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ABSTRACT

Current physics-based synthesis techniques tend to synthesize the
interaction between different functional elements of a sound gener-
ator by treating it as a single system. However, when dealing with
the physical modeling of complex sound generators this choice
raises questions about the resulting flexibility of the adopted syn-
thesis strategy. One way to overcome this problem is to approach it
by individually synthesizing and discretizing the objects that con-
tribute to the generation of sounds. In this paper we address the
problem of how to automatize the process of physically modeling
the interaction between objects, and how to make it dynamical.
We will show that this can be done through the automatic defin-
ition and implementation of a topology model that adapts to the
contact and proximity conditions between the considered objects.

1. INTRODUCTION

In the past few years the interest in WDFs has grown a great deal,
as the research in musical acoustics started to turn toward synthe-
sis through physical modeling. This is in part due to the fact that
WDFs are able to preserve many properties of the analog systems
that they model, with particular reference to passivity and lossless-
ness [1]. This renewed interest in WDFs, however, is also due to
the popularity gained in the past decade by Digital WaveGuides
(DWGs) [5], which can be seen as close relatives of WDFs.

WDFs are able to incorporate nonlinear elements by connect-
ing their wave version to the adapted port of the structure. In
addition to resistive nonlinearities (frictions), WDF can also ac-
commodate reactive nonlinearities (e.g. nonlinear stiffnesses), or
more general nonlinear elements with memory [4]. In order to do
so, we define new waves with respect to which the description of
the nonlinear elements becomes memoryless. The wave transfor-
mation is performed by dynamic multiport junctions and adaptors
with memory that can be proven to be non-energetic [4]. Such
multiport junctions are called dynamic adaptors, as their reflection
coeflicients are, in fact, reflection filters.

We recently showed that it is possible to use such principles in
order to model physical structures in a block-wise fashion through
a systematic and automatic procedure. Working in a block-wise
fashion means constructing a number of individually synthesized
blocks and connecting them together using a properly defined in-
terconnection network. In this paper we show that this automatic
procedure can be implemented for dynamically changing topolo-
gies, and in a very cost-effective fashion.

2. MACRO-ADAPTORS IN WAVE DIGITAL
STRUCTURES

A physical structure (mechanical or fluidodynamical) can be de-
scribed by an electrical equivalent circuit made of lumped or dis-
tributed elements. The equivalence can be established in a rather
arbitrary fashion as a physical model is always characterized by
a pair of across-through variables (e.g. voltage-current, force-
velocity, pressure-flow, etc.). Wave Digital (WD) filters and WD
structures [3] represent a well-consolidated solution to the prob-
lem of physically modeling structures made of lumped elements
and their interconnection topology. Solutions are described in [2].
We consider here the problem of how to model the topology of
interconnection in an automatic fashion. The key element for this
purpose is the Macro-Adaptor (MA), which constitutes a general-
ization of scattering junctions in DWG and adaptors in WDF.

An N-port macro-adaptor is a non-energetic N-port with a
twofold role:

e to implement the laws of continuity between interacting
subsystems;

e to model changes in the wave reference resistances (wave
scattering).

In principle, it is always possible to directly implement the
scattering filters that constitute a macro-adaptor (direct-form syn-
thesis). This approach, in fact, leads to a rather efficient imple-
mentation but requires a custom procedure that cannot be easily
automatized. On the other hand, we can devise rather simple rules
to decompose a macro-adaptor into an interconnection of elements
chosen from a very limited collection of blocks, since a macro-
adaptor is obtained by interconnecting together multi—port parallel
and/or series adaptors. An M -port parallel (series) adaptor can al-
ways be implemented by connecting together M — 2 parallel (se-
ries) 3-port adaptors (see Fig. 1). two MA ports may be directly
connected with each other if their port reference resistances are the
same;

1. anon-adapted port must be connected to an adapted one;
2. the NLE must be connected to an adapted port;

3. loop of adaptors must be avoided.

Given such rules, and considering that an adaptor can only
have one adapted port, it should be quite clear that a macro-adaptor
can only accommodate up to one nonlinear element. Should more
than one NLEs be present in the system, they need to be combined
into a multi-port NLE. Methods for constructing such a multi-port
system are still under study.
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Figure 1: An M-port parallel (series) adaptor can always be im-

plemented by connecting together M — 2 parallel (series) 3-port
adaptors

There is no reason to have adaptors connected in loop, because
it is always possible to construct an equivalent structure without
loops using a smaller number of adaptors. Moreover, a structure
with loops does not have a spare adapted port and, still worse,
lose its computability due to the rising of an indirect dependence
between reflected and incident wave to an adapted port.

A further extension [4], defines a more general family of digi-
tal waves, which allow us to model a wider class of nonlinearities,
such as nonlinear capacitors. This generalization of WDF prin-
ciples include dynamic multiport junctions and adaptors, which
synergetically combine ideas of nonlinear circuit theory (mutators)
and WDF theory (adaptors). It can be easily proven [4] that, under
mild conditions on their parameters, such multiport adaptors are
nonenergetic, therefore the global stability of the reference circuit
is preserved by the wave digital implementation. For this reason,
such multiport junctions can be referred to as dynamic adaptors.

Any 3-port parallel (series) adaptor can be implemented as a
standard parallel (series) WDF adaptor, whose ports are connected
to 2-port scattering cells (two-port adaptors). This situation is
shown for the series adaptor in Fig. 2, where I's(z) is the delayed
part of the reflection filter of the adapted port.

It is important to notice that, although it is to construct the
dynamic scatterers in such a way to avoid local instantaneous re-
flections between the two new elements, we cannot modify global
adaptation conditions. Any 2-port scatterer can always be “pushed
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Figure 2: Any 3-port parallel (series) adaptor can be implemented
as a standard parallel (series) WDF adaptor, which adapted port is
connected to 2-port scattering cell.

through” a 3-port WDF adaptor, by removing it from the adapted
port and inserting one like it on the other two ports, properly mod-
ifying the initial conditions. This last property allows us to model
a generic macro-adaptor with memory as a memoryless macro-
adaptor whose ports are connected to scatterers with memory, which
will come at handy when dealing with implementational issues.

3. AUTOMATIZING THE SYNTHESIS

Some methods are already available for synthesizing macro-blocks,
therefore the automatic synthesis procedure is based on the as-
sumption that such elements are already available in the form of
a collection of pre-synthesized structures. Currently, the family of
blocks includes WD mutators [4] and other types of adaptors de-
veloped for modeling typical nonlinear elements of the classical
nonlinear circuit theory (both resistive and reactive).

In order to devise a systematic approach to the implementation
of W structures we need an appropriate data structure and a method
that allows us to compute incident and reflected waves at each port
of a macro-adaptor. If the circuit were memoryless, we would
only need to apply our method to our data structure once in order
to derive the solution vector (i.e. a configuration of waves that
complies with the intrinsic I/O relationships of the blocks and the
global continuity laws). In all practical cases of interest, however,
our circuit is not instantaneous, therefore the solution vector ends
up containing the system’s memory. Once we assign such vector
an initial configuration, at each iteration we update its content, to
produce the next instance of the solution.

Currently two different methods are available: the first is in-
spired by the tableau analysis method, commonly employed in
circuit theory to analytically determine the evolution of (analog,
time-varying, linear) electrical circuits, while the second is based
on a direct inspection of the numerical structure (the circuit) ac-
cording to a tree-like structure that describes the interconnection
topology of the elements. We refer to the first method as Wave
Tableau (WT) method, and we call the second approach as Binary
Connection Tree (BCT) method.

3.1. The WT method

In its first version, the WT method was based on the solution of
a linear system whose vector of unknowns contains all incident
and reflected waves that appear in the circuit (also those that de-
scribe the interconnection between different adaptors within the
macro-adaptor), therefore the number of components turns out to
be twice the number of circuit ports[2]. This method has been re-
cently improved by constructing the WT matrix of the sole macro-
adaptor, and considering as known variables the previously com-
puted waves coming from the bipoles connected to it. The whole
updating process is thus broken into two steps: one for the one-
step evolution of the MA, and one for the one-step evolution of
all the elements connected to the MA. This allows us to reduce
the size of the linear system to be solved. Still, the WT descrip-
tion obtained either way is an implicit one, as the unknown vector
containing both incident and reflected waves is computed at each
step as a function of another vector containing just the inputs to
the macro-adaptor. As a recent development of this project, it is
now possible to solve the system analytically and rewrite it as an
explicit state-update matrix equation in terms of a scattering ma-
trix that describes the MIMO I/O relationship. This new problem
formulation allows us to compute the reflected waves as an explicit
function of the incident waves (which are now the system’s inputs).
The dimension of the WT matrix increases very rapidly with the
number of bipoles that appears in the structure. As a consequence,
the complexity tends to grow just as fast, even if we exploit the fact
that the WT matrix tends to be quite sparse. With the introduction
of the new method that brings the system into the form of a state
update equation, the scattering matrix is no longer sparse and is up
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to 64 times smaller, therefore the latest version of the method is far
more efficient than before.

To solve a circuit in the K domain means to determine the
values of the across/through pairs in each one of its ports. The
classical tableau analysis for analog linear circuits is based on the
construction of a linear system in the 2/N unknowns. The neces-
sary equations to do so are divided into two groups:

e N I/O relationships of the individual bipoles, which can be
seen as local equations (e.g. Ohm laws);

e N equations derived from the laws of continuity (global

equations), which describe the interconnection topology (e.g.

Kirchhoff laws).

A similar method can be readily derived for W structures [2]
by treating the adaptors exactly like circuit elements. Indeed, with
this choice the number of unknowns becomes equal to twice the
number P = 4N — 6 of ports. Also in this case we will need 2P
equations, half of which will come from local equations, and the
other half will come from global equations.

The local relationships for W descriptions take on the form
of scattering equations b = Mpa + u,which can be written in
implicit form as

23]

where a and b are the vectors of the incident and reflected waves,
respectively; u is the vector of inputs (generators), and M is the
scattering matrix. The dimension of such vectors is equal to the
total number of ports, therefore in the case of a bipole, we end up
with a scalar equation.

If the multiport adaptor is dynamical, then b depends also on
the previous values of a and b

b(n)= Moa(n) +u(n) + kil Mga(n — k) + ?:1 M;.b(n — k)
(1 —Mo][zg)}:
[ gt wa[E75]

k=1

where the matrix [M), Mj] expresses this dependency. K =
max (Ko, Kp) is seldom greater than 1.

We then need to specify a pair of equations for each intercon-
nection. For example, if port 7 is connected to port k, then we have
a; = bk, ar = b;. If P is the number of ports, then we have a
total of P of equations of this sort (two ports connected together
need two interconnection equations).

Once we have the scattering and the interconnection relation-
ships of all elements, we can assemble the whole system of 2P
equations in 2 P unknowns

[ )= W]

where T is the memoryless portion of the tableau matrix. This
matrix is made of four P x P blocks

[ Ip —Mo
T07|: C IP :l )

where Mp is the block-diagonal matrix containing the instanta-
neous portion of the Scattering Transfer Functions (STFs), which
are the intrinsic I/O relationships of the circuit elements; C is the
interconnection matrix; and Ip is the order- P identity matrix. The
matrix T, represents the component of the Tableau matrix that
acts on those input and output samples that are delayed k time
steps. In practice, the matrices T, describe the dynamics (i.e. the
history) of the network elements.

_ | My M
Tk—{ 0 0

Finally, u(n) is the P-dimensional vector of known terms repre-
senting, for example, the generator’s across variables at time n.

In principle, we should compute a solution of this system for
each time sample. However, in order to speed-up the processing
we can compute the inverse of Tp in the initialization phase and
compute the solution as

[ [=mr ([0 ][220 ])

This way the computational complexity is reduced from P2 (typ-
ical methods for the solution of linear systems) to P? (matrix-
vector product).

With minor changes in the above approach, it is possible to
solve circuits containing one nonlinearity, as long as the NLE is
described in explicit W form b = f(a), and is connected to the
adapted port available in the macro-adaptor. This can be done by
replacing the product between the coefficient of T in position
(P,2P) by the incident wave azp at the port 2P with the term
f(a). In order to preserve the linearity of the system, this terms
needs to be moved onto the other side of the equation and treated
as a previously-computed variable. Indeed this is possible by ex-
ploiting the fact that the port that the NLE connects to is an adapted
one. The modified system thus becomes

a(n) 0
St )| L]

Moving this nonlinear function on the other side of the Tableau
equation (removing the corresponding intrinsic description from
the Tableau matrix) and treating it as a known variable means using
the wave reflected by the NLE like an input to the adapted port.
By extending this last idea to all bipoles of the circuit we
come to a second formulation of the WT method in which the
matrix of the coefficients describes only the MA (i.e. only the
adaptors within it). This is possible because all interconnections
in W systems are done in such a way to avoid instantaneous (non-
computable) loops, therefore the adaptation condition (no instanta-
neous reflection) is satisfied either by the bipole or by the port that
it connects to. This allows us to split the state-update process in
two phases: in the first one we compute the waves reflected by the
MA (using the Tableau system driven by the waves produced by
the bipoles), and the second one we compute the waves reflected
by the bipoles when driven by the waves coming from the MA.
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The new tableau system becomes

sl
K OsL
2T pessgE oy |

In this case My is a 3 x 3 block-diagonal matrix (the system has
only three-port adaptors), C describes just the 3L — NV intercon-
nections between adaptors, and u(n) is the vector of the 3L in-
puts. The input vector has a total of /N non-zero elements that are
placed in the second half of the vector of “known variables”, which
allows us to distinguish the incident waves that are coming from
the bipoles. When the macro-adaptor is not instantaneous, some of
the matrices T, are non-zero. In conclusion, the Tableau system
of the macro-adaptor is made of

e 3L intrinsic I/O relationships (which can be expressed as L
matrix equations of the form b = Ma)

e N interconnection equations between macro-adaptor and
bipoles (a; = u;)

e 3L — N interconnection equations between adaptors (—b; +
ap = 0)

The terms on the right-hand side of the above equation, which
are known at time n, may be grouped together into a single vector

t(n).
-] o
C Iso a(n) | — | t(n) :

The State-Update equation. The tableau system that de-
scribes the MacroAdaptor (MA), shown in eq. (1) emphasizes the
strict relationship between the input vector t(n) and the vector of
incident waves a(n). In fact, eliminating from a the elements that
do not correspond to the inputs, we are left with t. In other words,
if we eliminate the equations that correspond to internal intercon-
nections in the MA, it is possible to write b as a function of t. The
elimination of the non-necessary equations leads to the scattering
equation of the MA, whose dimension is N X N, just like in the
analog case.

At this point we can decompose the system in the two groups
of local (intrinsic) and global (extrinsic) equations. By plugging
the second ones into the first ones to eliminate a(n), we obtain

{ b(n) —Mga(n) =0
Cb(n) + a(n) = t(n)

(I+MoC)b(n) = Mgyt(n)
where, for the moment, we have assumed the adaptors to be mem-

oryless (first equation equal to zero). If the matrix I + MyC is
non-singular, then we have

b(n) = (I+ M,C) ' Mot(n) =Mt(n) . )

This way we obtain a state-update equation in explicit form, where
t(n) replaces a(n).

The dimension of the matrix M is 3L x 3L, therefore it cannot
be the MA’s N x N scattering matrix M that we are looking for,
as the vector b(n) obtained from eq. (2) contains also the waves
reflected by the internal ports of the MA. The scattering matrix M

can, in fact, be obtained by simply eliminating the equations rela-
tive to such internal ports. We can do so by using an appropriate
N x 3L matrix Q obtained by eliminating rows from the 3L x 3L
identity matrix:

M = Q[(I+ M,C) 'Mo]Q" = QMQ"

The pre-multiplication by Q eliminates the unnecessary rows while
the post-multiplication by QT eliminates the corresponding columns,
in order to obtain again a square matrix. If we did not perform this
column removal, the elements of such columns would multiply
those elements of t(n) that are zero anyway. Such elements cor-
respond to the incident waves at the internal interconnection ports.
Indeed, the input vector will have to be resized accordingly, by
eliminating all the zero elements

a(n) = Qt(n)
which results in the state-update equation of the form
b(n) = Ma(n) ,

where b(n) and a(n) are now made of NV elements.

3.2. The BCT method

In spite of the dramatic improvements introduced in the WT method,
we decided to explore a different and novel approach, organized
in iterative form. This method turns out to be the most efficient
one, as it is based on a direct inspection of the numerical structure.
The method starts from the incident waves to the macro-adaptor,
and follows their path throughout the whole structure once every
time sample. In order to generate the path, in fact, we scan a tree
that describes the circuit topology. If the structure is based just on
three-port junctions, the resulting connection tree turns out to be
binary (hence the name binary connection tree). Like in the WT
method, also with the BCT we do not necessarily need to use three-
port adaptors. However, considering that any N-port adaptor can
always be decomposed into the interconnection of N —2 three-port
adaptors (see Fig. 1), we can use a BCT with no loss of generality.
The BCT formally describes the interconnection topology of the
adaptors under the following rules:

e the root corresponds to the adaptor that the nonlinear (NL)
element connects to;

o the nodes are 3-port standard WDF adaptors and the branch-
ing topology matches the actual adaptor’s interconnection
topology;

o the leaves correspond to the bipoles.

Once the connection tree is built, the computational procedure
can be constructed in two steps: a forward scan of the tree (from
the leaves to the root), followed by a backward scan (from the root
to the leaves). In fact, the computation begins from the memory
cells, which are in the leaves of the tree and contain all the initial
conditions of the system and keeps nesting function calls until we
reach the root (NL element), obtaining the reflected waves at the
adapted ports of each adaptor. In the backward scan, once we have
the wave reflected by the NL element, all other reflected waves can
be computed, reaching the leaves again and updating their content
with the reflected wave of the adaptor they are connected to. In
other words, following this path we always have all necessary data
to compute the waves we need.
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The initialization procedure follows a similar approach. De-
termining the initial condition means solving a set of equations,
one of which is nonlinear. Indeed, the solution of this set of equa-
tion is rather simple, as it requires a search for a fixed point. The
problem is to specify the set of equations starting from the con-
nection tree. Since during this phase the reactances are formally
replaced by ideal generators, it is not possible to use W variables
directly, because they do not have an adapted representation and
the structure would turn out to be non-computable. However, we
can still use the tree structure that describes the circuit topology,
which works irrespectively of whether we are working in the W
domain or in the K domain. The process can again be splitted into
two phases: a forward scan (from leaves to root) and a backward
scan (from root to leaves). In the first phase we derive the char-
acteristic lines that describe the relationship between current and
voltage at each node. This way, during the backward scan, know-
ing one of the two variables, we can compute the other one using
these characteristics.

One key feature of this approach is that its computational cost
and memory requirements increase linearly with the number of
adaptors. Of course, this improved efficiency costs in terms of
evocative power of the structure.

ms/1M iteration

Figure 3: Execution time vs number of bipoles

4. MANAGING TIME-VARYING STRUCTURES AND
TOPOLOGICAL CHANGES

Changing any model parameter in a WD structure usually affects
all the other parameters as they are bound to satisfy global adapta-
tion conditions. Temporal variations of the nonlinearities are easily
implemented by employing special WD two-port elements that are
able to perform a variety of transformations on the nonlinear char-
acteristics (non-homogeneous scaling, rotation, etc.). Temporal
variations of reference resistances, on the other hand, are imple-
mented through a re-computation of the model parameters on the
behalf of a process that works in parallel with the simulator. Using
the BCT method, when the value of a leaf changes, the adaptors
that need to be updated are only those lying on the path that link
the leaf to the root (fig.4). The parameter update, however, is not
computationally intensive as it is performed at a rate that is nor-
mally only a fraction of the signal rate (e.g. 100 times slower). It
is important to remember, however, that abrupt parameter changes
must be carefully dealt with in order not to affect the global energy
in an uncontrollable fashion.

Let us consider an object that could potentially interact with
a number of other objects in a sound environment. For example,

Dis

Figure 4: Tree updating after a bipole value change.

we could think of a mallet that could potentially collide with a
number of drum-like resonators. Indeed, this situation cannot be
implemented with a fixed interaction topology. In order to be able
to implement this dynamic topology, we need to be able to connect
or disconnect objects on the fly. This can be achieved by exploit-
ing the fact that a connection between systems becomes irrelevant
when their contact condition is not satisfied.

Time-varying topologies can be implemented using the WT
method. The operation, however, is quite complex, as it requires
replacing two independent tableau systems with a single larger
one. This means that we need to replace two smaller state-updated
equation with a single larger one. Doing so without producing un-
desirable discontinuities (clicks) in the generated sound is rather
difficult, as it requires extra care in the timing of the replacement
and in the initialization of the system.

Working with BCTs, in fact, is simpler, as they naturally offer
an enhanced flexibility in managing topological changes. Let us
consider a set of independent physical systems, each represented
by a BCT. We want to assess the problem of how to go about con-
necting them together and how their topology changes during the
interaction. Assuming, for the sake of simplicity, that the two cir-

Figure 5: Interconnection between subsystems in the analog do-
main. The shadowed element are pseudo-bipoles, which act as
interconnection ports

cuits connect with each other through a single port (interconnec-
tion port), we would like their port to become “transparent” when
the objects are isolated (no contact). This means that the port resis-
tance is zero if it comes from a series adaptor, or infinity if it comes
from a parallel one. We must remember, however, that the inter-
connection of two circuits could originate computability problems
in the W domain, particularly if both circuits contain a NLE. In a
wide variety of acoustic physical models, however, NLEs are sep-
arated by instantaneously decoupling multiports, such as DWGs,
therefore they can be safely connected together.

Even when we need to interconnect a linear W system with

DAFX-5



Proc. of the 6" Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

a nonlinear one, we still need to have some element that enables
the connection. Since we are in a situation in which we do not
need any decoupling, this interconnection element could also be
memoryless. In a linear circuit the root of the BCT could be any of
the bipoles (if have a BCT and have it dangling from another one
of its nodes, we will end up with another BCT). If a linear circuit
has an interconnection port, we can take that as the root of the
BCT, so that it can act as the “shoot” (subroot) to be “grafted” to
the receiving tree. Notice, however, that the state update equation
does not treat the instantaneous interconnection port as a bipole,
as it does not “contain” a numerical value but a pointer to another
structure. If we have a set of independent physical systems, each
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Figure 6: Memoryless (up) and dynamic (down) interconnection
ports. The bold border indicates the instantaneous adaptation due
to the memory

represented by a BCT. Such systems share the same environment
but, for the moment, they do not interact with each other. To adopt
an evocative metaphor that fits the idea of tree-like models, we
can refer to the environment as the orchard. We want to enable
interactions between trees in the orchard and how we want to give
the possibility to alter the topology of trees on the fly. This problem
may occur especially when dealing with sound generation for the
sonification of virtual environments.

Let us consider a W hammer model interacting with the W
model of an ideal string. The W hammer is made of a mass and a
nonlinear spring that models the lossless and instantaneous limited
compressibility of the felt. Both systems can be modeled with a
single circuit but, to explain the above method, are here kept as
separate through memoryless interconnection ports. During the
interaction we can identify the following

1. initially the objects are far apart and their ports are discon-
nected. Such ports are transparent with respect to their cir-
cuits. In fact, the string port is a series one, therefore it

is a short circuit; while the hammer port is a parallel one,
therefore it is an open circuit.

2. When hammer and string are close to each other (proxim-
ity condition) we can establish a connection, and the string
BCT can be grafted into the hammer BCT, originating a
single structure. As far as the circuit behavior is concerned,
however, nothing has changed, as the series adaptor is still
short-circuited by the NLE, which is working on the linear
portion of its characteristics with slope -1.

3. The situation changes when the hammer comes in contact
with the string (contact condition), i.e. when the work-
ing point on the NLE characteristics begins changing slope.
From now on, there is a non-zero power exchange between
elements, therefore the hammer will begin bouncing against
the string until it will be push away from it.

4. When the hammer is sufficiently far apart from the string,
the proximity condition ceases to be valid, therefore the
connection can be removed and the circuits are once again
isolated.

Notice that although the interconnection ports and the partic-
ular behavior of the NLE (a step function in the K domain) play a
similar role, irrelevant interconnections and absence of connection
have consequences on the organization of the implementation. In
fact, when the hammer is disconnected, it can be used elsewhere.
Roughly speaking, a piano harp can use a limited amount of shared
hammers

5. CONCLUSIONS

The proposed approach has proven effective for the automatic and
modular synthesis of a wide class of physical structures encoun-
tered in musical acoustics. In fact, both the Wave Tableau ap-
proach and the Binary Connection Tree approach we implemented
make the construction and the implementation of the interaction
topology systematic. In its current state, the implementation of
the described synthesis system is able to assemble the synthesis
structure from a syntactic description of its objects and their inter-
action topology, opening the way to a first CAD approach to the
construction of an interactive sound environment.
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