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ABSTRACT

Identifying chords and related musical attributes from digital audio
has proven a long-standing problem spanning many decades of re-
search. A robust identification may facilitate automatic transcrip-
tion, semantic indexing, polyphonic source separation and other
emerging applications. To this end, we develop a Bayesian infer-
ence engine operating on single-frame STFT peaks. Peak likeli-
hoods conditional on pitch component information are evaluated
by an MCMC approach accounting for overlapping harmonics as
well as undetected/spurious peaks, thus facilitating operation in
noisy environments at very low computational cost. Our inference
engine evaluates posterior probabilities of musical attributes such
as root, chroma (including inversion), octave and tuning, given
STFT peak frequency and amplitude observations. The resultant
posteriors become highly concentrated around the correct attributes,
as demonstrated using227 ms piano recordings with−10 dB ad-
ditive white Gaussian noise.

1. INTRODUCTION

Chord identification has proven to be a long-standing problem in
computer music research, despite the innate ability of musically
trained humans to readily accomplish the task. A variety of his-
torically successful approaches offer mostly rule-based or “black-
board” schema; of note are [1], [2], [3], among others.

When addressing the problem of automatic chord identifica-
tion, it is important to consider the extent to which an approach
attempts to model the human auditory system. The auditory mod-
eling may be implicit, as in Klapuri’s use of the spectral smooth-
ness principle [3], or more explicit, as in Martin’s use of a modified
Meddis and Hewitt pitch perception model [1]. Rather than mod-
eling the auditory mechanism, our goal is simply to identify chords
and related musical attributes as well as possible.

Moreover, the problem becomes as muchcognition as per-
ception. Gang and Berger [4], for instance, emphasize the role
of musical expectationsin learning chord sequences in functional
tonal music. In a Bayesian probabilistic framework, musical ex-
pectations may be easily encoded as prior and/or conditional dis-
tributions involving hidden musicalattributes, e.g., note, chroma,
root, octave, tuning, key, and mode. By so doing, we represent,
in a purely statistical framework, pseudocognitive capacities such
as temporal integration and the incorporation of knowledge from
musical structure.

Several emerging approaches, for instance [5], [6], pursue prob-
abilistic as opposed to rule-based schema. In [6], Sheh and Ellis
facilitate temporal fusion via hidden Markov model (HMM) in-
ference, using Fujishima’s pitch class profiles [7] as feature ob-

servations. Pitch class profiles discard octave information at the
front end; however, for applications such as polyphonic transcrip-
tion, it may be desired to retain the absolute pitches. We adopt
short-time Fourier transform (STFT) peaks as features, enabling
attributes such as octave to be retained or discarded on the back
end, whichever the user may decide.

In [8], Goldstein introduces a probabilistic maximum likeli-
hood pitch inference using STFT peak frequencies as feature ob-
servations. A related approach, developed by Thornburg and Leis-
tikow [9], handles also spurious peaks from interference events,
additionally incorporating timbral knowledge by statistically mod-
eling joint frequency and amplitude peak observations. Further-
more, the Thornburg-Leistikow method may explicitly evaluate the
likelihood of any candidate pitch component, rather than merely
identifying the most likely component.

In this paper, we extend Thornburg and Leistikow’s single
pitch likelihood evaluation to the multipitch case. Subsequently,
the latter is embedded in a Bayesian chord identification schema
inferring musical root, inversion, octave, and tuning as well as the
individual pitch components comprising a chord.

2. PROBABILISTIC MODEL

Our probabilistic model is shown in Figure 1:
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Figure 1:Probabilistic model.

Here,F consists of a list of observed STFT peak frequencies,
andA the parallel list of amplitudes. Observed quantities are di-
rectly influenced by the following hiddenattributes: tuningτ , oc-
taveO, rootR, and chromaC. The latter are further influenced by
higher-level contextual attributes: keyK; modeM . Though key
and mode inference proves difficult for single-frame data, the ad-
ditional structure may facilitate multiframe extensions, as key and
mode are likely to be constant across long segments of consecutive
frames.
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2.1. Attribute definitions

• Tuning: τ , in units of semitones, is discretized to a set of
Nτ equally spaced valuesτ ∈ {−0.5 + (l − 1)/Nτ}

Nτ

l=1.

• Key: K takes the value of one of the twelve semitones in
an octaveK ∈ {0, . . . , 11}.

• Mode: The pair{K, M} designates what is usually called a
“key” in music theory. For example:M ∈ {Major, minor}.

• Root: R occupies one of the twelve semitones in an octave.
The root is relative to a given key:R ∈ {0, . . . , 11}.

• Octave: O belongs to a consecutive integer range:
O ∈ {Omin, . . . , Omax}.

• Chroma: C is represented by a set of intervals from the
root. For instance, a minor triad is expressed:C = {0, 3, 7}.
Similarly a Major-minor seventh chord admits the repre-
sentation: C = {0, 4, 7, 10}. C may belong to a stan-
dard codebook consisting of major, minor, augmented, and
diminished triads, as well as the latter with major and mi-
nor sevenths added, with all standard inversions represented
(three inversions in case of triads, four inversions in case
of seventh chords). In total44 chromas are represented of
which 42 are unique thanks to the inherent ambiguity of
augmented triad inversions.

2.2. Bayesian attribute inference

The factorization of the jointP (τ, O, R, C, K, M, F, A), repre-
sented by the directed acyclic graph in Figure 1, is given as fol-
lows.

P (τ, O, R, C, K, M, F, A) = P (M)P (K)P (C|M)

× P (R|K, M)P (τ)P (O)

× P (F, A|τ, O, R, C) (1)

Priors, P (M),P(K),P(C|M),P(R|K, M),P(O) andP (τ),
encode domain-specific knowledge for a single STFT frame. The
peak likelihoodis given byP (F, A|τ, O, R, C). Such consti-
tutes the raw information needed to perform anyattribute infer-
encequery.

Suppose we wish to identify some attribute, (say, a chromaC
from the44 possibilities), given only the peak observationsF, A.
Our criterion is to construct a classifierT (F, A) = Ĉ such that the
probability of error (̂C 6= C) is minimized. Formally, we desire:

T
∗
(F, A) = argmin

T (F,A)

P (T (F, A) 6= C) (2)

It is readily shown [10] thatT ∗
(F, A) optimizing (2) maxi-

mizes the posteriorP (C|F, A):

T
∗
(F, A) = argmax

C

P (C|F, A) (3)

The classifier (3) is calledmaximum a posteriori(MAP).
As optimal decisions involvingany collection of musical at-

tributes derive from analogous MAP rules, the key inference step
involves the associated posterior. The latter may be derived by
marginalizing irrelevant attributes fromP (τ, O, R, C, K, M |F, A).
For instance, the associated posterior for chord recognition con-
cerns chroma and root:

P (C, R|F, A) =

∑

τ,O,K,M

P (τ, O, R, C, K, M |F, A) (4)

2.3. Specification of priors

PriorsP (M), P (K), P (C|M), P (R|K, M), P (O), P (τ), en-
coding domain-specific knowledge, become particularly concen-
trated when conditioning across frames, factoring across two lev-
els: literal frame-to-frame continuities, and structural dependences
across note transitions. Little can be said, however, when consid-
ering a single frame. Where we lack apriori knowledge altogether
(M, K, O, τ), maximum entropy arguments indicate the use of a
uniform prior.

However,P (C|M) and P (R|K, M) may encode informa-
tion specific to a given corpus. In functional tonal music, certain
chroma are more common than others in a given mode. For in-
stance, a major triad is far more likely than an augmented triad in
Major mode. The latter influencesP (C|M); for example:P (C =

{0, 4, 7}|M = Major) > P (C = {0, 4, 8}|M = Major). Simi-
larly, certain roots prove more common than others in a given key
and mode. For instance, a chord rooted on the tonic of the key
is more common than a chord rooted an augmented fourth higher.
The latter influencesP (R|K, M); e.g.: P (R = 0|K = 0, M =

Major) > P (R=6|K =0, M =Major).
Specification ofP (C|M) andP (R|K, M) by such common-

sense reasoning may be suitable; however, we prefer to formally
train these distributions from a corpus of musical data. We have
not done so as of this writing; instead, we install uniform priors as
placeholders, effectively removingK andM from the network.

3. MULTIPITCH LIKELIHOOD EVALUATION

The peak likelihood,P (F, A|τ, O, R, C), is difficult to evaluate
without knowing which observed peaks correspond to pitch com-
ponents (and their associated harmonic numbers) and which peaks
are altogether spurious. As such, we condition first upon a hidden
layer, displayed in Figure 1. This layer consists of a set ofpitch
components, a templateand adescriptor.
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Figure 2:Probabilistic model with exposed hidden layer.
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3.1. Pitch components

For each set of attributes, there existQ pitch components, where
Q is the number of intervals in the chroma. Each (kth) pitch com-
ponent,k ∈ {1, . . . , Q}, is assigned afundamental frequencyf (k)

0

and areference amplitudeA(k)
0 . Since the latter is unknown,A(k)

0

constitutes a nuisance parameter to be marginalized. Each funda-
mental frequency,f (k)

0 , is computed accordingly:

f
(k)
0 =

2π · 2
[C

(k)+12 O+R+τ]/12+c440

SR
(5)

wherec440 = 4.0314 ensuresA4 ↔ 440 Hz, andSR is the
sampling rate in Hz.

3.2. Template

First consider the situation where every observed STFT peak re-
sults from, and hence may be linked to, exactly one harmonic of a
single pitch component.

Definek(j) to be the index of the pitch component to which
thejth STFT peak corresponds, and leth(j) denote the harmonic
number. In the absence of inharmonicity and noise, the ideal ob-

served frequency would beh(j)f
(k

(j)
)

0 .
LetF (j) denote the peak frequency observation corresponding

to thejth observed STFT peak. We take the latter’s distribution to
be Gaussian with meanF (j)

ib
and varianceλ(j)

F,ib
:

F
(j)

∼ N

(

F
(j)
ib

, λ
(j)
F,ib

)

(6)

where

F
(j)
ib

= h
(j)

f
(k

(j)
)

0

λ
(j)
F,ib

= ΛF,ibF
(j)
ib

F
(1)
ib

(7)

whereΛF,ib is a user-specified noise variance scaling.
Let A(j) denote the peak amplitude observation correspond-

ing to thejth observed peak. In the absence of noise,A(j)
=

A
(k(j))
0 ch

(j)

A , wherecA is a user-specified spectral decay parame-

ter. To allow for noise,
[

A(j)
]2

is most appropriately modeled as

a scaled noncentralχ2
2; following [9]:

P

(

2

[

A
(j)
ib

]2

/λ
(j)
A,ib

)

∼ χ
2

2,

(

2
[

A
(j)

ib

]2
/λ

(j)

A,ib

) (8)

where

A
(j)
ib

= A
(j)
0 c

h
(j)

A

λ
(j)
A,ib

= ΛA,ibA
(j)
ib

A
(1)
ib

(9)

Of course, not all template peaks may appear in the STFT.
Each template peak has a prior probability of being detected, de-
noted asP (j)

b
. The latter is modeled as decaying geometrically

with the harmonic number:

P
(j)
b

= φ
h
(j)

b (10)

The aforementioned distributional parameters are organized
into a templateT , contaning all information necessary to evalu-
ate
P (F, A|τ, O, R, C).

T
∆
= {F

(j)
ib

, λ
(j)
F,ib

, A
(j)
ib

, λ
(j)
A,ib

, P
(j)
b

}
Nib

j=1 (11)

3.3. Merging overlapped harmonics

A significant complication arises in the multipitch case where har-
monics from different pitch components fail to be resolved by the
STFT. The minimum frequency distance∆f between harmon-
ics sufficient to resolve peaks depends on the analysis window’s
length and shape, via the mainlobe width of the latter’s discrete-
time Fourier transform (DTFT). For the length-MHamming win-
dow used in our STFT front end,∆f = 8π/M .

As each template peak is meant to describe the distribution
of at most one observed STFT peak, wemergetemplate peaks into
clusters for which each peak frequency exists in a∆f -neighborhood
of some other frequency within the cluster. As this clustering
forms an equivalence relation, each peak in the original template
is assigned to exactly one cluster.

Upon merging, each cluster, indexed by{(j, l)}
N

(j)

ib

l=1 , is re-
placed by a single template peak. In the above, we letl∗ refer to
the index for which the amplitude noncentrality parameterA

(j,l)
ib

is largest; we call the corresponding peak theprimarypeak.
Merged peak template parameters are obtained as follows.

• The merged frequency mean adopts the mean-amplitude-
weighted average over the frequency means for each peak
in the cluster:

F
(j)
ib

=

∑N
(j)

ib

l=1 A
(j,l)
ib

F
(j,l)
ib

∑N
(j)

ib

l=1 A
(j,l)
ib

(12)

• The natural frequency variance is given via (7) as a con-
tinuous function of frequency. Hence, the frequency vari-
ances among all peaks in a given cluster should be roughly
the same. We obtain the natural variance from the primary
peak, and add to this the square of the spread of the fre-
quency means within the cluster:

λ
(j)
F,ib

= λ
(j,l

∗)
F,ib

+

[

max
l

F
(j,l)
ib

− min
l

F
(j,l)
ib

]2

(13)

• Peaks may overlap in any phase relationship. As such, the
merged peak’s noncentrality parameter is taken to equal that
of the primary peak, while the scale parameter adds to that
of the primary peak, the squared amplitudes of the other
peaks within the cluster. This scale parameter specifica-
tion becomes exaggerated, accounting for only the worst
cases: where all peaks interfere exactly in phase,or where
all peaks but the primary peak interfere with the latter ex-
actly180

◦ out of phase:

A
(j)
ib

= A
(j,l

∗)
ib

(14)

λ
(j)
A,ib

= λ
(j,l

∗)
A,ib

+

N
(j)

ib
∑

l=1,l6=l∗

[Aib]
2 (15)

• The merged peak’s survival probability is taken to equal
that of the primary peak:

P
(j)
b

= P
(j,l

∗)
b

(16)
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3.4. Descriptor and linkmap representation

Of course, the template only accounts forpotentialSTFT peaks, as
excessive noise and other types of interference may prevent the de-
tection of some peaks associated with the template. Furthermore,
interference events may generatespuriouspeaks in the observed
peaklist which have no relation to those in the template.

To evaluate the likelihood of the observed peaklist, then, we
condition upon adescriptor D encoding linkage between tem-
plate and observed peaks. The desired unconditional likelihood
P (F, A|T ) evaluates by summing over conditional likelihoods
P (F, A|D, T ) weighted by an appropriate priorP (D, T ):

P (F, A|T ) =

∑

D

P (F, A|D, T )P (D|T ) (17)

In [9], the authors propose a symbolic encoding ofD enabling
distributions analogous toP (F, A|D, T ) for the single-pitch case
to be written in closed algebraic form. In this paper, we adopt only
the graphicallinkmap representation, shown in [9] to be equiva-
lent. Figure 3 illustrates an example linkmap. The scenario repre-
sents a perfect fifth interval where the third harmonic from the root
and the second harmonic from the fifth are merged. Three pairs of
linked peaks, two undetected peaks, and two spurious peaks are
evidenced by the Figure. EvaluatingP (F, A|D, T ) andP (D|T )

1.00 1.50 2.01 4.54

1.04 1.77 3.03 4.583.14

MERGE

3.01

Figure 3:Linkmap example: perfect fifth interval. All frequencies
are expressed in ratios to the root’s fundamental frequency.

requires a probabilistic model for the generation of spurious peaks.
The spurious peak frequency distribution is modeled according to a
Poisson process, while the squared-amplitude distribution is mod-
eled according to a scaledcentralχ2

2 with scaling parameterσ2
A,o

(see [9], Section 2).
Robustness in the presence of spurious peaks is primarily due

to the difference in conditional likelihoods between spurious and
linked peaks. If one of the peak amplitudes/frequencies is highly
inconsistent with respect to all template peak distributions, the
contributionP (F, A|D, T )P (D|T ) will be quite small for those
D for which the peak is linked, relative to thoseD for which this
peak is spurious. Hence, most of the unconditional likelihood will
concentrate inD for which this peak is spurious.

We now consider the benefits of merging. Figure 4 shows a hy-
pothetical situation prior to merging template peaks. Since the am-
plitude of the overlap-interference peak is highly inconsistent with
the template peak distributions (9), the present solution ends up
discarding information from overlap-interference peaks altogether,
effectively labeling them as spurious1. While overlap-interference
peak amplitudes may be unreliable, the associated frequencies are
especially likely to carry useful information as they correspond to

1Technically speaking, the conditional likelihood concentrates in de-
scriptorsD for which interference peaks are unlinked.
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CONCENTRATION

SPURIOUS CONCENTRATION

Figure 4: Illustration of STFT interference peak due to overlap-
ping harmonics in the context of linked and spurious amplitude
distributions.

template peaks from multiple pitch components. We therefore de-
sire a merge operation which induces a distributional model con-
centrating on linked overlap-interference peaks. In this manner,
merging enables the effective discounting of amplitude observa-
tions while retaining useful frequency information.

3.5. MCMC unconditional likelihood evaluation

The number of possible linkmaps and hence descriptors, withNib

template peaks andN observed peaks, is as follows:

#{D} =

min(Nib,N)
∑

n=0

(

Nib

n

)(

N

n

)

(18)

If Nib = N , (18) and Stirling’s approximation [11] yield:

#{D} =

(

2N

N

)

≈

4
N

√

πN

[

1 −O

(

1

N

)]

(19)

A further complication arises in thatP (F, A|D, T ), via (9,11), re-

quires knowledge of the reference amplitudesA0,Q

∆
= {A

(k)
0 }

Q

k=1,
whereQ denotes the number of pitch components. Our solution is
to marginalize theA0,Q. Here, eachA(k)

0 ∈ A0,Q is discretized to
a gridA, the latter consisting ofNA amplitudes uniformly posi-
tioned in dB space on a [-9 dB, +9 dB] interval relative to the high-
est amplitude peak. ThusA0,Q belongs to the product spaceAQ

consisting ofNQ

A
discrete possibilities. A uniform priorP (A0,Q)

is placed on these possibilities. Marginalization ofA0,Q and (17)
yield:

P (F, A|T ) =
∑

D∈D,A0,Q∈AQ

P (F, A|D, T (A0,Q))P (A0,Q)P (D|T (A0,Q))

(20)

The number of terms in the summation (20) grows exponen-
tially with the common number of template and observed peaks,
as well as the number of pitch components.
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To facilitate the computation, we introduce a Markov chain
Monte Carlo (MCMC) approximate enumeration, analogous to Sec-
tion 4 of [9]. In practice, virtually all of the unconditional likeli-
hood concentrates in a few{D, A0,Q}-possibilities. Our goal then
becomes to construct a Markov chain traversing the{D, A0,Q}

with the highest contributions to the sum (20). To this end, we
specify the stationary distributionπ(D, A0,Q), as proportional to
[P (F, A|D, T (A0,Q))P (A0,Q)P (D|T (A0,Q))]

γ , whereγ > 1.
The Metropolis-Hastings rule [12] is a general method for con-

structing a Markov chain admitting a desiredπ(D, A0,Q), with
a user-specifiedsampling distributionq(D′, A′

0,Q|D, A0,Q). As
long asq is irreducible, the algorithm will converge, though ar-
bitrarily slowly unless this sampling distribution is well chosen.
Our choice mixes alterations inA0,Q (via qA(A′

0,Q|A0,Q)) inde-
pendently with alterations inD (via qD(D′

|D)), each chosen with
probability0.5.

In case ofqA, we select oneA(k)
0 uniformly among theQ

possibilities and move it up or down one gridpoint (∆dB level),
except for the boundary cases where only one adjacency exists. In
case ofqD, we exploit a similar notion of adjacency on the space of
linkmaps. The following types of moves exist, as shown in Figure
5: 1.) Remove a link; 2.) Add a nonintersecting link; 3.) Switch
a link to the adjacent position on input; 4.) Switch a link to the
adjacent position on output.

1.00 1.50 2.01 4.54

1.04 1.77 3.03 4.583.14

3.01 1.00 1.50 2.01 4.54

1.04 1.77 3.03 4.583.14

3.01

1.00 1.50 2.01 4.54

1.04 1.77 3.03 4.583.14

3.01

4. SWITCH OUTPUT LINK POSITION

1.00 1.50 2.01 4.54

1.04 1.77 3.03 4.583.14

3.01

LINK POSITION3. SWITCH INPUT

1.00 1.50 2.01 4.54

1.04 1.77 3.03 4.583.14

3.01

2. ADD A NONINTERSECTING LINK

ORIGINAL

1. REMOVE A LINK

Figure 5:Example linkmap moves.

A move type is selected with uniform probability over the
types with at least one move possibility, then a move is selected
uniformly among those possibilities.

The general Metropolis-Hastings rule proceeds over iterations
i as follows. As a shorthand, define the stateS(i)

= {D(i), A
(i)
0,Q

},

and defineS′(i), S(i+1) analogously.

1. SampleS′(i)
∼ q(S′(i)

|S(i)
)

2. Select

S
(i+1)

=

{

S′(i) w. prob α(S(i), S′(i)
)

S(i) w. prob 1 − α(S(i), S′(i)
)

where

α(S
(i)

, S
′(i)

) = min

(

1,
π(S′(i)

)q(S(i)
|S′(i)

)

π(S(i))q(S′(i)
|S(i))

)

The irreducibility ofq follows from the irreducibilities ofqD and
qA and the fact either distribution may be selected with probability
0.5, which is strictly positive. The irreducibility ofqA obtains
since one may traverse any configuration of grid points inA for
eachA0,Q by accumulating adjacent steps, each with probability
at least1/(2Q). Similarly, the irreducibility ofqD follows since
one can reach any linkmap from any other linkmap by removing
and adding links one-by-one. There are only finitely many such
possibilities each of which occurs with strictly positive probability.

The initialization ofA0,Q proceeds by taking all elementsA
(k)
0

equal to the maximum STFT peak amplitude. The initialization
of D follows by McAulay-Quatieri peak matching [9], [13]. In
practice, we obtain rapid convergence using only∼ 600 MCMC
iterations. Subsequent optimizations are as follows: first, we hash
intermediate computations for previously visitedD and/orA0,Q

values; second, we varyγ according to the annealing schedule

γ(i)
= 0.1, γ(i+1)

= min

(

1.005γ(i), 5
)

, allowing a wider range

of {D, A0,Q} possibilities to be visited at the outset.

Prior and Posterior Chroma Probabilities

True Chroma Cand. Chroma Prior Posterior

min inv0 {0,3,7} min inv0 0.1666667 1
min inv0 min inv1 0.1666667 0
min inv0 min inv2 0.1666667 2.261584e-56
min inv0 Maj inv0 0.1666667 0
min inv0 Maj inv1 0.1666667 0
min inv0 Maj inv2 0.1666667 0
min inv1{3,7,12} min inv0 0.1666667 9.525349e-70
min inv1 min inv1 0.1666667 1
min inv1 min inv2 0.1666667 4.509738e-98
min inv1 Maj inv0 0.1666667 0
min inv1 Maj inv1 0.1666667 0
min inv1 Maj inv2 0.1666667 0
min inv2{7,12,15} min inv0 0.1666667 2.676833e-145
min inv2 min inv1 0.1666667 4.012468e-06
min inv2 min inv2 0.1666667 0.999996
min inv2 Maj inv0 0.1666667 0
min inv2 Maj inv1 0.1666667 0
min inv2 Maj inv2 0.1666667 0
Maj inv0{0,4,7} min inv0 0.1666667 0
Maj inv0 min inv1 0.1666667 0
Maj inv0 min inv2 0.1666667 0
Maj inv0 Maj inv0 0.1666667 1
Maj inv0 Maj inv1 0.1666667 6.865183e-83
Maj inv0 Maj inv2 0.1666667 1.348039e-57
Maj inv1{4,7,12} min inv0 0.1666667 9.678233e-263
Maj inv1 min inv1 0.1666667 4.088142e-222
Maj inv1 min inv2 0.1666667 5.335909e-321
Maj inv1 Maj inv0 0.1666667 7.255914e-19
Maj inv1 Maj inv1 0.1666667 1
Maj inv1 Maj inv2 0.1666667 6.160874e-39
Maj inv2{7,12,16} min inv0 0.1666667 0
Maj inv2 min inv1 0.1666667 0
Maj inv2 min inv2 0.1666667 0
Maj inv2 Maj inv0 0.1666667 2.125255e-128
Maj inv2 Maj inv1 0.1666667 6.687174e-14
Maj inv2 Maj inv2 0.1666667 1
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Table 1:Prior and posterior chroma probabilities.

4. RESULTS

Tables 1–3 display confusion maps showing associated posterior
probabilities. Here, all attributes not displayed in each table are
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Prior and Posterior Octave Probabilities

True Cand. Prior Posterior
Octave Octave

2 2 0.2 1
2 3 0.2 0
2 4 0.2 0
2 5 0.2 0
3 2 0.2 1.553992e-186
3 3 0.2 1
3 4 0.2 0
3 5 0.2 0
4 2 0.2 0
4 3 0.2 6.920196e-44
4 4 0.2 1
4 5 0.2 0
5 2 0.2 3.219936e-177
5 3 0.2 5.635765e-85
5 4 0.2 4.813075e-11
5 5 0.2 1
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Octave Posterior, P(O | F,A), P_min = 1e−14

Table 2:Prior and posterior octave probabilities.

marginalized in the corresponding posterior probability computa-
tion. To generate these maps, we derive input signals by mixing
several single-note piano recordings together with−10 dB addi-
tive Gaussian white noise. The STFT analysis operates on a227

ms frame immediately following the attack region. We specify
the following user parameter values:CA = 0.8, ΛF,ib = 0.001,

ΛA,ib = 0.5, φb = 0.8, σ2
A,o =

(

0.008A
(k)
0

)2

.

Indeed, the resultant posteriors seem highly concentrated about
the correct attributes. Concentration results, however, remain some-
what sensitive to specific user parameter settings; once set, how-
ever, the parameters seem to generalize well to a variety of signals
of similar type. The given settings seem to perform especially well
for tuning inference, demonstrating “perfect pitch” within0.25

semitones, thus exceeding the abilities of most human listeners.
For chroma inference, the maximum confusion seems to be be-
tween adjacent inversions (on the level of4.0 · 10

−6); in particu-
lar, the confusion is asymmetric: most of the remaining probability
concentrates on the lower adjacent inversion. Similarly, the maxi-
mum confusion for octave inference, though miniscule4.8·10

−11,
concentrates asymmetrically on the suboctave.

Future work necessarily involves learning user-specified pa-
rameters, via EM, enlargement of the MCMC space, and/or other
techniques.
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