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ABSTRACT

This work presents a novel framework formusic synthesis, based
on the perceptual structure analysis of pre-existing musical sig-
nals, for example taken from a personal MP3 database. We raise
the important issue of grounding music analysis on perception, and
propose a bottom-up approach to music analysis, as well as mod-
eling, and synthesis. A model of segmentation for polyphonic
signals is described, and is qualitatively validated through sev-
eral artifact-free music resynthesis experiments, e.g., reversing the
ordering of sound events (notes), without reversing their wave-
forms. Then, a compact “timbre” structure analysis, and a method
for song description in the form of an “audio DNA” sequence is
presented. Finally, we propose novel applications, such as mu-
sic cross-synthesis, or time-domain audio compression, enabled
through simple sound similarity measures, and clustering.

1. INTRODUCTION

Music can be regarded as a highly complex acoustical and tempo-
ral signal, which unfolds through listening into a sequential orga-
nization of perceptual attributes. A structural hierarchy [1], which
has been often studied in the frequency domain (i.e., relationship
between notes, chords, or keys) and the time domain (i.e., beat,
rhythmic grouping, patterns, macrostructures) demonstrate the in-
tricate complexity and interrelationship between the components
that make music. Few studies have proposed computational mod-
els on the organization of timbres in musical scenes. However, it
was shown by Delìege [2] that listeners tend to prefer grouping
rules based on timbre over other rules (i.e., melodic and temporal)
and by Lerdahl in [3] that music structures could also be built up
from timbre hierarchies.

Here we refer totimbre as the sonic “quality” of an audi-
tory event, that distinguishes it from other events, invariantly of
its change in pitch or loudness. From an auditory scene analysis
point of view, by which humans build mental descriptions of com-
plex auditory environment, an abrupt event is an important sound
source separation cue. Auditory objects get first separated and
identified on the basis of common dynamics and spectra. Then,
features such as pitch and loudness are estimated [4]. Moreover,
the clear separation of sound events in time makes music analysis
and its representation easier than if we attempted to model audio
and music all at once.

Segmentation has proven to be useful for a range of audio
applications, such as automatic transcription [5], annotation [6],
sound synthesis [7], or rhythm and beat analysis [8] [9]. Data-
driven concatenative synthesis consists of generating audio sequences
by juxtaposing smallunitsof sound (e.g., 150 ms), so that the re-
sult best matches a usually longertarget sound or phrase. The

method was first developed as part of atext-to-speech(TTS) sys-
tem, which exploits large databases of speech phonemes in order
to reconstruct entire sentences [10].

Schwarz’sCaterpillar system [7] aims at synthesizingsounds
with the concatenation of musical audio signals. The units are seg-
mented via alignment, annotated with a series of audiodescriptors,
and are selected from a large database with a constraint solving
technique.

Zils and Pachet’sMusical Mosaicing[11] aims at generating
musicwith arbitrary samples. The music generation problem is
seen as a constraint problem. The first application proposed com-
poses with overlapping samples by applying an overall measure of
concatenation quality, based on descriptor continuity, and a con-
straint solving approach for sample selection. The second applica-
tion uses atargetsong as the overall set of constraints.

Lazier and Cook’sMoSieviussystem [12] takes up the same
idea, and allows for real-time interactive control over the mosaic-
ing technique by fastsound sieving: a process of isolating sub-
spaces as inspired by [13]. The user can choose input and output
signal specifications in real time in order to generate an interactive
audio mosaic. Fast time-stretching, pitch shifting, and k-nearest
neighbor search is provided. An (optionally pitch-synchronous)
overlap/add technique is used for synthesis.

Few or no audio examples with these systems were available.
Lazier’s source code is however freely available online. Finally, a
real world example of actual music generated with small segments
collected from pre-existing audio samples is among others, John
Oswald’s Plunderphonics project. He created a series of collage
pieces by cutting and pasting samples by hand [14].

2. AUDITORY SPECTROGRAM

Let us start with a monophonic audio signal of arbitrary sound
quality—since we are only concerned with the musical apprecia-
tion of the audio by a human listener, the signal may have been
formerly compressed, filtered, or resampled—and any musical
content—we have tested our program with excerpts taken from
jazz, classical, funk, pop music, to speech, environmental sounds,
or simple drum loops. The goal of our auditory spectrogram is to
convert the time-domain waveform into a reduced, yet perceptually
meaningful, time-frequency representation. We seek to remove the
information that is the least critical to our hearing sensation while
retaining the important parts, therefore reducing signal complex-
ity without perceptual loss. An MP3 codec is a good example of
application that exploits this principle for compression purposes.
Our primary interest here is segmentation (seeSection 3), therefore
the process is being simplified.

First, we apply a standard STFT to obtain a regular spectro-
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gram. Many window types and sizes have been tested, which did
not really have a significant impact on the results. However, since
we are mostly concerned with timing accuracy, we favor short win-
dows (e.g., 12 ms Hanning), which we compute every 3 ms (i.e.,
every 128 samples at 44.1 KHz). The FFT is zero-padded up to 46
ms to gain additional interpolated frequency bins. We now calcu-
late the power spectrum, and then group and convert resulting bins
into 25 critical-bands according to a Bark scale—see equation (1).
At low frequencies, critical bands show an almost constant width
of about 100 Hz while at frequencies above 500 Hz, they show a
bandwidth which is about 20% of the center frequency [15].

z(f) = 13 ·arctan(0.00076f)+3.5 ·arctan
“
(f/7500)2

”
(1)

A non-linearspreading functionis calculated for every fre-
quency band with equation (2) [16]. The function modelsfre-
quency maskingand may vary depending on the refinement of the
model. More details can be found in [17].

SF (z) = (15.81− i) + 7.5(z + 0.474)

− (17.5− i)
p

1 + (z + 0.474)2 (2)

where

i = min(5 · |F (f)| ·BW (f), 2.0), and

BW (f) =


100 for f < 500
0.2f for f ≥ 500

Another perceptual phenomenon that we consider as well is
temporal masking, and particularly post-masking. The envelope of
each critical-band is convolved with a 200-ms half-Hanning (i.e.,
raised cosine) window. This stage induces smoothing of the spec-
trogram, while preserving attacks. The outcome merely approx-
imates a “what-you-see-is-what-you-hear” type of spectrogram,
meaning that the “just visible” in the time-frequency display (see
Figure 1, frame 2) corresponds to the “just audible” in the under-
lying sound. The spectrogram is finally normalized to the range
0-1.

Among perceptual descriptors commonly exploited stands out
loudness: the subjective judgment of the intensity of a sound. It
can be approximated by the area below the masking curve. We
can simply derive it from our spectrogram by adding the energy of
each frequency band (seeFigure 1, frame 3).

3. SEGMENTATION

Segmentation is the means by which we can divide the musical
signal into smaller units of sound. When organized in a particular
order, the sequence generates music. Since we are not concerned
with sound source separation at this point, a segment may repre-
sent a rich and complex polyphonic sound, usually short.

We define a sound segment by its onset and offset boundaries.
It is assumed perceptually “meaningful” if its timbre is consistent,
i.e., it does not contain any noticeable abrupt changes. Typical
segment onsets include abrupt loudness, pitch or timbre variations.
All of these events translate naturally into an abrupt spectral vari-
ation in our auditory spectrogram.

First, we convert the spectrogram into anevent detection func-
tion. It is obtained by first calculating the first-order difference
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Figure 1:A short 3.25 sec. excerpt of Watermelon man by Herbie
Hancock. [from top to bottom] 1) the waveform (blue) and the
segment onsets (red); 2) the auditory spectrogram; 3) the loudness
function; 4) the event detection function; 5) the detection function
convolved with a 150-ms Hanning window.

function for each spectral band, and then by summing these en-
velopes across channels. The resulting signal contains peaks, which
correspond to onset transients (seeFigure 1 frame 4). We smooth
that signal in order to eliminate irrelevant sub-transients (i.e., sub-
peaks) which, within a 50 ms window would perceptually fuse
together. That filtering stage is implemented by convolving the
signal with a Hanning window (best results were obtained with a
150-ms window). This returns a smooth function, now appropriate
for thepeak-pickingstage. The onset transients are found by ex-
tracting the local maxima in that function (seeFigure 1, frame 5).
A small arbitrary threshold could be necessary to avoid smallest
undesired peaks, but its choice should not be critical.

Since we are concerned with reusing the audio segments for
synthesis, we now refine the onset location by analyzing it in rela-
tionship with its correspondingloudness function. An onset would
typically occur with an increase in loudness. To retain the entire at-
tack, we search for the previous local minimum in that signal (i.e.,
usually a small shift of less than 20 ms), which corresponds to the
softest moment before the onset (seeFigure 1, frame 3). Finally,
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we look in the corresponding waveform, and search for the closest
zero-crossing, with an arbitrary but consistent choice of direction
(e.g., negative to positive). This stage is important to insure signal
continuity at synthesis (see Section 5).

4. BEAT TRACKING

Our beat-tracker was mostly inspired by Eric Scheirer’s [18] and
assumes no knowledge beforehand. For instance, it does not re-
quire a drum track, or a bass line to perform successfully. How-
ever, there are differences in the implementation which are worth
mentioning. First, we use the auditory spectrogram as a front-end
analysis technique, as opposed to a filterbank of six sixth-order
elliptic filters, followed by envelope extraction. The signal to be
processed is believed to be more perceptually grounded. We also
use a large bank of comb filters as resonators, which we normal-
ized by integrating the total energy possibly contained in the de-
lay line, i.e., assuming DC signal. Asalienceparameter is added
which allows us to estimate if there’s a beat in the music at all.
For avoiding tempo ambiguity (e.g., octaves), we use a template
mechanism to select the faster beat, as it gives more resolution to
the metric, and is easier to down-sample if needed.
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Figure 2:Beat tracking of a 27 sec. excerpt of Watermelon man by
Herbie Hancock. [from top to bottom] 1) the waveform (blue) and
the beat markers (red); 2) the tempogram; 3) the tempo spectrum
after 16 sec. of tracking.

Figure 2 shows an example of beat tracking a polyphonic jazz-
fusion piece at roughly 143 BPM. A tempogram (frame 2) displays
the knowledge of tempo gained over the course of the analysis.
First, there is no knowledge at all, but slowly the tempo gets clearer
and stronger. Note in frame 1 that beat tracking was accurately
stable after merely 1 second. The 3rd frame displays the output
of each resonator. The strongest peak is the extracted tempo. A
peak at the sub octave (72 BPM) is visible, as well as some other
harmonics of the beat.

5. MUSIC SYNTHESIS

The motivation behind this preliminary analysis work is primar-
ily synthesis. We are interested in composing with a database of
sound segments—of variable sizes, typically ranging from 60 to
300 ms—which we can extract from a catalog of musical samples
and pieces (e.g., an MP3 database), and which can be rearranged
in a structured, and musically meaningful sequence, e.g., derived
from the larger timbre, melodic, harmonic, and rhythmic structure
analysis of an existing piece, or a specific musical model (another
approach to combining segments could consist for instance of us-
ing generative algorithms).

In sound jargon, the procedure is known asanalysis-
resynthesis, and may often include an intermediarytransforma-
tion stage. For example, a sound is analyzed through a STFT and
decomposed in terms of its sinusoidal structure, i.e., a list of fre-
quencies and amplitudes changing over time, which typically de-
scribes the harmonic content of a pitched sound. This represents
theanalysisstage. The list of parameters may first be transformed,
e.g., transposed in frequency, or shifted in amplitude, and is finally
resynthesized: a series of oscillators are tuned to each frequency
and amplitude, and are summed to generate the waveform.

We extend the concept to “music” analysis and resynthesis,
with structures derived from timbre which motivated the need for
segmentation. A segment represents the largest unit of continuous
timbre. We believe that each segment could very well be resyn-
thesized by known techniques, such as additive synthesis, but we
are only concerned with the issue of music synthesis, i.e., the struc-
tured juxtaposition of sounds over time, which implies higher level
(symbolic) structures. Several qualitative experiments have been
implemented, to demonstrate the advantages of a segment-based
music synthesis approach over an indeed more generic, but still
ill-defined frame-based approach.

5.1. Scrambled Music

This first of our series of experiments assumes no structure or con-
straint whatsoever. Our goal is to synthesize an audio stream by
randomly juxtaposing short sound segments previously extracted
from an existing piece of music—typically 2 to 8 segments per
second with the music that was tested.

At segmentation, a list of pointers to audio segments is created.
Scrambling the music consists of rearranging randomly the se-
quence of pointers, and of reconstructing the corresponding wave-
form. There is no segment overlap, windowing, or cross-fading
involved, as generally the case with granular synthesis to avoid dis-
continuities. Here the audio signal is not being processed. Since
segmentation was performed perceptually at a strategic location
(i.e., just before an onset, at the locally quietest moment, and at
zero-crossing), the transitions are artifact-free and seamless.

While the new sequencing generates the most unstructured
music, theevent-synchronous synthesisapproach permitted us to
avoid generation of audio clicks and glitches. This experiment is
arguably regarded as the “worst” possible case of music resynthe-
sis; yet the result is audiowise adequate to hearing (seeFigure 3).

The underlying beat of the music, if any, represents a percep-
tual metric on which the segment structure fits. While beat tracking
was found independently of the segment structure, the two repre-
sentations are intricately interrelated with each other. The same
scrambling procedure can be applied to thebeat segments(i.e., au-
dio segments separated by two beat markers).

DAFX-3

  

  

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —363 363



Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

1

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3

Figure 3:Scrambled version of the musical excerpt of Figure 1.

A new list of pointers to beat segments is created for the beat
metric. If a beat marker occurs at less than 10% of the beat from
a segment onset, we relocate the marker to that segment onset—
strategically a better place. If there is no segment marker within
that range, it is likely that there is no onset to be found, and we
relocate the beat marker to the closest zero-crossing in order to
minimize possible discontinuities. We could as well discard that
beat marker altogether.

We apply the exact same scrambling procedure on that list of
beat segments, and generate the new waveform. As predicted, the
generated music is now metrically structured, i.e., the beat is found
again, but the harmonic, or melodic structure are now scrambled.
Compelling results were obtained with samples from polyphonic
african, latin, funk, jazz, or pop music.

5.2. Reversed Music

The next experiment consists of adding simple structure to the pre-
vious method. This time, rather than scrambling the music, the
segment order is entirely reversed, i.e., the last segment comes
first, and the first segment comes last. This is much like what
we could expect to hear when playing a score backwards, starting
with the last note first, and ending with the first one. This is how-
ever very different from reversing the audio signal, which distorts
the perception of the sound events since they start with an inverse
decay, and end with an inverse attack (seeFigure 4).
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Figure 4:Reversed version of the musical excerpt of Figure 1.

The method has been tested successfully on several types of
music including drum, bass, and saxophone solos, classical, jazz
piano, polyphonic folk, pop, and funk music. It was found that per-
ceptual issues with unprocessed reversed music occur with over-
lapping sustained sounds, or long reverb—some perceptual dis-
continuities cannot be avoided.

This experiment is a good test bench for our segmentation.
If the segmentation failed to detect a perceptually relevant onset,
the reversed synthesis would fail to play the event at its correct
location. Likewise, if the segmentation detected irrelevant events,
the reversed synthesis would sound unnecessarily granular.

The complete procedure, including segmentation and reorder-
ing, was run again on the reversed music. As predicted, the origi-
nal piece was always recovered. Only little artifacts were encoun-

tered, usually due to a small time shift with the new segmentation,
then resulting into slightly noticeable jitter and/or audio residues
at resynthesis. Few re-segmentation errors were found. Finally,
the reversed music procedure can easily be extended to the beat
structure as well, and reverse the music while retaining a metrical
structure.

5.3. Time-Axis Perceptual Redundancy Cancellation

A perceptual multidimensional scaling (MDS) of sound is a ge-
ometric model which allows the determination of the Euclidean
space (with an appropriate number of dimensions) that describes
the distances separating timbres as they correspond to listeners’
judgments of relative dissimilarities. It was first exploited by Grey
[19] who found that traditional monophonic pitched instruments
could be represented in a three-dimensional timbre space with
axes corresponding roughly to attack quality (temporal envelope),
spectral flux (evolution of the spectral distribution over time), and
brightness (spectral centroid).

Similarly, we seek to label our segments in a perceptually
meaningful and compact, yet sufficient multidimensional space,
in order to estimate their similarities in the timbral sense. Percep-
tually similar segments should cluster with each other and could
therefore hold comparable labels. For instance, we could repre-
sent a song with a compact series of audio descriptors (much like
a sort of “audio DNA”) which would relate to the segment struc-
ture. Close patterns would be comparable numerically, (much like
two protein sequences).

Thus far, we have only experimented with simple represen-
tations. More in-depth approaches to sound similarities and low
level audio descriptors may be found in [20] or [21]. Our current
representation describes sound segments with 30 normalized di-
mensions, 25 derived from the average amplitude of the 25 critical
bands of the Bark decomposition, and 5 derived from the loud-
ness envelope (i.e., loudness value at onset, maximum loudness
value, location of the maximum loudness, loudness value at offset,
length of the segment). The similarity between two segments is
calculated with a least-square distance measure.

With popular music, sounds tend to repeat, whether they are
digital copies of the same material (e.g., a drum loop), or sim-
ply musical repetitions with perceptually undistinguishable sound
variations. In those cases, it can be appropriate to cluster sounds
that are very similar. Strong clustering (i.e., small number of clus-
ters compared with the number of original data points) is useful to
describe a song with a small alphabet and consequently get a rough
but compact structural representation, while more modest cluster-
ing (e.g., that is more concerned with perceptual dissimilarities),
would only combine segment that are very similar with each other.

While modern lossy audio coders efficiently exploit the lim-
ited perception capacities of human hearing in the frequency do-
main [17], they do not take into account the perceptual redundancy
of sounds in the time domain. We believe that by canceling such
redundancy, we not only reach further compression rates, but since
the additional reduction is of different nature, it would not affect
“audio” quality per say. Indeed, with the proposed method, dis-
tortions if any, could only occur in the “music” domain, that is a
quantization of “timbre”, coded at the original bit rate. It is obvi-
ously arguable that musical distortion is always worse than audio
distortion, however distortions if they actually exist (they would
not if the sounds are digital copies), should remain perceptually
undetectable.
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We have experimented with redundancy cancellation, and ob-
tained perfect resynthesis with simple cases. For example, if a
drum beat (even complex and poly-instrumental) is looped more
than 10 times, the sound file can easily be reduced down to 10%
of its original size with no perceptual loss. More natural excerpts
of a few bars were tested with as low as 30% of the original sound
material, and promising results were obtained (see Figure 5). The
more abundant the redundancies, the better the segment ratio, lead-
ing to higher compression rates. Our representation does not han-
dle parametric synthesis yet (e.g., amplitude control), which could
very much improve the results. Many examples were purposely
over compressed in order to generate musical artifacts. These
would often sound fine if the music was not known ahead of time.
More on the topic can be found in [22].
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Figure 5: [top] Original auditory spectrogram of 11 sec. of an
african musical excerpt (guitar and percussion performed live),
and its corresponding loudness function. [bottom] Resynthesized
signal’s auditory spectrogram with only 10% of the original mate-
rial, and its corresponding loudness function.

5.4. Cross-synthesis

Cross-synthesis is a technique used for sound production, whereby
one parameter of a synthesis model is applied in conjunction with
a different parameter of another synthesis model. Physical mod-
eling, linear predictive coding, or the vocoder for instance enable
cross-synthesis.

We extend the principle to the cross-synthesis of music, much
like in [11], but weevent-synchronize1 segments at synthesis rather
than using arbitrary segment lengths. We first generate asource
database from the segmentation of a piece of music, and we replace
all segments of atargetpiece by the most similar segments in the
source. Each piece can be of arbitrary length and style.

The procedure relies essentially on the efficiency of the simi-
larity measure between segments. Ours takes into account the fre-
quency content as well as the time envelope, and performs fairly

1the term here is given as an analogy with the term “pitch-
synchronous,” as found in PSOLA.
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Figure 6: Cross-Synthesis between an excerpt of Kickin’ back by
Patrice Rushen (source) and another excerpt of Watermelon man
by Herbie Hancock (target). [top] The target waveform, its audi-
tory spectrogram, and its loudness function. [bottom] The cross-
synthesized waveform, its auditory spectrogram, and its loudness
function. Note the close timing and spectral relationship between
both pieces although they are made of different sounds.

well with the samples we have tested. A more advanced technique
based on dynamic programming is currently under development.
We have experimented with cross-synthesizing pieces as dissimilar
as a guitar piece with a drum beat, or a jazz piece with a pop song.
Finally our implementation allows to combine clustering (Section
5.3) and cross-synthesis together—the target or the source can be
pre-processed to contain fewer sounds, yet contrasting ones.

The results that we obtained were inspiring, and we believe
they were due to the close interrelation of rhythm and spectral dis-
tribution between the target and the cross-synthesized piece. This
interconnection was made possible by the means of synchronizing
sound events (from segmentation) and similarities (see Figure 6).

Many sound examples for all the applications that were de-
scribed in this paper, all usingdefaultparameters, are available at:
http://www.media.mit.edu/∼tristan/DAFx04/
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6. IMPLEMENTATION

The several musical experiments described above easily run in a
stand-alone Mac OS X application through a simple GUI. That
application was implemented together with theSkeletonenviron-
ment: a set of Obj-C/C libraries primarily designed to speed up,
standardize, and simplify the development of new applications deal-
ing with the analysis of musical signals. Grounded upon funda-
mentals of perception and learning, the framework consists of ma-
chine listening, and machine learning tools, supported by flexible
data structures and fast visualizations. It is being developed as
an alternative to more generic and slower tools such as Matlab,
and currently includes a collection of classes for the manipula-
tion of audio files (SndLib), FFT and convolutions (Apple’s vDSP
library), k-means, SVD, PCA, SVM, ANN (nodeLib), psychoa-
coustic models, perceptual descriptors (pitch, loudness, brightness,
noisiness, beat, segmentation, etc.), an audio player, and fast and
responsive openGL displays.

7. CONCLUSION

The work we have presented includes a framework for the structure
analysis of music through the description of a sequence of sounds,
which aims to serve as a re-synthesis model. The sequence relies
on a perceptually groundedsegmentationderived from the con-
struction of anauditory spectrogram. The sequence is embedded
within a beat metricalso derived from the auditory spectrogram.
We propose a clustering mechanism for time-axis redundancy can-
cellation, which applies well to applications such as audiocom-
pression, or timbre structurequantization. Finally, we qualitatively
validated our various techniques through multiple synthesis exam-
ples, including reversing music, or cross-synthesizing two pieces
in order to generate a new one. All these examples were gener-
ated with default settings, using a single Cocoa application that
was developed with the auhor’sSkeletonlibrary for music signal
analysis, modeling and synthesis. The conceptually simple method
employed, and audio quality of the results obtained, attest for the
importance of timbral structures with many types of music. Fi-
nally, the perceptually meaningful description technique showed
clear advantages over brute-force frame-based approaches in re-
combining audio fragments into new sonically meaningful wholes.
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