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ABSTRACT 

This paper presents a non-linear digital implementation of the 
Moog ladder filter. The implementation is relatively efficient and 
suitable for inclusion into real-time systems, for example virtual 
analog synthesizers. The analog circuit is analyzed to produce a 
differential equation. This equation is solved using Euler’s 
method, and the result is shown to be equivalent to a cascade of 
first order IIR sections with embedded non-linearities. Finally, the 
filter structure is modified to improve tuning. 

1. INTRODUCTION 

Time varying filters are used in many musical applications - syn-
thesizers, effects units and samplers. They are especially important 
nowadays in virtual analog synthesizers. The voltage-controlled 
filter published by Robert Moog in 1965 [1] is perhaps the most 
famous of them. 

There exist several published digital filters suitable for musi-
cal applications, such as the State-Variable Filter [2]. The Moog 
filter itself has also been converted to digital form by Stilson and 
Smith [3]. These filters are linear and some people feel that they 
sound “digital” and lack the “warmth” that is charasteristic of 
analog filters - especially the Moog filter. Rossum [4] has pub-
lished a filter that claims to have the same “warm” sound by em-
bedding a non-linearity within the filter. 

In this paper the Moog filter circuit is analyzed and a digital 
implementation of it is presented. The implementation models the 
inherent non-linearities of the original circuit and should thus give 
more accurate results compared to linear digital filters. As the 
digital filter is directly based on the analog circuit, there are no 
extra coefficients that would need to be tuned by ear – the 
“warmth” is determined by the input amplitude. While the result-
ing filter requires more computation than traditional linear filters, 
modern advances in computing power allow it to be used in real-
time systems. Since the large signal behavior of the circuit is ana-
lyzed, traditional pole-zero analysis is not directly usable. Not 
using pole-zero domain can also offer otherwise hidden insights. 

Additional material and audio examples are available at 
http://www.acoustics.hut.fi/publications/pap
ers/dafx2004-moog/ 

2. THE MOOG LADDER 

Moog implemented his filter using an innovative transistor 
ladder circuit shown in Figure 1. It employs the base-to-emitter 

resistance of bipolar transistors to realize voltage-controlled RC-
sections. The transistors also act as buffers between each stage.  

 

 

Figure 1: The Moog ladder circuit [1]. 

 
The circuit has four stages, each of which consists of two tran-

sistors and a capacitor. Each stage is driven by the output current 
of the previous stage apart from the first stage, which is driven by 
a differential transistor pair. The bottom of the ladder is driven by 
control current Ic. Differential output is taken from the emitters of 
the transistors in the last stage to a high impedance differential 
amplifier. To produce resonance, a portion of the output is routed 
to the other side of the input differential amplifier. 

The current gain, or beta, of the transistors is high (values of > 
200 are typical) and the resistors feeding the transistor bases are 
small valued, so transistor base voltages are effectively constant 
for all stages. It is a reasonable approximation to assume that the 
transistor beta is infinite and therefore the base current is zero. 
Thus the stages are buffered from each other. Further, since the 
base-emitter voltage is logarithmically dependant on the collector 
current, the emitter voltage varies very little and the Early effect 
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[6] can be neglected. Therefore each stage depends only on the 
current state and the input current coming from the previous stage. 

 

 

Figure 2: (a) Differential pair used in Moog ladder, (b) Tra-
ditional differential pair. 

2.1. Differential pair 

Figure 2a shows the differential pair used in the ladder. Vt1 and Vt2 
are the base-emitter voltages of the transistors while It1 and It2 are 
the collector currents. Since we assume that transistor beta is infi-
nite and no base current flows, the emitter current is the same as 
the collector current. 

Since the signal current is differential, we are interested in 
finding out the relationship between Vt1, Vt2 and It1-It2. The equa-
tion for It1-It2 in the circuit of Figure 2a is same as for the circuit in 
Figure 2b. 

Equation for the differential current in a transistor pair [5] is 
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where Vt is the so-called thermal voltage of a transistor [6]. Equa-
tion (1) holds when the transistors are assumed to be perfectly 
matched, beta is infinite and the Early effect is neglected. 

3. DIFFERENTIAL EQUATION 

We can now derive a differential equation for the filter. Since the 
stages are buffered from each other, it makes sense to first derive a 
differential equation for a single stage. 
 
 

 

Figure 3: Single stage of the Moog ladder. 

3.1. Single stage 

Figure 3 shows the equivalent circuit for a single stage of the 
Moog ladder. Vt1, Vt2, It1 and It2 are the same as in Figure 2. Ictl is 
half of the ladder control current and Is is half of the signal cur-
rent. It can be seen that 
 , (2) csctlt IIII −+=1

 , (3) csctlt IIII +−=2

 , (4) ctltt III 221 =+

 , (5) cstt IIII 2221 −=−

where It1 and It2 are the base-emitter voltages of the transistors, Ictl 
is half of the control current, Is is half of the signal current and Ic is 
the current through capacitor C.  
From equation (4) it follows that 
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where Vc is the voltage over the capacitor C. Equation (1) can now 
be written as 
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which will prove useful in the next Section. 

3.2. Differential equation for a single stage 

We can now write the differential equation for a single Moog 
ladder stage. The equation for current Ic through a capacitor is 
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dVCI c
c = , (8) 

where V is voltage over the capacitor and C is its capacitance. 
Inserting equation (8) into equation (7) then gives 
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As each stage is driven either by the previous stage or by the dif-
ferential input amplifier, equation (9) can be written as 
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4. DISCRETIZING THE FILTER 

4.1. Difference equation for a single stage 

To be useful for a digital implementation, the differential equation 
must now be solved. The easiest way is to use Euler’s method. 
Although Euler’s method has some drawbacks, it is very useful for 
this particular case. As the differential equation is of first order, 
the solution is inherently stable. Since there is a non-linearity, 
oversampling must be used and this brings the Euler solution 
closer to the ideal solution. Runge-Kutta or some other higher 
order method could also be used, but it would require evaluation 
of the equation between samples. This is problematic as it is 
equivalent to having a higher sample rate for the input than the 
output. It also poses a problem for resonance, since that is 
achieved by feeding back some of the ladder output. Euler’s 
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method also has the advantage that the resulting difference equa-
tion is similar to a normal one-pole IIR lowpass filter as seen in 
Section 5. 

Euler solution for equation (10) is 
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where Ts is the time interval between samples. For sample rate Fs, 

 
s
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4.2. Difference equation for the complete filter 

Difference equations can now be written for the full ladder filter. 
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where x(n) is the input, ya(n), yb(n), yc(n) and yd(n) are the outputs 
of individual filter stages, r is the resonance amount (0 < r ≤ 1) 
and 
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It can be seen that each stage uses as input the tanh of the out-
put of the previous stage. This is also used by the previous stage 
during the next sample. The calculation result can be stored and 
thus only five tanh calculations per sample are required. These can 
be implemented efficiently with table lookups or polynomial ap-
proximations. 

5. IMPROVING TUNING 

5.1. Tuning of a single stage 

While this paper is concerned with the large signal model of the 
Moog ladder filter, it is interesting to see what equation (11) is for 
low signal amplitudes. For small inputs (-0.5<x<0.5), tanh func-
tion is almost linear. Equation (11) then becomes 
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where Fs is the sample rate. Equation (18) is similar to that of a 
normal digital one-pole lowpass filter. 

Scaled impulse invariant transform [7] is impulse invariant 
transform scaled so that the dc gain is one. The difference equa-
tion for a one-pole lowpass filter transformed with scaled impulse 
invariant transform is  

 , (19) ( )1()1()( −−+−= nyxgnyny )
which is the same as equation (18) with  
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substitution. As can be seen, Ictl, C and Fs determine the tuning. 
Since Ictl and C do not affect anything else, their exact values are 
irrelevant. Coefficient g can therefore be computed the same way 
as with a normal scaled impulse invariant transformed one-pole 
filter 

 sc FFeg π21 −−= , (21) 

where Fc is the cutoff frequency. 
Making this substitution to equation (13) and substituting x for 

input and y for output gives 
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Making the substitution to equations (14)−(17) gives the differ-
ence equations for the complete filter. 

5.2. Resonance 

To produce resonance, the filter output is fed back inverted. In the 
analog filter, each stage causes a 45 degree phase shift at the cut-
off frequency, producing a combined phase shift of 180 degrees at 
the cutoff frequency. This phase shift, combined with inverting, 
causes the feedback to be positive at the cutoff frequency and thus 
it emphasizes frequencies around the cutoff. The attenuation for a 
single stage is 3 dB at cutoff, producing a total attenuation of 12 
dB for the complete filter at the cutoff point. 

In the digital implementation, the unit delay in the feedback 
path causes an additional phase shift, making the combined phase 
shift to be 

 
s

cstage F
fFfpp 180),(4 += , (23) 

where p is the total phase shift and pstage is the phase shift of a 
single filter stage. This additional phase shift causes the resonance 
frequency to vary from the cutoff frequency. Another effect is that 
the attenuation at resonance frequency is no longer exactly 3 dB. 
This means that the feedback amount required to produce the de-
sired resonance varies with frequency. 

5.3. Compensation 

Stilson and Smith show some methods to compensate this shifting 
of resonance frequency and amplitude [3]. However, these meth-
ods require the use of tuning and resonance amount compensation 
tables. This has an unfortunate side effect owing to the difference 
between tuning for zero resonance and tuning for self oscillation. 
Here, the tuning table must be two-dimensional, or some form of 
interpolation is needed between no tuning and full tuning (depend-
ing on the resonance amount). Further, methods where transfer 
function zeroes are introduced require two different coefficients to 
be used and interpolated in the filter loop. 
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Figure 4: Phase shift of the filter with (solid) and without 
(dashed) feedback path delay. 

Another approach is to stay with the scaled impulse invariant 
transformed filter stage and see how the filter structure might 
possibly be modified to compensate in order to get feedback phase 
as close to 180 degrees as possible. Figure 4 shows the phase shift 
for the filter both alone and with the feedback path unit delay 
using two times oversampling (88.2 kHz sample rate). It can be 
seen that the phase shift of the filter starts falling back to zero at 
higher frequencies and this somewhat compensates for the phase 
shift introduced by the unit delay. 

The resulting phase shift is now slightly too small at the cutoff 
frequency. Addition of half-unit delay causes the phase shift to be 
almost exactly 180 degrees at cutoff up to about Fs/4. The half-
unit delay can be realized by averaging two samples. At very high 
frequencies (f  > Fs/4) the situation is now worse than without the 
extra delay, but as some oversampling is required because of the 
nonlinearities, this does not matter in practice. Figure 5 shows the 
tuning and amplitude error with and without the extra delay. With 
the extra delay added, the error in tuning is less than 10% for f < 
Fs/4 (or f < 22 kHz for Fs of 88.2 kHz). 

With two times oversampling, the remaining tuning error can 
be eliminated by using a tuning table. Since the error is so small, 
the resonance tuning compensation can be combined with the 
tuning for scaled impulse invariant transformed one-pole filter into 
a single table. The small error in the frequency response is 
unlikely to be audible. 

6. CONCLUSIONS 

A digital implementation of the Moog ladder filter has been pre-
sented with non-linearities of the circuit correctly modelled. The 
implementation is similar to a normal IIR filter made of cascaded 
first-order sections, but the first order sections have non-linearities 
embedded within them. The filter is directly based on the Moog 
transistor ladder circuit and thus requires no user tunable parame-
ters other than the cutoff frequency and input amplitude. 

While more computationally intensive than traditional IIR fil-
ters, the filter is still suitable for real-time and DSP implementa-
tions. As some of the calculations are shared between stages, the 
implementation requires only five tanh-function evaluations. 
These can be implemented efficiently with table lookups or poly-
nomial approximations. 
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Figure 5: Tuning and amplitude error for compensated (solid) 
and uncompensated (dashed) filter. 

Some oversampling is required to avoid aliasing. Slight modi-
fication of the filter structure with use of oversampling also makes 
the resonance frequency almost the same as the cutoff frequency, 
thus requiring only modest tuning and resonance gain compensa-
tion. 

Additional material and audio examples are available at 
http://www.acoustics.hut.fi/publications/pap
ers/dafx2004-moog/ 
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