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ABSTRACT 

The paper presents our approach to the problem of finding me-
lodic line(s) in polyphonic audio recordings. The approach is 
composed of two different stages, partially rooted in psychoacous-
tic theories of music perception: the first stage is dedicated to 
finding regions with strong and stable pitch (melodic fragments), 
while in the second stage, these fragments are grouped according 
to their properties (pitch, loudness...) into clusters which represent 
melodic lines of the piece. Expectation Maximization algorithm is 
used in both stages to find the dominant pitch in a region, and to 
train Gaussian Mixture Models that group fragments into melo-
dies. The paper presents the entire process in more detail and 
provides some initial results. 

1. INTRODUCTION 

With the recent explosion of researches in computer music and 
especially in the field of music information retrieval, one of the 
problems that remain largely unsolved is the extraction of percep-
tually meaningful features from audio signals. By perceptually 
meaningful, we denote features that a typical listener can perceive 
while listening to a piece of music, and these include tempo and 
rhythm, melody, some form of harmonic structure, as well as the 
overall organisation of a piece.  
It is clear that a set of tools that could handle these tasks well 
would be useful in a variety of applications that currently rely on 
symbolic (i.e. MIDI) as opposed to audio data. Such tools would 
bridge the gap between a large number of researches made on 
parametric (MIDI) data that amongst other include similarity 
measures, estimation of rhythm, GTTM decomposition and also 
query by example searching systems, where large musical data-
bases could be made available, tagged with information extracted 
from audio. Audio analysis, learning and compositional systems 
could also make use of such information.  
An overview of past researches shows that techniques for tempo 
tracking in audio signals are quite mature; several tools (i.e. [1]) 
are available for use, some of them work in real-time. Most have 
little problems with modern pop styles with small variations in 
tempo, while tracking an expressive piano performance usually 
still causes headaches to algorithms or their authors. Rhythmic 
organisation is already a harder problem, as it has more to do with 
higher level musical concepts, which are harder to represent [2]. A 
promising approach to finding harmonic structure in audio signals 
has been presented by Sheh and Ellis [3]. 
Our paper deals with extraction of melodic lines from audio re-
cordings. The field has been extensively studied for monophonic 
signals, where many approaches exist (i.e. [4, 5]). For polyphonic 
signals, the work of several groups is dedicated to complete tran-

scription of audio signals, with the final result being a score that 
represents the original audio ([6, 7, 8]). Algorithms for simplified 
transcriptions, like extraction of melody, have been studied by 
few, with the notable exception of the work done by Goto [9].  
Our work builds on ideas proposed by Goto with the goal of pro-
ducing a tool for extraction of melodic lines from audio re-
cordings. The approach includes extraction of sinusoidal compo-
nents from the original audio signal, EM estimation of predomi-
nant pitches, their grouping into melodic fragments and final 
clustering of melodic fragments into melodic lines. The paper 
briefly describes each of these stages and presents some prelimi-
nary results. 

2. DISCOVERING MELODIC FRAGMENTS 

Our approach to finding melodic lines begins with discovery of 
fragments that a melodic line is composed of – melodic fragments. 
Melodic fragments are defined as regions of the signal, that ex-
hibit a strong and stable pitch. Pitch is the main attribute accord-
ing to which fragments are discovered; other features, such as 
loudness or timbre, are not taken into consideration. They come 
into picture when fragments are merged into melodic lines accord-
ing to their similarity.  

2.1. SMS analysis 

To locate melodic fragments, we initially need to estimate the 
predominant pitch(es) in the input signal. To achieve that, we first 
separate the slowly-varying sinusoidal components (partials) of 
the signal from the rest (transients and noise) by the well known 
spectral modelling synthesis approach (SMS, [10]). SMS analysis 
transforms the signal into a set of sinusoidal components with 
time-varying frequencies and amplitudes, and a residual signal, 
obtained by subtracting the sines from the original signal. We used 
the publicly available SMSTools software (http://www.iua. 
upf.es/mtg/clam) to analyse our songs with a 100 ms Black-
man-Harris window, 10 ms hop size. Non-harmonic style of 
analysis was chosen, as our signals are generally polyphonic and 
not necessary harmonic (drums...). 

2.2. Masking 

The obtained sinusoidal components are subjected to a psycho-
acoustic masking model that eliminates the components masked 
by other, stronger ones. Only simultaneous masking within critical 
bands is taken into consideration – temporal masking is ignored. 
Tonal and noise maskers are calculated from the set of sinusoidal 
components and the residual signal, as described in [11], and 
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components that fall below the global masking threshold removed. 
The masking procedure is mainly used to reduce the computa-
tional load of predominant pitch estimation, as it on average 
halves the maximal number of sinusoidal components (to approx. 
60 per frame). 

2.3. Predominant pitch estimation 

After the sinusoid components have been extracted, and masking 
applied, we estimate the predominant pitch(es) in short (50 ms) 
segments of the signal. Our pitch estimating procedure is based on 
the PreFEst approach introduced by Goto [9], with some modifi-
cations.  
The method is based on the Expectation-Maximisation (EM) 
algorithm, which treats the set of sinusoidal components at each 
time instant as a probability density function (observed PDF), 
which is considered to be generated from a weighted mixture of 
tone models of all possible pitches at this time instant. A tone 
model is defined as a PDF, corresponding to a typical structure of 
a harmonic tone (fundamental frequency + overtones). The EM 
algorithm iteratively estimates the weights of all tone models, 
while searching for one that maximizes the observed PDF. Conse-
quently, each tone model weight represents the dominance of the 
tone model and thereby the dominance of the tone model’s pitch 
in the observed PDF. 
Our modified iterative EM procedure is summarized as follows. 
At a given time instant t SMS provides us with a set of sinusoidal 
components with frequencies and amplitudes ( )tF ( )tA .  
Our observed state O(t,n) is represented by a set of sinusoids in the 
time interval [t,t+n]:  

 
{ }( , ) ( , ) ( , )

( , ) ( ) ( 1) ( , ) ( ) ( 1)

,

,..., ,...,

t n t n t n

t n t t n t n t t n

O F A

F F F A A A+ − + −

=

⎡ ⎤ ⎡= =⎣ ⎦ ⎣
⎤
⎦

)

 (1) 

The observed state O(t,n) is considered to be generated by a model 
p(t) , which is a weighted sum of tone models M of all possible 
pitches G(t): 
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frequencies below 4200 Hz, and adding the frequencies of the first 
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C(g) represents a set of relative amplitudes c(h,g) of individual 
harmonics (1..h) in the tone model with frequency g and G(x,µ,σ) 
Gaussian distribution with mean µ and variance σ. The idea be-
hind the normalization function norm lies in psychoacoustic mod-
els of loudness perception. The function serves as a limiter that 
limits the contribution of closely-spaced sinusoidal components, 
occurring when several strong components fall within the width of 
a Gaussian, representing a tone model component. In this case, the 
function limits the sum of contributions of all components, which 
in a simplified way mimics the effects that distance between fre-
quency components plays in the perception of loudness [12]. 
The process is illustrated in Fig. 1, where a tone model with pitch 
329 Hz is applied to a series of partials found by the SMS algo-
rithm. The model acts as a sieve, picking and summing up contri-
butions of individual partials that would fit into a tone with a pitch 
of 329 Hz. Only the first six tone model partials are shown. 
 

 

Figure 1: Applying a tone model on a set of partials 

The weights w of all possible tone models  (eq. 2) and amplitudes 
of their harmonics (c), are iteratively calculated by the EM algo-
rithm: 
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When the iterative algorithm converges, the pitch of the tone 
model with the highest weight w is taken to be the predominant 
pitch. We use early stopping to stop the convergence prematurely 
and take the first few highest weights to represent the predominant 
pitches in the time window under consideration. These are later 
tracked and grouped into melodic fragments.  
In the beginning, all tone model weights and amplitudes are ini-
tialized to the same value. Tone models contain a maximum of 20 
harmonics, values of σh range between 50 cents (1st harmonic) to 
100 cents (20th harmonic).  After some experiments, the value of 
n, representing the width of the analysis window, was set to 5, 
thereby encompassing a time interval of 50 ms. This significantly 
reduced the effects of “noisy” partials, found by SMS analysis, on 
estimation of predominant pitch.  
The effect can be seen in Fig. 2, representing the outcome of the 
EM algorithm on a short fragment from Aretha Franklin’s inter-
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pretation of song “Respect”. Both figures show the distribution of 
tone model weights (predominant pitches) through time. The left 
side of the figure shows results obtained by using individual time 
frames produced by the SMS analysis (10 ms) to calculate tone 
model weights, while in the figure on the right, 5 frames of SMS 
output (50 ms) were taken to calculate the weights. It is clear that 
by using a larger window, melodic fragments in the noisier sec-
tions stand out much clearer. 
  

 

Figure 2: Effect of window size n on the EM algorithm for pre-
dominant pitch estimation 

2.4. Forming melodic fragments 

Weights produced by the EM algorithm indicate the pitches that 
are dominant at each time instance. Melodic fragments are formed 
by tracking dominant pitches through time and thereby forming 
fragments that have continuous pitch contours. The first part of the 
procedure is similar to pitch salience calculation as described by 
Goto [13]. For each pitch with weight greater than a dynamically 
adjusted threshold, salience is calculated according to its domi-
nance in a 50 ms look-ahead window. The procedure tolerates 
pitch deviations of up to 100 cents per 10 ms window and also 
tolerates individual noisy frames that might corrupt pitch tracks by 
looking at the contents of the entire 50 ms window.  
After saliences are calculated, grouping into melodic fragments is 
performed by continuously tracking the top three salient peaks and 
producing fragments along the way as follows: 

-  the procedure ignores all time instances, where total loudness of 
the signal, calculated according to Zwicker's loudness model 
[12] falls below a set threshold; 

-  the initial set of melodic fragments F is empty; the initial set of 
candidate melodic fragments C is empty; 

-  the following operations are repeated:  
-  in each time instance t, select the top three salient peaks that 

differ from each other by more than 200 cents and find their 
exact frequencies fi, according to the largest weight wi in the 
neighbourhood: 

- in the set of candidate fragments C, find a fragment c with av-
erage frequency closest to fi  
- if the difference in frequencies between c and fi is smaller 

than 200 cents, add fi to the current candidate fragment; 
- otherwise, start a new candidate fragment 

-  after the top three pitches at time t have been processed, find 
all candidate fragments, that have not been extended during 
the last 50 ms. If their length exceeds 50 ms, add them to the 
set of melodic fragments F and remove them from the set of 
candidates C. If their length is shorter than 50 ms, remove 
them from C. 

-  after the signal has been processed, merge harmonically related 
melodic fragments, appearing at the same time (only 1st and 2nd 
overtones are taken into consideration) and join continuous frag-
ments (in time and frequency). 

The final result of this simple procedure is a set of melodic frag-
ments, which may overlap in time, are at least 50 ms long and may 
have a slowly changing pitch. Parameters of each fragment are its 
start and end time, its time-varying pitch and its time-varying 
loudness. The fragments obtained provide a reasonable segmenta-
tion of the input signal into regions with stable dominant pitch. An 
example is given in Fig. 3, which shows segmentation obtained on 
a 5.5 seconds excerpt from Aretha Franklin's interpretation of the 
song “Respect”. 25 fragments were obtained; six belong to the 
melody sung by the singer, while the majority of others belong to 
different parts of the arrangement, which become dominant when 
lead vocals are out of the picture. Additionally, three noisy frag-
ments were found, which were either due to consonants or drum 
parts. These can usually be dealt with in the last part of the proce-
dure, where fragments are merged into melodic lines.  
We performed informal subjective listening tests by resynthesiz-
ing the fragments (on the basis of their pitch and amplitude) and 
comparing these resynthesized versions with the original signal 
covering the same time spans. Most of the fragments perfectly 
captured the dominant pitch in the areas, even if, while listening to 
the entire original signal, some of the fragments found were not 
immediately obvious to the listener (i.e. organ parts in the given 
example). We carried out such tests on a set of excerpts from 10 
different songs, covering a variety of styles, from jazz, pop/rock to 
dance, and the overall performance of the algorithm for finding 
melodic fragments was found to be satisfying; it discovered a 
large majority of fragments belonging to the lead melody, which is 
the main point of interest in this study. 
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3. FORMING MELODIC LINES 

The goal of our project is to extract one or more melodic lines 
from an audio recording. How is a melodic line, or melody, de-
fined? There are many definitions; Levitin describes melody as an 
auditory object that maintains its identity under certain transfor-
mations along the six dimensions of pitch, tempo, timbre, loud-
ness, spatial location, and reverberant environment; sometimes 
with changes in rhythm; but rarely with changes in contour [14]. 
Not only that melodies maintain their identity under such trans-
formations, or rather because of that, melodies themselves are 
usually (at least locally in time) composed of events that them-
selves are similar in pitch, tempo, timbre, loudness, etc.  
The fact becomes useful when we need to group melodic frag-
ments, like the ones obtained by the procedure described before, 
into melodic lines. In fact, the process of discovering melodic 
lines becomes one of grouping melodic fragments through time 
into melodies. Fragments are grouped according to their proper-
ties. Ideally, one would make use of properties, which accurately 
describe the six dimensions mentioned before, especially pitch, 
timbre, loudness and tempo. Out of these, timbre is the most 
difficult to model; we are not aware of studies that would reliably 
determine the timbre of predominant voices in polyphonic audio 
recordings. Many studies, however, make use of timbre related 
features, when comparing pieces according to their similarity, 
classifying music according to genre, identifying the singer, etc. 
(i.e. [15], [16]). The features used in these studies could be applied 
to our problem, but so far we have not yet made such attempts. To 
group fragments into melodies, we currently make use of only 
four features, which represent:  

- pitch as the centroid of fragment's frequency with regard to its 
dominance; 

- loudness as the mean value of the product of dominance and 
loudness. Loudness is calculated according to Zwicker's loud-
ness model [12] for partials belonging to the fragment. The 
product of dominance and loudness seems to give better results 
than if loudness alone would be taken; 

- pitch stability as the average change of pitch over successive 
time instances. This could be classified as the only timbral fea-
ture used and mostly separates vocal parts from stable instru-
ments; 

- onset steepness as the steepness of overall loudness change 
during the first 50 ms of the fragment's start. The feature penal-
izes fragments that come into picture when a louder sound stops.  

To group melodic fragments into melodies, we use a modified 
Gaussian mixture model estimation procedure, which makes use 
of equivalence constraints during the EM phase of model estima-
tion [17]. Gaussian Mixture Models (GMMs) are one of the more 
widely used methods for unsupervised clustering of data, where 
clusters are approximated by Gaussian distributions, fitted on the 
provided data. Equivalence constraints are prior knowledge con-
cerning pairs of data points, indicating if the points arise from the 
same source (belong to the same cluster - positive constraint) or 
from different sources (different clusters - negative constraint). 
They provide additional information to the GMM training algo-
rithm, and are very useful in our domain. We use GMMs to cluster 
melodic fragments into melodies according to their properties. 
Additionally, we make use of two facts to automatically construct 
positive and negative equivalence constraints between fragments.  

Fragments may overlap in time, as can be seen in Fig. 2. We treat 
melody as a succession of single notes (pitches). Therefore, we 
can put negative equivalence constraints on all pairs of fragments 
that overlap in time. This forbids the training algorithm to put two 
overlapping fragments into the same cluster and thus the same 
melodic line. We also give special treatment to the bass line, 
which may appear quite often in melodic fragments (Fig. 2). To 
help the training algorithm with bass line clustering, we also put 
positive equivalence constraints on all fragments with pitch lower 
than 170 Hz. This does not mean that the training algorithm will 
not add additional fragments to this cluster; it just causes all low 
pitched fragments to be grouped together.  
The clustering procedure currently only works on entire song 
fragments (or entire songs), and we are still working on a version 
that will work within an approx. 5 second long sliding window 
and dynamically add new fragments to existing clusters or form 
new clusters as it progresses through a given piece. 
We have not yet made any extensive tests of the accuracy of our 
melody extracting procedure. This is mainly due to the lack of a 
larger annotated collection of songs that could be used to auto-
matically measure the accuracy of the approach. We have tested 
the algorithm on a number of examples and are overall satisfied 
with the performance of the fragment-extracting procedure, and 
less so with the performance of GMM clustering. GMMs may 
work perfectly in some cases, like Aretha Franklin’s example used 
for this paper, while for others, problems may occur mainly be-
cause fragments belonging to accompanying instruments, which 
appear close to the lead melodic line are taken to be part of the 
line. 
Results of clustering on a 30 second excerpt of Otis Redding's 
song “Respect”, as sung by Aretha Franklin, are given in Table 1.  
 

 lead 
vocal 

back 
vocals 

 
bass 

 
guitar 

 
brass 

 
keys 

 
noise 

C1 0.03 0.24 0.03 0 0.1 0.33 0.35 
C2 0.93 0.29 0 0 0.1 0 0.05 
C3 0.03 0.38 0 0.33 0.3 0 0.3 
C4 0 0 0.97 0 0.05 0.33 0.08 
C5 0 0.1 0 0.67 0.45 0.33 0.22 

Table 1: GMM clustering of fragments from “Respect.” 

152 melodic fragments were found by the fragment finding proce-
dure; all lead vocal and backing vocal parts were correctly discov-
ered. All fragments were hand annotated into one of seven catego-
ries (lead vocal, backing vocals, bass, guitar, brass, keyboards, 
noise). Fragments were then clustered by the GMM algorithm into 
five clusters, which would ideally represent the melody (lead 
vocal), bass line, backing vocals, accompaniment and noise.  
Results of the clustering procedure are given in Table 1. It shows 
percentages of fragments belonging to the seven annotated catego-
ries in the five clusters. Ideally, lead vocal fragments (melody) 
would all be grouped into one cluster with no additional frag-
ments. Most (93%) were indeed grouped into cluster 2, but the 
cluster also contains some other fragments, belonging to backing 
vocals, brass and a small amount of noise. The majority of bass 
fragments were put into cluster 4, together with some low pitched 
keyboard parts, while other clusters contain a mixture of accom-
paniment and backing vocals. As our goal lies mainly in the dis-
covery of the (main) melodic line, results are satisfying, especially 
if we take into consideration that practically no timbre based 
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features were taken into consideration when clustering. Most of 
the melody is represented by fragments in cluster 2, with some 
additional backing vocal fragments, which could actually also be 
perceived as part of the melody.  
The effect of negative and positive constraints on the clustering 
procedure was also assessed; somewhat surprisingly, constraints 
did not have a large impact on the clustering procedure. Small 
improvements were achieved mostly in separation of accompani-
ment from lead vocal and bass lines.  

4. CONCLUSIONS 

The presented approach to melody extraction is still in an initial 
phase, but we are satisfied with first obtained results. Currently, 
we are in the process of annotating a larger number of pieces, 
which will be used for improving the feature set used in GMM 
training, as so far, we settled for a very small number of parame-
ters, mainly because of the small set of examples we worked with. 
We plan to concentrate on timbral features, which are expected to 
bring improvements, especially with mismatches in parts where 
accompaniment becomes dominant. The larger database will also 
enable us to test and compare several different clustering strate-
gies. 
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