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ABSTRACT

The familiar “crackling” is one of the undesirable phenomena
which we deal with in an LP record. Wavelet analysis brings a new
alternative approach to the removal of this feature in the restoration
process of the recording. In the paper, the principle of this method
is described. A theoretical discussion of how the selection of the
wavelet basis affects the quality of the restoration is also included.

1. INTRODUCTION

The wavelet-type signal analysis has recently been a much used
discipline, whose range of applications in one-dimensional and
multi-dimensional signal processing spreads steadily. It is used for
the time-frequency analysis, for reconstruction of non-complete or
strongly disturbed signals and for data compression in many fields.

There were many algorithms developed how to restore the di-
gitized audio signal from a vinyl record, for example SDROM
(Signal Dependent Rank Order Mean) [3], methods based on lin-
ear prediction in AR and ARMA models [6] or the well-known
median filtering. Another special class of restoration methods ex-
ploit the Bayesian statistics [5]. This paper introduces an alterna-
tive approach to the problem, using the wavelet signal processing.

In the paper, we first discuss the time and frequency charac-
teristics of a “crackle”. After this an overview of wavelet trans-
form and its properties necessary for the method’s derivation is
presented. Then, the principle of the crackle removal is described.
At the conclusion, the discussion of how the choice of the so-called
mother wavelet affects the quality and effectiveness of the restora-
tion is introduced.

1.1. Characterization of a “crackle”

The typical behavior of the crackle in the time domain usually cor-
responds to signal waveform “up and down”. We found that three
quarters of these peaks stretch from 0.36 to 1.09 ms. The crackle
has also bigger short-time energy than the rest of the signal. An-
other typical feature is that in spectral domain it spreads over all
the frequency bands (see Figure 1). The character of the crackling
also slightly differs depending on which part of the recording we
work on – this is due the different speed of vynil rotation at the
beginning and at the end of the recording.

2. WAVELET TRANSFORM

We will present some necessary basics of wavelet transform, first
on signals with continuous time, after that we will switch to the
discrete-time wavelet processing.
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Figure 1: The time behavior and the spectrogram of the crackle.
The crackle is spread all over the frequencies.

In processing signals with continuous time (i.e. functions)
wavelet transform means a signal’s decomposition into countably
many “atoms” – wavelet functions – which are all derived from
just one function, called scaling function [2, 4], and which form a
signals’ space basis.

The discrete wavelet transform (but still in continuous time!),
DWT, of a realf(t) is the set of so-called wavelet coefficients
cj,k =

∫∞
−∞ f(t)ψj,k(t) dt, j, k ∈ Z, where we defineψj,k(t) =

2j/2ψ
(
2jt− k

)
andψ(t) is a “mother wavelet”. There are con-

ditions thatψ must satisfy and from them we can conclude thatψ
must have zero mean (thus it is of oscillatory character), and that
the oscillations must necessarily attenuate towards±∞.

An arbitrary signalf(t) then can be expressed as the linear
combination of basis waveletsψj,k:

f(t) =
∑

j,k∈Z

cjk ψj,k(t). (1)

2.1. Multiresolution analysis

Small values ofj in the above expansion correspond with the trend
contained in the signal, whilst forj → ∞ basis functionsψj,k

convey the signal’s behavior in more detail. This feature enables
us to decompose an arbitrary signal, even with discontinuities or
sharp peaks. This type of decomposition is called multiresolution
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analysis (MRA). An example of such analysis can be found in Fig-
ure 4.

2.2. Compact-supported wavelets

There were even found orthonormal bases such that their elements
have compact support, i.e. there can be found a closed interval
such that outside it the basis function is zero. An example of such
functions can be the Daubechies-type wavelets [1].

The compactness of the wavelet’s support plays an important
role for our purposes of “decrackling”. The fact that a waveletψ
vanishes outside a close interval means that every translation and
dilationψj,k contributes to the signal justlocally.

2.3. Wavelets with vanishing moments

Vanishing moments is another important concept in wavelet signal
processing. A wavelet is said to havek vanishing moments if∫ ∞

−∞
ψ(t)xi = 0 for i = 0, 1, . . . , k − 1. (2)

Equation (2) can be interpreted as follows: ifψ hask vanishing
moments, then every polynomial of orderk− 1 or less can be rep-
resented as a linear combination of the scaling function. It means
that in MRA of the polynomial-like signal all the coefficients rep-
resenting the signal’s details will be zero. This is again an impor-
tant feature for our purposes, because if there was a single, fast
crackle in an audio signal, which we consider as locally polyno-
mial, this would lead to non-zero detail coefficients right in place
of the singularity.

2.4. Discrete-time wavelet analysis

In practical problems we most frequently work with discretized
(sampled) signals of finite length. In this case we speak of the fi-
nite discrete wavelet transform (DTWT), which can be represented
by an orthogonal matrixW of sizen×n. Letx = [x1, . . . , xn]>

be a vector of lengthn. Its wavelet transform is vectory =
[y1, . . . , yn]>, obtained asy = Wx. Due to the orthogonality
of W, the inverse wavelet transform isx = W−1y = W>y.
It is evident from the above text that the wavelet transform has an
important property –linearity.

Instead of multiplying vectorsx andy by orthogonal matrices
W andW>, respectively, more effective Mallat’s pyramid algo-
rithm [4] is used for computing the transform. Each step of this
algorithm corresponds to filtering a discrete series by specific low-
pass and high-pass filters and then decimating the result. The coef-
ficients from the low-pass branch are called “approximations” and
those from the high-pass branch are called “details”. We can repeat
this single transformation step with the approximations standing
for the input signal. The number of repetitions is called transfor-
mation depth. Scheme of this algorithm is depicted in Figure 2.

This way the input is divided into a number of subbands. Fig-
ure 3 shows the idealized decomposition in frequency domain.

The algorithm of the inverse wavelet transform is similar: we
pass through the decomposition “tree” in the opposite direction
performing reverse operations.

Wavelets differ by the decomposing and reconstruction filters.
The filters corresponding to the compact-supported wavelets are
always FIR filters. The coefficients of the filters determine their
frequency response and thus the quality of signal splitting into

Figure 2:Mallat’s algorithm of wavelet transform. The input sig-
nal x is decomposed into its wavelet coefficients, contained in
y0, . . . ,y3. The decomposition depth is 3.

Figure 3: Idealized subband decomposition of the input signal.
H(z) represents the frequency response for the high-pass filter,
G(z) represents the response for the low-pass.

frequency subbands. Generally, the sharper slope is required, the
more coefficient are needed.

3. PRINCIPLE OF THE WAVELET-TYPE PROCESSING
OF CRACKLES

Our wavelet method starts from the assumption of addivity of the
disturbing crackles. This means that the impulses are added to the
signal which we desire to restore. Formally,

y = x + p, (3)

wherex = [x1, . . . , xn]> is the original music or speech sig-
nal without any undesirable artifacts,p = [p1, . . . , pn]> is the
random “crackling” signal, andy = [y1, . . . , yn]> is the mixed
signal, which we have observed.

Starting from this model, we can make following inference.
As said above, the wavelet transform is linear, and thus it holds

Wy = Wx + Wp (4)

for the observed signaly. Then for the original “clean” signal in
the wavelet domain there must beWx = Wy −Wp. Applying
the inverse transform via matrixW−1 = W> we ideally obtain
the desired signal without any corruption:

x = W−1(Wy −Wp). (5)

Our method works on the principle formally stated in (5):
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Figure 4: Multiresolution analysis of a signal with wavelet Daubechies of order 2. In the left column there are plots of contributions of
single signal subspaces and in the right column there are their respective cumulative sums. It is clear that some subspaces contain more
aproximate view of the signal and others contain more details. The most up-right picture is the original input signal.
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Figure 5:Restoring the recording via the wavelet algorithm. Daubechies of order 12 was used for the multiresolution analysis. The arrows
indicate the detail wavelet coefficients that were set to zero. The output signal is the most upper one. The input signal was the same as the
one in Figure 4.
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We regard the detail wavelet coefficients in the close neigh-
bourhood of a crackle as its transform, i.e.Wp. Setting them
to zero (on principle we perform “anti-thresholding”) we locally
suppress the contribution of the detail levels in the multiresolution
analysis right in the place where the impulse was detected. Speak-
ing of frequency domain, we locally andin gradual degreepass
low frequencies in place of the impulse and suppress the high fre-
quency components. The graduality is reached due to the fact that
the support of the wavelet filters doubles in each multiresolution
level. From the crackle position onwards, naturally, we again pass
gradually more and more high frequencies. The described process
lasts a bit longer than the crackle does, i.e. about 1 ms.

Figure 5 shows a successful application of the algorithm.
To be more precise, the algorithm consists of two parts, de-

tection and elimination. Each part can use different wavelet. The
main steps of the two parts are:

detection

1. signal transform with wavelet chosen for detection

2. passing through the detail levels and marking places sus-
pected of impulse (based on an energetic criterion)

3. comparing detail coefficients belonging to these places with
a properly set threshold

4. if the last step confirms there are detail coefficients above
the threshold in the same place, the center of it becomes
the center of the area to be modified. The width of this
area depends on the amount of the coefficients above the
threshold.

elimination

1. signal transform with wavelet chosen for elimination

2. detail coefficients belonging to the area specified above are
set to zero, whereas in every subsequent decomposition level
there are approximately half of the coefficients processed in
the preceding level. This is due to the decimation step of the
wavelet transform.

3. inverse wavelet transform

For better performance, the algorithm could be run recursively,
i.e. multistage.

4. FACTORS DETERMINING THE QUALITY OF
RESTORATION

In this Section, we discuss factors that affect the restoration qual-
ity.

The compactness of the wavelet support plays an important
role. This is because the crackle is just a local artifact and can be
expressed by only few wavelet coefficients which refer directly to
the place where the impulse is situated. Thus, it is effective to use
wavelets with compact support (Daubechies, Symlets etc.), which
correspond to FIR filters.

Another important property of a wavelet is the above men-
tioned number of vanishing moments. This number is closely as-
sociated with the number of continuous derivatives (smoothness)
and in the discrete-time processing, it is directly connected to the
sharpness of the filters’ slopes. The more vanishing moments a
wavelet has, the better is the signal frequency separation. Because
for the purposes of decrackling we don’t want the frequency bands
to soak much into each other, it is better to use wavelets with more

vanishing moments, i.e. wavelet filters of a bigger order. For ex-
ample, see Figures 4 and 5 – comparison of the two multiresolution
analyses domonstrate the difference in decompositions’ smooth-
ness. We have found that Daubechies wavelets of order about 10
give sufficient frequency separation, in proportion to the computa-
tional complexity.

The last factor affecting the restoration quality is the transform
depth. By selecting inproper transform depth, we could make an
insufficient number of frequency subbands and thus not separate
the crackle from the rest of the signal. For audio signals sampled
at 44.1 kHz we found that choosing depth 5 or 6 is sufficient, i.e.
it is adequate to process 5 or 6 sets of detail coefficients, which
means we leave frequencies below 800 Hz intact.

5. PERFORMANCE OF THE METHOD

In the core of wavelet transform stands correlation of the signal
with the dilated and translated wavelets. Due to the fact that the
wavelets are of strongly oscillatory character, our method turned
out to be successful for suppressing crackles of this character –
attenuated oversights up & down. However, there also often oc-
cur crackles that do not observe this character, and for these, the
algorithm’s performance is naturally worse.

6. CONCLUSION

In the paper, a new method of vynil record restoration was intro-
duced. The method is based on the wavelet-type signal analysis
and forms an alternative to the commonly used methods. The
crackling is suppressed via local processing of the so-called de-
tail wavelet coefficients. There is also a discussion what factors
determine the quality of the restoration process.
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