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ABSTRACT 

A method for chord recognition for piano transcription has been 
previously presented by the authors. The method presents some 
limitations due to errors in parameter extraction carried out during 
the training process. Parameter extraction of piano notes is not as 
straightforward as sometimes can be thought. Spectral components 
detection is necessary but not enough to obtain accurately some 
note parameters. The inharmonicity coefficient B is one of the 
parameters that are difficult to evaluate. The obtained value of B is 
different for every partial used to calculate it, and sometimes, 
these differences are high. Tuning with respect to tempered scale 
is another important note parameter. The problems arise when we 
try to measure the tuning of a note belonging to octaves 0 or 1, 
because the fundamental is radiated by the soundboard with a very 
low level and, therefore, it is not captured by the recording micro-
phone and cannot be measured.  

A method to avoid these drawbacks is presented in this paper, 
including an explanation of the basis.  

1. INTRODUCTION 

A method for chord recognition for piano transcription has been 
previously presented by the authors. The method is based on spec-
tral pattern matching using a set of spectral patterns generated by a 
physical model of the piano. The identification of several notes 
belonging to a chord is performed using iterative note detection 
with spectral subtraction. Both the spectral patterns and the sub-
traction masks are generated using a physical model of the piano. 
The proposed model makes use of several parameters in order to 
calculate patterns and masks. These parameters are obtained by a 
training process, using only a few notes [1].  

Some of the limitations of the chord recognition algorithm 
have to do with the fact that subtraction masks do not fit well the 
actual spectrum of the piano note. The reason for this drawback is 
related with some degree of imperfection during parameter extrac-
tion that is carried out during training process.  

Piano notes have two main characteristics which are unusual 
in typical musical modeling. They are inharmonic (its partials are 
not harmonically related) and they are not exactly tuned to tem-
pered scale.  

Moreover, the lower octave notes have not significant radia-
tion of its fundamental frequency, so it is not present on recorded 
signals using microphones.  

This paper will present some aspects and solutions for extract-
ing, the more precisely possible, the following parameters: inhar-
monicity coefficient B and fundamental tuning. Both parameters 

are essential for note identification and for spectral subtraction 
used in piano chord recognition [2].  

2. INHARMONICITY COEFFICIENT  

Inharmonicity appears due to string stiffness. As a result, every 
partial has a frequency that is higher than the corresponding har-
monic value. Moreover, the higher the partial order, the higher the 
separation from the harmonic value.  

The frequencies are calculated using [3]:  
2
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where f0 is the fundamental frequency for a flexible string (without 
stiffness) with hinged ends and the “inharmonicity coefficient” B 
is defined as [3]:  
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where E is the Young’s Module, d is the string diameter, L is the 
string length and T is the string tension.  

It can be seen that the fundamental frequency of stiff strings 
differs from that of flexible strings. We can obtain:  
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which is very useful since f0 cannot be directly measured in actual 
strings, because they always have stiffness and we do not know 
the a priori value of B.  

Apparently, extracting the value of B during the training proc-
ess is as simple as measuring a pair of partial (e.g. f1 and fn) and 
calculating:  
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However, the results are different depending on the selected par-
tials. This is due to the fact that frequency values of partials are 
not only affected by string stiffness, but are also affected by bridge 
impedance (i.e. soundboard impedance).  
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2.1. Soundboard induced inharmonicity: ISB  

The previous equation from Fletcher was obtained considering 
both ends of the string hinged. Hinged boundary conditions allow 
the end of the string to have slope but not to move, so the imped-
ance of the string support is infinite. But actual bridges present 
finite impedance controlled by the soundboard impedance.  
The soundboard impedance is a function varying with frequency, 
controlled by the joint effect of the modes. The effect of the 
soundboard impedance on the string vibration frequency is such 
that if the string tries to vibrate with a frequency above a resonant 
frequency of the soundboard, the resulting frequency is even 
higher. If string tries to vibrate with a frequency below a resonant 
frequency of the soundboard, the resulting frequency is even 
lower [4][5].  
So, the effect of the soundboard seems to be to prevent the string 
to vibrate with a frequency equal to a resonance of the sound-
board. The exception is when the string tries to vibrate with a 
frequency coincident with a soundboard resonance. In that case, 
due to the high resistive value of the soundboard impedance, the 
soundboard has no effect on the string frequency.  
Actually, the partial frequencies are modified by the effect of the 
soundboard impedance. We have called this variation “Sound-
board induced Inharmonicity” ISB so the frequency of any partial 
must be modeled as:  

( )n n SB nf f I f  = ⋅                  (5) 

where 
2
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and then, substituting f0:
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The difficult task of modeling soundboard impedance as well 
as the impossibility of knowing the soundboard characteristics 
from piano recordings, make it impossible to evaluate ISB corre-
sponding to any partial of any note.  

Previous studies [6][7] show that the value of ISB decreases 
with partial order and note(for the same kind of impedance behav-
ior, i.e. above or below a soundboard resonance), and is not just a 
function of frequency (see Figure 1). So, the fundamental of lower 
notes are very much affected by ISB whereas the higher partials are 
less affected.  

2.2. Modified calculation of B 

Taking into account equation (6), the value of B that is actually 
calculated from the measured partial’s frequencies is: 
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As ε cannot be evaluated, the value of B has error, except if ε is 
near 1 in which case the equation (3) can be still used.  
From Figure 1 it is evident that ε  cannot have a value near 1 if we 
use the fundamental as a reference for the calculation of B. If we 
want to use as a reference one partial different from the first, we 
have to rewrite equation (6) as:  
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where m is the order of the lower partial used in calculation (pre-
viously m was 1). Equation (7) becomes:  
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If partials m and n are correctly selected, ε can be considered 
nearly 1 and B can be calculated with a low error using the equa-
tion: 
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ure 1: ISB values calculated for various notes and partials 
g certain values of impedance and resonances of the sound-
rd. Higher partials have less frequency variations than lower 
s. This variation is lower for higher notes. fst>fosb indicates 
ng frequency is above the nearest resonance of the sound-
rd and deviation is higher than unity. 
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Figure 2: Values of B calculated for A0 note. The higher partial 
n appears in the horizontal axis. The lines correspond to differ-
ent values of reference partial m expressed as difference with 
respect to partial n. The zero values that appear have not been 
actually measured. They have been manually included in order 
to fit the needs of the plotting algorithm. 

 

Figure 3: Spectrum of C7 around second partial. It can be seen 
that more than 3 peaks are present. Frequency is normalized 
respect to two times the fundamental (2nd nonlinear harmonic). 

 

 
Figure 4: Calculated position of IM products around second 
partial for several values of B. The shown values of B are typical 
for notes above C6 . 

Figure 2 shows the calculated values of B, using equation 
(10), for note A0 from a Steinway&sons grand piano (approx. 2.9 
m. long). The actual value is about 2.10-4. 

It can be seen that some of the obtained values of B are nega-
tive, which is evidently erroneous, because it is physically impos-
sible. It is evident that ε is not always near 1. It is important to 
note that the use of two consecutive partials (i.e. m=n–1) must be 
avoided. It also must be avoided the use of nearest partials except 
if they are very high order partials. After several tests, using dif-
ferent notes, we have concluded that for lower octaves, n must be 
selected between 14 and 20 and m must be selected between 1/2 
and 2/3 of n (that is an intermediate partial order).  

This selection of calculation partials is a bit more problematic 
in octaves 3 to 5 where the number of available partials decreases. 
And it is especially critical in the case of the higher octaves 6 to 8.  

2.3. B calculation on octaves 6 to 8. 

Notes belonging to octaves 6 to 8 have two problematic character-
istics: only two partials have enough level to be accurately meas-
ured and the notes always present a high degree of non-linearity. 
The first issue is not very important due to the fact that ISB tends to 
be very little noticeable at those frequencies above C6 with little 
difference between fundamental and second partial. The non-
linearity is the main problem, because the second harmonic of the 
fundamental appears very close to the second partial, so they al-
most cannot be distinguished, except if values of B are high 
enough.  

Figure 3 shows the second partial “zone” of note C7, for 
which the B value allows us to distinguish the second harmonic 
from the second partial. It can be seen that some of the spectral 
peaks are positioned at twice the fundamental frequency, so they 
are not the second partial but an IM (InterModulation) product 
(i.e. 2nd harmonic).  

It is also very interesting to notice that the second harmonic 
has higher level than second partial. This adds even more prob-
lems to parameter extraction.  
The non-linearity effects have been modeled using InterModula-
tion products (IM) [8]. Two IM products appear around the second 
partial. Those products are separated from the 2nd partial an 
amount that can be calculated depending on the value of B coeffi-
cient (Figure 4).  As the B value is not known, but is being meas-
ured, a bounded value of the separation must be approximated in 
order to carry out the correct parameter extraction.  
It is necessary to measure precisely the second partial in order to 
calculate B coefficient, but this is not an easy task. The several 
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spectral peaks must me measured and the second harmonic values 
have to be discarded.  

3. TUNING OF THE FUNDAMENTAL 

Musical instruments tend to be tuned according to tempered scale. 
However, in the case of piano, inharmonicity establishes that the 
second partial of a note is slightly above the fundamental of the 
note one octave higher. If tempered tuning is performed, an audi-
ble beating that is not comfortable will be produced. This effect 
makes it necessary to tune the piano so that the fundamentals of 
higher notes are slightly above their tempered values, in order to 
be coincident with the second partial of the note one octave below 
[9]. In this case, beating is avoided. This can be expressed using:  
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where i is the number of the note and i+12 is the number of the 
note one octave above.  
As tempered tuning is not used, the tuning of every note can be 
expressed as: 

1, 1 , i  T  i  f A f= ⋅             (12) 

where f1T,i is the tempered value of the fundamental of note i, and 
A is the “Tuning Factor”. This tuning factor used to be called sim-
ply “Tuning”.  

The actual tuning process begins with note A0, which is tuned 
to 440 Hz (sometimes is tuned to 442 or even 444 Hz). The re-
maining notes of octave 4 are tuned according to intervals, but for 
simplicity, we are going to consider that all the notes of octave 4 
are tuned to their tempered value. With this assumption, Figure 5 
shows the value of “tuning factor” calculated using equation (11).  
It can be seen that the values calculated for octaves above octave 4 
are very coincident with the values of the Railsback curve [10]. 

The Railsback curve is an average of several measures of actual 
piano tunings (Figure 6).  
It can be noticed that the Railsback curve for octaves below octave 
2 differs from the results obtained considering the B coefficient. In 
conclusion, inharmonicity does not justify the tuning factor for 
lower octaves. The effect of ISB must be considered again to ex-
plain this difference.  

3.1. Effect of ISB on tuning  

The condition for tuning can be rewritten as:  
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This introduces some changes in the tuning values for octaves 
above octave 4, but they are not very important. But for octaves 
below octave 4, the tuning process is the reverse, so note i+12 has 
been previously tuned and after, the note i has to be tuned. Then, 
the equation for tuning lower octaves is:  
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For octaves 0 to 2, where the values of B range between 10-4 and 
10-3, the term depending on B only justifies a tuning factor of up 
to −3 cents. However, for those octaves, the soundboard presents 
only a few resonances that are separated and then, the values of 
the term depending on ISB can be very high. This term can justify 
tuning factors of up to −40 cents.  
These results are coincident with Railsback curve.  

 

 

Figure 5: Calculated tuning considering inharmonicity coeffi-
cient B.  
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4. CONCLUSIONS  

Evaluation of the inharmonicity coefficient B requires to measure 
the frequency of the partials and to select the correct partials to be 
used in the calculation. Lower partials are very affected by the 
soundboard and their use must be avoided. Due to the fact that the 
frequency of the partials may be increased or decreased by the 
effect of soundboard, several values of B must be measured using 
several partials and the mean value of them can be considered to 
be the string B value.  
Measuring B in higher octaves can be done using only the second 
and first partials. Soundboard effect is almost negligible but care 
must be taken in order to avoid the error of measure the second 
harmonic (non-linear product) instead of the second partial.  
Tuning measure is almost straightforward for octaves above 3, but 
it can be difficult for lower octaves where the fundamental has 
very low level due to radiation limitations. In these cases, the sec-
ond partial may be used as reference and the fundamental can be 
calculated using the B value previously determined and some ap-
proximation to the value of the ratio of ISB in equation (6).  
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