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ABSTRACT

This paper addresses the reconstruction of missing samples in au-
dio signals via model-based interpolation schemes. We demon-
strate through examples that employing a frequency-warped ver-
sion of Burg’s method is advantageous for interpolation of long
duration signal gaps. Our experiments show that using frequency-
warping to focus modeling on low frequencies allows reducing the
order of the autoregressive models without degrading the quality of
the reconstructed signal. Thus a better balance between qualitative
performance and computational complexity can be achieved.

1. INTRODUCTION

Reconstruction of missing samples in audio and speech signals is
needed in many real-life digital signal processing applications. For
instance, signal drop-outs can be caused by transmission errors
through digital channels [1]. Moreover, signal losses may occur
due to the presence of corrupting spurious noises such as clicks,
pops, and crackles, which are associated with the reproduction of
old disk records [2]. Reconstruction or interpolation of discrete-
time signals has been approached through various means. For a
survey on audio interpolation methods see [3, 4].

In this paper, we tackle the problem of signal reconstruction
in long gaps of missing samples via interpolation methods based
on autoregressive (AR) modeling. These methods are usually suit-
able for interpolating relatively short gaps only. For long gaps AR-
based interpolation schemes perform poorly, especially toward the
middle of the gap [5]. This happens due to the least squares (LS)
minimization of the prediction error, used to solve for the unknown
samples. The LS criterion yields an excitation whose variance is
too low. As a result, towards the middle of the gap, the recon-
structed signal tends to vanish, since the unknown samples are ob-
tained via a linear combination of already predicted ones.

Perhaps the simplest solution for the problem just described
is to increase the order of the AR model. Alternatively, the prob-
lem can be alleviated by imposing a lower limit to the prediction
error variance within the minimization procedure [6, 7]. A third
option consists in employing two separate AR models, one for the
fragment that precedes the gap and another for the segment that
succeeds the gap [8].

The same rationale of employing two different AR models for
interpolation of long gaps has been presented in [9, 10]. In this
method the missing samples in the gap are recovered by means of
AR-based signal extrapolations. For appropriate reconstruction of
typical audio signals accurate AR models are needed. This usually
implies employing high-order models.
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However, for signals with non-uniformly distributed energy
in frequency, as commonly found in audio programs, signal mod-
eling in a warped frequency scale allows for model-order reduc-
tion [11]. As regards the model estimation task, using Burg’s
method is a convenient choice, since it guarantees an always stable
model, which is essential for the extrapolation problem.

In this paper, we present a frequency-warped version of Burg’s
method and show the benefits of its use in interpolation of long
gaps. Model estimation and filtering in the warped domain are
computationally more demanding than conventional procedures.
Even so, the possibility of model-order reduction can compensate
for the additional costs. Hence, a better tradeoff between compu-
tational complexity and qualitative performance can be achieved.

This paper is organized as follows. Section 2 reviews the con-
ventional Burg’s method and presents its frequency-warped ver-
sion. Section 3 reviews the interpolation method and elaborates
further on the impact of using warped AR models within it. Sec-
tion 4 describes the experiments that were conducted and com-
pares the performance of the warped-based and conventional in-
terpolation method. Conclusions are drawn in Section 5.

2. WARPED BURG'SMETHOD

An autoregressive process yy, is defined by [4]

P
Yn = — Z AmYn—p + €n, @)
m=1

where p is the model order, a., are the model coefficients, and
en is the excitation signal. The latter can be also seen as predic-
tion error sequence, which results from inverse filtering the process
through its model. Minimizing the prediction error energy with re-
spect to the model coefficients allows solving for them.

In the conventional Burg’s method, a modular lattice struc-
ture is used to compute the forward and backward prediction er-
rors. The model parameters are retrieved from the reflection coef-
ficients, which are estimated through the minimization of the sum
of prediction errors [12].

In the warped version of Burg’s method, the modified lattice
filter shown in Figure 1 is used instead. For this filter the forward
and backward prediction errors are, respectively, given by

O = 0 BB
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where ; are the reflection coefficients of the stage . The output of
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Figure 1: Warped prediction-error filter. The delay elements of the lattice structure have been replaced by first-order allpass filters.

the allpass elements at each stage [ is computed via the recursion

Y

for n=0I1l+1,...,N -1,

©)

initialized with I;l(l_)l = 0, being A the warping factor.

After obtaining fT(f) and 5" the estimation of the reflection
coefficients and the further retrieval of the AR parameters is car-
ried out in the same way as in the conventional Burg’s method. The
value of the reflection coefficient k; that minimizes the prediction
error is given by

. L9y N-1 (=170
Ep— D @
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The warped AR-coefficients a,, can be calculated from the re-
flection coefficients k; by the ordinary Levinson-Durbin recursion.
See [12] and [13] for more details.

3. INTERPOLATION SCHEME

The interpolation method used in this work follows basically the
scheme presented in [10]. In such method the missing signal in-
formation within a given gap is recovered by means of AR-based
signal extrapolation. Here, the method is modified to cope with
the use of frequency-warped AR models.

The steps of the proposed warped-based interpolation method
are summarized below and illustrated in Figure 2.

1. Estimate an AR model for the segment that precedes the
gap using the warped Burg’s method (see Section 2), with
an appropriate value for the warping parameter \.

2. Forward extrapolate the signal across the gap by exciting
the frequency warped AR model with a zero-padded exci-
tation. The implementation of the warped extrapolation is
described in Section 3.2.

3. Repeat the previous two items for the signal segment that
succeeds the gap. In this case, a backward signal extrapola-
tion is used instead.

4. Cross-fade the two extrapolated sequences in order to ob-
tain the reconstructed signal.

The window used in the cross-fading is defined by [10]
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Figure 2: Steps of the interpolation scheme. The reconstructed se-
quence is obtained by summing the windowed (o = 3) forward-
and backward-extrapolated sequences within the gap (delimited
between the vertical lines).

where u(n) = (n — ns)/(ne — ns), with ns and ne being, re-
spectively, the indices of the beginning and end of the gap. The
steepness of the window’s roll-off is adjusted via parameter a'.
For instance, a linear slope down is attained with « = 1 whereas
a step-like transition is obtainable with & — oo. Cross-fading is
carried out by multiplying the forward-extrapolated sequence by
w(n) and the backward-extrapolated sequence by 1 — w(n).

3.1. Model Estimation

The length of the fragments (immediately before and after the gap)
upon which the AR models are estimated should comply with the
usual assumptions on the stationarity of the signal involved. Typi-
cally, wide sense stationarity for audio signals is acceptable within
short-term segments whose duration may range from 20 to 50 ms.
These limits restrict also the maximum order of the AR model
that can be attributed to a given segment. As a rule of thumb,
the length (in samples) of the signal upon which the model is es-

La = 3 is employed in all simulations of this work.
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timated should be at least twice as long as the model order. In
frequency-warped AR modeling using longer segments is recom-
mendable.

3.2. Signal Extrapolation

The forward extrapolation can be simply carried out by inverse
filtering the modeled fragment, appending as many zeros to the re-
sulting excitation as the length (in samples) of the gap to fulfill,
and exciting the model with this zero-padded excitation. The in-
verse filtering and the following resynthesis procedure have to be
performed using warped filters [11]. Similarly, the backward ex-
trapolation can be straightforwardly accomplished by appropriate
time-reversals of the segments involved in the task.

Signal extrapolation is performed via all-pole synthesis filters
in both the conventional and the warped-based interpolation meth-
ods. For the latter a warped IIR filter structure has to be employed.

3.2.1. Implementation of the Warped Filters

Frequency-warped filter structures can be designed by replacing
the unit delays with first-order allpass filters. In z-domain the
transfer function of an all-pole warped filter is given by

1

HE) = s G oo™ ©
where
D(z) = 12:1% with —1<A<1, @)

is the transfer function of the first-order allpass filter.

Replacing the unit delays with first-order allpass filters ren-
ders warped IIR filters unrealizable. This is due to the presence of
delay-free loops in the filter structure [11, 14]. Realizable warped
IIR filters can be achieved by moving the taps into the allpass filter
elements, as seen in the structure depicted in Figure 3 [14]. This re-
source introduces an additional tap and also requires re-computing
the tap coefficients. The new o; coefficients can be obtained from
the warped AR-coefficients a,, via the following recursion

a
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The inverse filtering scheme that yields the excitations for the
synthesis filters is carried out via warped FIR filters. However,
implementing these filters is a straightforward task, since replacing
the unit delays with allpass filter elements does not imply delay-
free loops in the filter structure. For more details see [11] and [14].

1-X

f, —C

Figure 3: Warped IIR filter. The unit-delay elements of the IIR fil-
ter structure have been replaced by allpass filters and the taps have
been placed so that there are no delay-free loops in the structure.

3.3. Computational Complexity

The computational complexity of the warped-based interpolation
method is of the same order of magnitude as that of the conven-
tional scheme. For a given processing setup, i.e., model order,
number of samples used to compute the model, and length of the
gap to interpolate, the warped-based method is about 77% more
expensive than the conventional procedure. Alone, the estimation
of the warped AR model accounts for 33% of the cost increase.
The remaining extra costs come from employing warped filters to
carry out signal extrapolation. Thus, if one wants to compare both
interpolation methods at same cost levels, a fair choice is to set the
orders of the AR models used in the conventional method approx-
imately 1.77 times higher than in the warped-based scheme.

3.4. Case Study

We first demonstrate the benefits of using the warped-based in-
terpolation method via a case study that features a low-pitch pi-
ano tone (sampled at 44.1 kHz). A gap of 2000 samples is artifi-
cially created in the signal and reconstruction is carried out via the
proposed interpolation method under different parameter setups.
From the results, which are summarized in Figure 4, we observe
a satisfactory signal reconstruction when using conventional AR
models (A = 0.0) of order p = 1000. Conversely, the vanishing
effect becomes clear when the order is reduced to p = 100. How-
ever, using warped AR models of this very same order may yield
better results. For example, by setting A = 0.8, which focus the
modeling on the low frequencies, the energy of the reconstructed
signal at low frequencies is preserved. This is preferable perceptu-
ally over a mute.
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Figure 4: Reconstruction performance under several parameter se-
tups. The gap of 2000 samples lies between the vertical lines.

4. EXPERIMENTAL RESULTS

In this section, the performance of the interpolation methods is
assessed by means of objective measures. In order to do so we
work on a set of four test signals that covers different music styles.
Moreover, each signal is artificially degraded, allowing a reference
for comparisons against different restored versions. In the sequel
we describe the chosen test signals, the degradation mechanism,
and the restoration procedure.

4.1. Test Signals

All test signals used in this work are monaural signals sampled at
44.1 kHz. A brief description of the test signals is given below.
Most of the signals lasts about 15 s, except for the signal Piano,
which lasts about 3 s only.

1. Piano: An isolated low-pitch piano tone.

2. Classic: An excerpt of classical orchestral music.

3. Pop: A fragment of Finnish pop music.

4. Singing: Singing a capella (Tom’s diner sung by S. Vega).

4.2. Degradation Mechanism

The degradation procedure consisted in creating gaps (zeroing) of
2000 samples in the signal at periodical instants. The beginnings
of successive gaps are placed 50000 samples apart from each other.
This gives more than enough samples before and after the gap to
estimate the AR models. Moreover, by forcing periodical gaps
each signal will be corrupted with several gaps. These gaps are
likely to occur in regions with different time-frequency charac-
teristics. Thus, the interpolation method can be more thoroughly
evaluated.

As regards the length of the gaps, the choice for 2000 samples
is arbitrary. However, it is supported by the commonly accepted
assumptions on the wide sense stationarity within short-term (20 to
50 ms) segments of audio signals [4]. We wanted to have gaps that
would be hard to fulfill through a reconstruction method based on a
single AR model. Therefore, the length of gap is set near the upper
limit at which short-term stationarity is still considered valid.

4.3. Restoration Setups

Signal reconstruction of the missing samples was performed via
the interpolation method described in Section 3. Both the conven-
tional Burg’s method and its warped version were employed for the
model estimation task. In all cases, the length of the frames upon

which the model is estimated was fixed to 2000 samples, which
correspond to about 45 ms @ 44.1 kHz sample-rate. Moreover,
the length of the gaps is fixed to 2000 samples. This leaves us with
only two processing parameters to deal with: the order of the AR
models p and the value of the warping factor A.

Several processing parameter setups were tested for restoring
the degraded test signals. More specifically, for the warped-based
interpolation method, the orders of the AR models were restricted
top € {100, 325, 565}. For each model order, the value of the
warping factor was setto A € {0.0, 0.2, 0.4, 0.5, 0.6, 0.7,0.8,
0.9}. In addition, signal restoration was carried out via the con-
ventional method using model orders p € {177, 575, 1000}.
These values of p assure that the computational cost of the con-
ventional method is leveled with that of the warped-based scheme
for p € {100, 325, 565}, respectively (see Section 3.3).

4.4. Objective Evaluation

Obijective evaluation of the quality of the restored signals was con-
ducted by computing their signal-to-noise ratio (SNR) and the Per-
ceptual Audio Quality Measure (PAQM) [15, 16] with respect to
the reference test signals.

4.4.1. Sgnal-to-Noise Ratio

Although perceptually naive, the SNR is the most trivial option to
assess the performance of the interpolation method. In this case,
the reconstruction error (original — reconstructed) is taken as the
noise component. Here, we measured the SNR only within the re-
constructed portions. The obtained results are depicted in Figure 5.

Except for the results associated with the signal Singing, we
verify that, for the conventional method, increasing the model or-
der leads to reconstructed signals with higher SNRs. Moreover,
for low model orders the warped-based scheme yields a better bal-
ance between cost and performance. For example, the SNRs at-
tained by the warped-based method with model order p = 100
and 0.6 < A < 0.9 surpass those of the (as costly) conven-
tional scheme with p = 177. Similarly, the setups p = 325 and
0.4 < X < 0.7 are more advantageous than the equivalently ex-
pensive conventional method with order p = 575.

However, the warped method with p = 565 performs, in gen-
eral, poorer than the equivalently costly conventional algorithm
with order p = 1000. The sole exception occurs for the signal
Pop with p = 565 and A = 0.6, whose SNR is the highest.

As for the effect of the value of A on the performance, there
seems to be an intriguing dependence on the model order, as ob-
served from the curves shown in Figure 5. Note that the values of
A that yield the highest SNRs tend to decrease as the order of the
warped model increases.

Finally, a the strange SNRs of the restored versions of the sig-
nal Singing may reside on the intrinsic nature of the fragment,
which contains several short pauses (or silent regions). For in-
stance, a critical situation would be a gap starting right after the
end of an utterance followed by a pause. In this case, the interpola-
tion algorithm will unnecessarily prolong the segment. Of course,
such mis-processing decreases the SNR of the restored version.
Moreover, the higher the model order, the more prolonged the seg-
ment will be, and consequently, the lower the final SNR. However,
inadvertently prolonging some segments may be harmless in per-
ceptual terms. This motivates the use of objective measures that
take psychoacoustic phenomena into consideration.
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Figure 5: Average SNR of the interpolated signals under several
parameter setups. Solid lines are the SNR of the restored signals
as function of A, for the indicated model orders. Dashed lines show
the SNR of the signals when restored via the conventional method
with the indicated model orders (at the end of the line on the right).
The SNR of the corrupted signal is also shown (gaps).

4.4.2. Perceptual Audio Quality Measure

A more realistic way of evaluating the performance of the inter-
polation method is through the Perceptual Audio Quality Measure
(PAQM) of the restored signals. The PAQM is obtained by com-
paring the uncorrupted (reference) and a restored (processed) ver-
sion of the test signal. The procedure consists in segmenting both
signals in short frames and computing the internal ear represen-
tation for each signal frame. Then, a cognitive model compares
these representations and outputs the PAQM, which indicates an
overall dissimilarity index. Thus, the closer to zero the PAQM, the
more similar to the reference the processed signal is.

The PAQM s associated with the restored versions of the test
signals were measured. Differently from the average SNR, which
is measured only within the restored portions of the signal, the
PAQM is computed along the whole extension of the signal. The
results are plotted in Figure 6.

The PAQM curves corroborate some conclusions drawn from
the SNR measures. It is clear that, at low model orders, there are
values of X\ for which the warped-based interpolation method is
more advantageous. More specifically, choosing p = 100 and
0.4 < X < 0.7 yields better results than the conventional method
with p = 177 (that costs the same). It is also worth noting that
the performance gains indicated by the PAQMs are less significant
than those shown in the SNRs.

Similarly, the warped-based scheme under setups p = 325
and 0.5 < X < 0.8 is more advantageous than the equivalently
expensive conventional method with order p = 575. The situation
is different, however, when employing higher model orders. For
instance, the performance of the warped-based scheme for p =
565 is at best equivalent to that of the conventional method with
p = 1000, e.g., signals Classic and Pop with A = 0.5.

In agreement with the SNR curves, the optimum values of A
for which the lowest PAQMs are achieved tend to decrease as the
model order increases. On the other hand, the PAQMs associated
with the signal Singing are more coherent than the corresponding
SNRs. According to the PAQMs, the performance improves as the
model order increases.

4.5, Discussion

Both the SNR and the PAQM results indicate that the warped-
based interpolation method is advantageous when adopting low-
order models. A remaining question concerns the perceptual sali-
ence of the achieved gains in performance. In other words, one
may wonder whether the mutes are still heard in the restored sig-
nals, despite of their higher SNRs or lower PAQMs. Answering
this question would require conducting extensive listening tests.

5. CONCLUSIONS

This paper presented a model-based signal interpolation scheme
that employs AR models computed via a frequency-warped ver-
sion of Burg’s method. The warped-based method is computation-
ally more expensive than the conventional scheme. For the same
model order the increase in the number of floating-point operations
lies around 77%.

The interpolation method was applied to signal reconstruction
within long gaps of missing samples. In particular, the effect of
the model order and warping parameter on the results was verified.
Moreover, the interpolation performance of both the conventional
and warped-based methods was evaluated. In order to assure fair
comparisons the model orders were adjusted as to equalize their
computational load.

Experiments were conducted on a set of four test signals with
distinct sonic characteristics. Performance assessment was carried
out by means of objective measures taken over the restored ver-
sions of the test signals. More specifically, the signal-to-noise ratio
(SNR) and the Perceptual Audio Quality Measure (PAQM) were
employed. In both cases the obtained results show that, in gen-
eral and for lower model orders, the warped-based scheme is more
advantageous. However, for high model orders (within the range
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Figure 6: PAQMs of the restored signals processed under several
parameter setups. Solid lines are the PAQM of the restored signals
as function of )\, for the indicated model orders. Dashed lines are
the PAQM of the signals restored via the conventional method with
the indicated model orders (at the end of the line on the right). The
PAQM of the corrupted signal is also shown (gaps).

evaluated), the warped-based method performs at best as good as
the conventional scheme.

Furthermore, the results indicate that the value of the warping
parameter that optimizes the interpolation performance varies with
the adopted model order. More specifically, it tends to decrease as
the model order increases. This indicates that for high-order mod-
els frequency warping no longer helps to improve the performance.
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