrase.
The phrase contains long notes with vibrato, slurred notes
and attacked notes which were all simulated successfully.
The top figure shows the original signal. The other figures
show the estimated control parameters. From these figures,
one observes how the mouth pressure follows the amplitude
envelopes of the sounds while the lip frequency follows the
melodic line of the excerpt including the vibrato at the end
of the long sustained notes.
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Figure 4: Top, original signal. Middle, estimated mouth
pressure. Bottom, estimated lip frequency.

4.1. Posterior Tuning

During the derivation in the previous sections, a fixed set of
seven tube lengths was assumed with respect to a given tun-
ing frequency. This implied a unique solution for the mouth
pressure and lip frequency. When tuning of the instrument
is allowed, a solution will be obtained for every possible
tuning frequency. Evidently, this tuning allows only slight
variations in tube length, since large variations imply that
the modes of the tube will fail to correspond with the de-
sired note frequencies.
When the control parameters were estimated for a given
sound, the value of the fundamental frequency was slightly
adapted so that the median frequency of the note corre-
sponded with the median frequency of data set. This was
done in order to guarantee that the frequency range of the
desired sound was available. However, this results in a sim-
ulation which is tuned slightly different than the original
sound. This tuning can be compensated a posteriori using
the following method. When the tube length and lip fre-
quency are changed in manner so that the ratio

PL

fτ

=
3

4
(Ni + ∆N) (19)

remains constant, no variation in timbre is perceived. In
addition, the expression

∆f0 ≡ f0 − (N + ∆N)fτ (20)

was observed to be nearly identical for every tube length.
Therefore, N + ∆N and ∆f0 are kept constant while fτ is
adapted in order to be tuned to the desired frequency f ′

0. The
new tube length f ′

τ is then obtained by taking the median
value of

f ′

0 − ∆f0

N + ∆N
(21)

for all notes that are played with this specific tube length.
The new lip frequency values are finally obtained using P ′

L =
3

4
(Ni + ∆N)f ′

τ .
Fig. 5 shows that without posterior tuning, a systematic tun-
ing deviation is obtained between the resynthesis and the
original sound. When the tuning is applied, the matching is
shown to be very accurate.

4.2. Transient Handling and Attack Improvement

The features that are extracted in section 2.2 implicitly as-
sume that the signal is deterministic and stable during the
windowed time frame. In the case of transients, this as-
sumption does not hold implying that the feature extraction
fails and the parameter estimation technique cannot be ap-
plied. However, a transient must always be considered in
its context since it is the transition between two stable parts.
Otherwise, we would speak of noise instead of a transient.
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Figure 5: Comparison of the fundamental frequencies be-
fore and after posterior tuning.

In the case of the trumpet, the onset, offset and slur are the
types of transients that can be distinguished. Therefore, a
manual annotation of the sound was realized dividing the
sound in silence, stable sound, onset, offset and slur. For
the onset and offset, the same lip frequency and tube length
were taken as for the preceding and consecutive stable part
respectively. In the case of the slur, the response function of
the tube was cross-faded between two different tube lengths
and the lip frequency and mouth pressure were interpolated
linearly.
In addition, a problem was observed at the attack being that
the relationship between the control parameters and signal
features was not instantaneous. In the case of a sustained
sound, the lips open and close regularly. Fig. 6 shows that
in the case of an attack, the lips are pushed open by the pres-
sure in the mouth. Then, when the outgoing wave returns at
the lips, an oscillation is initiated until finally the stable pe-
riodic state is reached. However, this procedure takes about
200 ms to complete implying that no sharp attack is ob-
tained.
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Figure 6: Lip positions at attack.

It can be questioned whether the lips are immobile at the
beginning of a note since the trumpet player uses the tongue
at the attack. The effect of the tongue does not only result in

the fact that the pressure augments instantaneously, but also
implies an initial speed of the lips when they open. Since the
goal of the attack consists in obtaining the stable sustained
state as soon as possible, an initial speed was given to the
lips resulting in sharper and more realistic attacks.

5. CONCLUSIONS AND FURTHER RESEARCH
DIRECTIONS

In this paper, a new automatic non parametric estimation
technique is proposed for the control parameters of a phys-
ical model of a trumpet. An important aspect is that the
control parameters respect the physical constraints of a real
instrument and that the prior knowledge about how the in-
strument is played is incorporated. This means that a cor-
rect tube length and mode combination is selected in order
to obtain a given note.
For each of these combinations, a data set was produced
containing all possible intensities and variations in funda-
mental frequency in order to allow vibrato. The similar-
ity between two short time segments was expressed by two
complementary criteria being the difference in log funda-
mental frequency, and the difference between the log spec-
tral envelopes. By using a conditional optimization tech-
nique and some posterior tuning of the tube length, an exact
solution of the fundamental frequency was achieved while a
conditional suboptimal solution was obtained for the spec-
tral envelope. Due to a robust implementation using local
quadratic approximations, the estimated control parameters
were stable and did not need any post-processing.
Since the estimation can only be applied on stable portions
of the sound, an alternative was searched for the transients.
These transients were realized successfully by extrapolating
control parameters from its context. Also the type of tran-
sient was taken into account. Furthermore, the model failed
to produce sharp attacks and needed about 200 ms to yield
a stable sound. This was improved greatly by adding an ad-
ditional speed to the lips at the moment of the attack. This
initial speed can be related to the effect of the tongue.
The simulation of an expressive trumpet phrase showed that
the fundamental frequency could be simulated with a very
high accuracy. The timbre on the other hand, is clearly still
very different from the original recording. This is due to
the fact that the data sets did not contain more similar tim-
bres. Interestingly, the perceived loudness of the simulation
was observed to be very similar, which confirms the validity
and robustness of the distance metric based on the spectral
envelope. However, this distance metric has still some limi-
tations. Although the fundamental frequency and the energy
distribution over the partials is characterized, the roughness
of the sound and the noise component are not taken into
account. One can conclude that the estimation technique al-
lows to realize a simulation of the original sound with the
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physical model that has a similar musical expression. The
timbre however, can still be improved. Still, one must keep
in mind that the computed signal by the physical model cor-
responds with the pressure wave at the bell of the instru-
ment. This means that the effect of the room is not incorpo-
rated while this has an influence on the timbre. In addition,
the estimation technique only allows to determine the ges-
tures of the musician, while a large number of instrument
parameters, like for instance the reflection function of the
instrument, were assumed to be known. This implies that
the resynthesis must be considered as a simulation played
with a different instrument.
Finally, we remark that this work confronts the two major
synthesis paradigms being the signal modelling paradigm
and the physical modelling paradigm. For a wide range of
signal models accurate parameter estimation techniques are
available. Physical models are generally very difficult to in-
vert. The trumpet model that is considered in this paper for
instance is a non linear system with delayed feedback. The
estimation technique that was proposed is on one hand ro-
bust and has a certain generality, but on the other hand it
relies on well known parameter estimation techniques from
the signal modelling domain. This is at the moment the
strongest limitation of the technique. Since no adequate
signal parameters can be computed at the transients, it is
impossible apply the estimation technique.
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