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ABSTRACT

Several applications in the field of content-based interaction with
music repositories rely on measures which estimate the perceived
similarity of music. These applications include automatic genre
recognition, playlist generation, and recommender systems.

In this paper we study methods to evaluate the performance
of such measures. We compare five measures which use only the
information extracted from the audio signal and discuss how these
measures can be evaluated qualitatively and quantitatively without
resorting to large scale listening tests.

1. INTRODUCTION

Large music repositories require intelligent interfaces to interact
with their contents. One critical building block for these interfaces
is automatically calculating the perceived similarity of music. Ap-
plications which can be built upon such similarity measures in-
clude enabling users to find new pieces similar to a given piece,
making recommendations of new pieces based on a model of the
user’s musical taste, automatically organizing and visualizing mu-
sic collections according to similarity, or creating playlists.

However, perceived similarity is an ill-defined concept and
depends on various factors such as instruments, timbre, melody,
rhythm, lyrics, style, and many more. Furthermore, the impor-
tance of each factor varies with the context. Unfortunately, there
is no ground truth for music similarity. Nevertheless, developing
similarity measures is an emerging research field with a main focus
on applications.

Although several approaches have been published (e.g., [1,
2, 3, 4, 5, 6, 7, 8]), little attention was given to comparing their
performances. Each publication contains performance results for
the respective approach, but they are very difficult to compare.
One of the main reasons is that no common test data collection is
available. Most pieces in digital music collections are proprietary
which prohibits sharing them. Recently, an effort was made to
build a copyright-cleared music database for research purposes [9].
However, it is not clear if this rather small collection will be able
to establish itself as a common database for evaluations. Another
problem we encounter when trying to evaluate similarity measures
is that conducting the necessary large-scale listening test is very
costly. Recently, a large-scale evaluation of similarity measures
was published with the focus on artist similarity and extensive use

of data gathered from the web [10]. However, unlike this approach
we are trying to evaluate similarities between individual songs and
not so much between artists.

In this paper we discuss and explore different approaches to
comparing and evaluating similarity measures. In Section 2 we
review five similarity measures we use for the evaluations. In Sec-
tion 3 we evaluate the measures and discuss the evaluation using
a collection consisting of about 270 hours of music. In Section 4
we discuss alternative evaluation approaches using a much smaller
collection with only 20 minutes of music. In Section 5 we draw
conclusions.

2. SIMILARITY MEASURES

In the following we review five recently published similarity mea-
sures. Each of these measures focuses on different aspects of mu-
sic and uses different techniques to describe them.

2.1. Logan and Salomon (LS)

The feature extraction chosen in LS [2] is based on Mel Frequency
Cepstrum Coefficients. MFCCs have been applied successfully in
speech processing, and their application to all audio types seems
straight forward. LS describe music in terms of spectral envelopes
each of which is characterised by 19 MFCCs and thus with rel-
atively high detail. The average loudness, in particular the first
MFCC is ignored. Figure 1 illustrates the information represented
by 19 MFCCs without the mean (MFCC 19*). As an effect of re-
moving the average loudness of each time frame it is quite impos-
sible to locate beats. Another observation is that compared to the
other representations MFCC 19* has the highest texture resolution
on the frequency axis, thus, details in the spectrum are captured
which the other measures ignore.

A piece of music is summarized by 16 typical spectral en-
velopes which are determined using k-means clustering. The high
number of typical envelopes allows a detailed description of the
piece. An example for the typical envelopes found by k-means
is visualized in Figure 2a. The main characteristics are that the
spectral envelopes are mostly flat beyond 10 Mel and below 10
Mel most of them depict a strong increase in loudness, due to the
strong bass beats.

To compute the distance between two pieces a highly efficient
technique developed for image retrieval is applied which is based
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Figure 1: Different time/frequency/loudness representations illus-
trated on a 10-second sequence fromAround the Worldby Daft
Punk.

on linear programming, namely, the Earth Mover’s Distance [11].
For the MFCC based experiments in this paper we used a win-

dow size of 512 samples (about 46ms at 11kHz) weighted with
a Hann function and no overlap. For the Mel-scale we followed
the implementation of the Auditory Toolbox1 where the first cen-
ter frequency of the Mel scale is located at 200Hz and the last, i.e.,
the 40th, around 6.4kHz. The 3 highest frequency bands were not
used because their center frequencies are beyond 5.5kHz and we
used 11kHz audio as input. For the EMD we used the implemen-
tation provided by Rubner.2

2.2. Aucouturier and Pachet (AP)

Like LS the feature extraction chosen in AP [3, 12] is based on
MFCCs. However, the main difference is that significantly fewer
coefficients are used, namely only the first 8. Furthermore, the av-
erage loudness is not removed. Figure 1 shows the decompressed
MFCC 8 representation. Unlike MFCC 19* the location of the
strong beats can easily be identified. Another difference is that
compared to MFCC 19* the texture on the frequency axis is much
smoother. Unlike LS, scaling the maximum level of an audio sig-
nal to a different value would significantly change AP’s represen-
tation. However, such problems can be circumvented by normal-
izing the audio signal prior to computing the AP representation.

To summarize the spectral envelopes of a piece of music the
same idea applied in LS is used but with different techniques. A
Gaussian Mixture Model is used instead of k-means. Instead of 16
only 3 typical spectral envelopes are used. However, the diagonal
covariance of the GMM offers additional flexibility. Furthermore,
since the spectrum envelopes are represented with less details also
fewer typical envelopes are necessary to describe the variations.

Figure 2b shows a flattened GMM representation where the
density distributions of the 3 centers are laid on top of each other.
Note that this flattened representation can also be used directly

1http://www.slaney.org/malcolm/
2http://robotics.stanford.edu/ rubner/emd/
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Figure 2: Different representations used to compute similarities il-
lustrated on a 10-second sequence fromAround the Worldby Daft
Punkt (cf. Figure 1). (a) LS: darker lines represent very typical
clusters; (b) AP: the shadings correspond to the combined density
distribution of the three cluster centers, darker shadings represents
higher probabilities, the white lines depict the means; (c) SH: the
shadings represent how often the strength at the specific frequency
was exceeded, darker shadings correspond to higher values; (d)
PH: the shadings represent how often a loudness level at a specific
periodicity was exceeded, darker shadings correspond to higher
values; (e) FP: the shadings depict the fluctuation strength, darker
shadings correspond to a stronger fluctuations.

to measure similarity [13]. Although the overall shape appears
similar to the LS representation there are two major differences.
The first difference is that the AP representation is much smoother
than LS. The second difference is that the variance in AP is higher
than in LS. This is due to keeping the mean loudness information.

The GMMs representing the music are compared by sampling
from one distribution and computing the likelihood that the sam-
ples were generated by the other distribution. For details see [12].

We compute the MFCCs for the AP measure the same way as
for LS (11kHz input, 512 sample window size, Hann window, no
overlap, Mel-scale according to Auditory Toolbox). The GMMs
are calculated using the Netlab Toolbox for Matlab.3 We sampled
a total of 4000 points to compare two GMMs. Computationally
the AP measure was significantly slower than LS which was sig-
nificantly slower than any of the other three measures.

2.3. Spectrum Histograms (SH)

The spectrum histograms (SH) [7] are a drastically simplified ap-
proach to summarizing the spectral shape. The idea is to obtain
the same results as AP but with a simpler model.

Unlike LS and AP the SH are based on a Sone/Bark represen-
tation of the audio signal. The main differences is that the Bark
scale covers also lower frequencies. Although only 20 Bark-bands

3http://www.ncrg.aston.ac.uk/netlab/
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are used, i.e., almost half of the number used in the MFCC rep-
resentation, 2 bands have their center frequencies below 200Hz.
In addition, a model of the outer and middle ear is applied to
simulate the unequal perception of loudness at different frequen-
cies. Furthermore, spectral masking is applied which substitutes
the smoothing of the DCT. Finally, instead of using dB-SPL the
Sone values are computed. For details see [7]. For the experi-
ments presented in this paper we use 11kHz input, a window size
of 256 samples weighted by a Hann function, and 50% overlap.

Figure 1 shows how the Sone/Bark representation compares
to the MFCC representations. Like in MFCC 8 the location of
the strong beats can easily be identified. However, the strong bass
beats are better visible.

The SH summarize a piece of music by counting how many
times a loudness level was reached or exceeded in the frequency
bands. The values are stored in a 2-dimensional histogram which
has 20 rows for the Bark-bands and 50 columns for the loudness
resolution. The sum of the histogram is normalized to 1. Figure 2c
shows a SH. In accordance with AP and LS the SH frequently
reaches a high relative strength in the low Bark-bands. The spec-
trum is rather flat otherwise.

Two SHs are compared by interpreting them as 1000-dimen-
sional vectors in an Euclidean space. Combined with a PCA com-
pression this approach is many times faster than AP or LS.

2.4. Periodicity Histograms (PH)

Periodicity histograms were originally presented in the context of
beat tracking [14]. A similar approach was developed to classify
genres [5]. Details of the differences between the similarity mea-
sure we use and these two approaches can be found in [7].

The idea is to describe (only) periodically reoccurring beats
regardless of their frequency. The features are extracted by further
processing the Sone/Bark representation. First, a half wave rec-
tified difference filter is applied on each Bark-band to emphasize
percussive sounds. Then the signal is sequenced into 12-second
segments which are further processed individually. Each sequence
is weighted using a Hann window before a comb filter bank is ap-
plied to each Bark-band with a 5bpm resolution in the range from
40 to 240bpm. Then a resonance model is applied to the ampli-
tudes obtained from the comb filter. To emphasize peaks at spe-
cific periods a full wave rectified difference filter is used before
summing up the amplitudes for each periodicity over all bands.

The 12-second representations are summarized using a 2-di-
mensional histogram with 40 equally spaced columns represent-
ing different frequencies (bpm) and 50 rows representing strength
levels. The histogram counts for each periodicity how many times
a level equal to or greater than a specific value was reached. The
distance between two PHs is computed the same way as between
two SHs.

Figure 2d illustrates a PH where the first peak is around 60bpm,
a smaller peak is around 80bpm, followed by a high peak at 120bpm
and a very small one around 160bpm.

2.5. Fluctuation Patterns (FP)

One of the main differences between the FPs [4] and the PHs is
that the FPs use a simple FFT instead of the computationally more
expensive comb-filter to find periodicities in the Bark-bands. Fur-
thermore, while the PHs use a resonance model which has a maxi-
mum at about 120bpm the FPs use a fluctuation model which has a

Figure 3: Results of the quantitative evaluation. The vertical axis
represents the ratio between average distances within a group ver-
sus the average distances in the whole collection.

peak at 4Hz (240bpm). The biggest difference, however, is that the
FPs include information on the spectrum while the PHs disregard
this information.

Figure 2e depicts an FP where there is a peak in the 3 lowest
Bark-bands at around 2Hz (120bpm) and a weaker peak covering
all bands at 4Hz. Unlike the PH no peaks are found below 2Hz.

3. LARGE SCALE EVALUATION

To conduct a quantitative evaluation we use a collection of 314
CDs by 177 different artists or groups with a total of 270 hours of
music and 3961 tracks (excluding tracks with less than 25-second
length). The collection covers a broad range of musical taste with
a main focus on popular and alternative music.

To evaluate the similarity measures we group the pieces of mu-
sic by album (or single), artist (or group), genre, style, and “tones”.
The last three were obtained for each artist from All Music Guide.4

The AMG genres are a very rough categorization. The following
AMG genres are represented in the collection where the number in
the brackets indicates the number of artists in the genre: Folk (1),
Celtic (1), Newage (1), Reggae (1), Classical (1), World (2), Jazz
(9), Rap (12), Latin (17), Electronica (18), and Rock (112).

The AMG styles include, for example, Third Wave Ska Re-
vival (2), Blue-Eyed Soul (3), British Invasion (4), College Rock
(8), Psychedelic (9), Brazilian Pop (9), Trip-Hop (11), Pop/Rock
(28), Alternative Pop/Rock (47), and many more. In total there
are over 200 different style descriptors which apply to the music
collection.

The AMG tones describe more general attributes of music. For
example, forMichael JacksonAMG lists the following tones: En-
ergetic, Passionate, Sentimental, Rousing, Joyous, Confident, Ex-
uberant, Stylish, Earnest, and Party/Celebratory. In total 127 dif-
ferent tones are assigned to the 177 artists in the collection.

The evaluation was conducted as follows. For each measure
the average distance between all pieces was computed. This av-
erage distance was then compared to the average distance within
the groups (artist, genre, etc.). The resulting ratios are depicted in
Figure 3 and in Table 1. A ratio of one means that the distance be-
tween arbitrary pieces and members within a group are about the
same. The lower the ratio the better the members of a group are
distinguished from other pieces.

The most surprising result is that the simple SHs outperform
all other measures. The PHs perform worst. Perhaps periodicity
characteristics are not as important as spectral characteristics or
maybe the particular PH measure used is not well suited as sim-
ilarity measure. AP performed better than FP which performed

4www.allmusicguide.com
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PH SH FP AP LS
Tones 0.92 0.90 0.90 0.91 0.96
Style 0.94 0.72 0.86 0.79 0.95
Genre 1.02 0.78 0.97 0.87 0.99
Artist 0.96 0.67 0.83 0.72 0.89
Album 0.90 0.66 0.76 0.70 0.87

Table 1: Results of the quantitative evaluation.

better than LS. Best results were obtained on the level of indi-
vidual albums followed closely by artists. The worst results were
obtained for genres. The performance on AMG tones is practically
independent of the measure used.

In LS [2] some results were published with respect to the av-
erage distance in the collection versus the average distance within
albums. The published numbers (0.48 for all average, 0.21 for
album average using 4 MFCCs) suggest a ratio below 0.5 which
is far better than the results we have obtained. Perhaps there are
significant difference in the implementations of the LS similarity
measure, e.g., a different Mel-scale covering also low frequencies.
Perhaps this enormous difference can also be explained by the fact
that two completely different collections were used.

In AP [3] some results describing the average distance be-
tween all pieces (27.15) and the average distance between titles
of the same genre (26.91) were published. The resulting ratio of
0.99 is significantly higher than the value of 0.87 which we have
obtained for AP. Again this might depend on different implemen-
tations or more likely on different genre structures in the database.

In general using genre or similar descriptors to evaluate sim-
ilarity measures is problematic. First of all, no standardized tax-
onomies exist. Furthermore, the different taxonomies used are in-
consistent with overlapping genres [15]. The number and types of
genres used influence the classification results. For example, it is
easy to automatically classify pieces of music into one of the three
genres Rock, Classical, and Electronica. However, distinguishing
between Hard Rock and Metal is more difficult.

Furthermore, also the use of the album information to evaluate
similarity measures is problematic. In particular, it is likely that
all tracks on the same CD have undergone the same normaliza-
tion, dynamics compression, and equalization. Thus, a similarity
measure which measures these production characteristics would
outperform others.

So far the numbers obtained from the quantitative evaluation
are not too useful. One way to study the results in more detail is to
look at extreme cases. In particular, looking at the artists/albums
which are very homogeneous or very inhomogeneous.

For example, the groupDaft Punk(2 CDs in the collection)
has the largest average distances between its pieces according to
the PH. This is quite intuitive since the pieces byDaft Punkhave
very strong beats and the different beat patterns in their recordings
have a strong impact on the PH.

PH, SH, and FP have the most homogeneous artist in common,
namely,Brad Mehldau, a jazz pianist (1 CD with 7 tracks in the
collection). The most inhomogeneous artist in terms of SH and
AP is Placebo. The most inhomogeneous artist in terms of LS is
Goldfrapp.

On the level of individual CDs aDaft Punksingle, namely
Around The World, is the most inhomogeneous in terms of PH. The
most homogeneous in terms of PH is a single byMariah Carey,
namelyOne Sweet Day. Another observation is that SH and LS
both consider a different album ofFrance Battiatoto be most in-

(a) (b)

Figure 4: SOM codebooks for AP on the 120 collection. (a) locally
scaled codebook, each subplot uses an individual color mapping;
(b) globaly scaled, all subplots use the same color mapping.

homogeneous and LS and AP both consider a different album of
Bad Religionas most homogeneous.

Although some insights into the measures can be gained when
analyzing the results of the evaluation it is difficult to directly use
these insights to improve the measures. To understand why PH has
performed so poorly and why SH so well it is necessary to study
the measures on a different level.

4. SMALL SCALE EVALUATION

For the qualitative evaluation we use a very small collection of
only 120 sequences each 10 seconds long. Each sequence was
manually selected with the intention to cover a broad and well bal-
anced spectrum of music. Furthermore, from some pieces 2 or 3
sequences were selected which were either very similar or very
different. With these duplicates is possible to easily evaluate if
similar pieces are mapped together, and to test whether a simi-
larity measure is sensitive, for example, to effects of a dynamic
compression.

Obviously such a small collection cannot contain all different
varieties of music. However, the main advantages are that it is
very easy to make a complete evaluation (the whole set can be
listened to in 20 minutes). Furthermore, adapting parameters of the
similarity measures and evaluating the results can be done nearly
in real time, and it is also easier to judge the similarity between two
pieces if they are only 10 seconds long because it is not necessary
to remember what the piece sounded like 3 minutes ago.

As a main tool to evaluate such small collections we use the
Self-Organizing Map [16]. The SOM maps similar pieces close to
each other on a 2-dimensional visualization space where the clus-
ter structure can be visualized using smoothed data histograms [17].

One main benefit of the SOM is that general properties of a
similarity measure can easily be studied by visualizing the code-
book (i.e., a collection of typical patterns in the data set). Figure 4
visualizes the codebook for a SOM trained with AP data. For ex-
ample, the 10-second sequence ofAround the Worldby Daft Punk
is mapped to the unit in the last row and third column. The code-
book visually summarizes the different patterns that are contained
in the collection.

In general AP patterns which have a stronger contribution in
the lower Mel-bands and weaker contribution in the higher bands
tend to be less noisy (e.g. Classical or Jazz). On the other hand,
horizontal lines indicate quite noisy pieces. This is particularly
true if it is a very sharp line, which means that there is not much
variation in the loudness. If the line is blurred and horizontal it
represents music with strong beats: the maximum loudness level
in all bands is reached regularly, but in between beats the loudness
level is significantly reduced.
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(a) (b)

Figure 5: AP representations for 10-second sequences of (a)Lon-
don Callingby The Clashand (b)Boleroby Ravel.

Using a SOM it generally only takes a very short time to get
a general impression on how well the measure performs. More-
over, it is usually not very difficult to find cases in the collec-
tion where the similarity measure has failed. One example for
the SOM trained using AP is a 10-second sequence ofBolero by
Ravel(Classical) which is mapped together withLondon Calling
by The Clash(Punk Rock). In Figure 5 the respective GMMs are
visualized. Both pieces are mapped to the unit depicted in the first
row third column in Figure 4. Studying the figures reveals that
although there are similaritiesLondon Callingis obviously more
blurred, i.e., has a larger variance. A possible next step could be to
investigate possibilities to make the similarity measure more sen-
sitive to such differences in the data.

A recent extension to the SOM, namely Aligned-SOMs [18]
allows studying interactively how two or more different measures
are related to each other. Figure 6 illustrates the interface we use
to study the relationship between two measures. The demonstra-
tion compares AP with LS and is available online for interactive
exploration.5 The upper part shows the map where the 120 pieces
are arranged according to their similarity. Beneath the map is a
slider. The current position of the slider is in the center, thus, both
measures AP and LS influence the organization equally. The slider
allows the user to change focus between either of the two similarity
measures. The pieces are then gradually and smoothly rearranged
on the map, thus, it is possible to observe exactly what the differ-
ences are between measures. Beneath the slider are the codebook
visualizations. The codebooks are very useful to understand why
the SOM is organized in a particular way and it also describes
what the representation of pieces located in certain areas of the
maps look like. In particular, it is interesting to notice the high
correlation between the shapes of the AP and LS representations.

When comparing AP to LS it turns out that the organization
obtained through AP is of higher quality although the general struc-
ture is similar. Figure 7 shows the SDH cluster visualization of the
AP aspect and the LS aspect of the Aligned-SOMs. In both cases
the cluster labeled with A represents “Classical”, slow and calm
music such as, e.g., a Gregorian chant. B is whereBolero and
London Callingare located. In general there are mainly Classi-
cal and Jazz pieces located in the area. Cluster C contains, e.g.,
Macarena by Los del Rio, and cluster D contains mainly aggres-
sive and noisy pieces. A similar evaluation comparing SH with PH
can be found [7].

5. CONCLUSIONS

We have presented different approaches to comparing 5 audio based
similarity measures without relying on costly listening tests. In

5http://www.oefai.at/ elias/dafx03/ap-ls/

(a) (b)

Figure 7: The cluster structure of (a) with only AP influence on the
organization and (b) with only LS influence on the organization.

particular we have used readily available metadata such as artist,
album, and genre to compare within group distances to average
distances in the collection. Furthermore, we have demonstrated
how even a tiny music collection can be useful to identify weak-
nesses of a measure and compare measures with each other.

Although quantitative evaluation procedures allow objective
comparisons they are difficult to conduct for two reasons. First
of all, currently no common music repositories are available. De-
pending on the contents of the collection used to evaluate the mea-
sures the results can be quite different. The second reason is that
no ground truth in music similarity exists. And assumptions such
as that music by the same artist is more homogeneous than music
by different artists might not hold.

Although there is still lots of room for improvements without
conducting large scale listening tests, it seems that at some point
these will become unavoidable. Furthermore, any efforts to build
a common database for music information retrieval should be sup-
ported since such a database could drastically speed up develop-
ments in this young field of research.
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