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ABSTRACT

Design method of a nonlinear filter to estimate the amplitudes
of cubic difference tones is presented. To this end, a third-order
Volterra filter is used to model the nonlinearity of our auditory
system, and the filter coefficients are obtained using an adaptive
process. The results show the filtered outputs follow very closely
the experimental data as the intensity levels and the frequencies of
inputs vary especially when the frequency separation between the
two primary tones is not large.

1. INTRODUCTION

When there is an input stimulus with two sinusoidal components
calledprimary tonesat frequenciesf1 andf2 (f1 < f2), our ear
not only perceives tones at frequenciesf1 andf2, but also hears
many other distortion tones at frequenciesk1f1 ± k2f2, ki ∈ Z,
especially when the intensity level of the input is high. These dis-
tortion tones, calledcombination tones, are due to nonlinear be-
havior in our auditory system. Such nonlinearity in the ear was
reported as early as1856 by von Helmholtz, when he wrote a the-
ory on combination tones using a power series model [1].

Among many possible combination tones, the most audible
and prominent ones are cubic difference tones or the CDTs at fre-
quency2f1 − f2, and quadratic difference tones (QDTs) at fre-
quencyf2 − f1. While many experiments show that the quadratic
difference tone level observes the classical square-law ingeneral,
the amplitude behavior of the CDTs is so unusual that every ex-
periment yields different results. Such unusual behavior of the
CDTs has caused a great deal of research on modeling auditory
nonlinearity with an attempt to match experimental data as closely
as possible. Zwicker, who was the first to observe the abnormal
behavior of the amplitude of the CDTs, performed extensive ex-
periments using a cancellation tone and proposed a model with
a nonlinear feedback loop [2]. Goldstein presented methodsfor
measuring more precisely the intensity of the CDTs and differ-
ence tones by presenting a probe tone to facilitate adjustment of
the cancellation tone, and suggested the idea ofessential nonlin-
earity, according to which the relative level of the CDT is almost
independent of the stimulus level [3]. Smoorenburg observed that
the CDTs can be heard at low stimulus levels only in a restricted
region belowf1, the so called “audibility region of combination
tones” [4].

In the present paper, the authors present design methods for
a nonlinear filter that better fits various experimental datafor the
cubic difference tones. To accomplish this, a third-order Volterra
filter is used to model the nonlinearity in our auditory system, and
the filter coefficients are estimated based on the adaptive process

with a third sinusoidal primary tone added to an input. In order to
validate the model, arbitrary input stimuli of different frequency
interval and/or different primary tone levels are fed to thefilter,
and the results are compared with the experimental data.

In the next section, the basic framework of a Volterra filter
for nonlinear system identification is reviewed. In the following
section, the authors present an algorithm to obtain the filter coeffi-
cients using an LMS-based adaptive process by carefully choosing
a desired response of the system, followed by the simulationre-
sults and comparison with the experimental data.

2. VOLTERRA FILTERS FOR NONLINEAR SYSTEMS

The nonlinear behavior of the hearing mechanism proposed byvon
Helmholtz [1] was later simplified by Fletcher [5] using a classical
power series represented by

y = a0 + a1x + a2x
2 + · · · + anx

n
, (1)

wherex and y are the input and output of the system, andan

are constants. The nonlinearity in the power series represented
by Equation (1) is generally considered to increase as inputlevel
increases.

A nonlinear system with memory represented by means of an
extension of power series, known asVolterra series expansion, can
be described as

y(t) = h0 +
∞

X

p=1

hp[x(t)], (2)

wherex(t) andy(t) are the input and output signals, and

hp[x(t)] =

Z

∞

−∞

· · ·

Z

∞

−∞

hp(τ1, · · · , τp)x(t − τ1)

· · · x(t − τp)dτ1 · · · dτp. (3)

The multidimensional functionshp(τ1, · · · , τp), called the
Volterra kernels, can completely characterize nonlinear systems
representable by Volterra series such as polynomial systems [6].

In a manner similar to the continuous case, anN -th order
discrete-time Volterra filter for the causal, nonlinear system with
memory lengthM can be described by

y(n) = h0 +

N
X

p=1

hp[x(n)], (4)
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where

hp[x(n)] =
M

X

m1=0

· · ·

M
X

mp=0

hp(m1, · · · , mp)

× x(n − m1) · · ·x(n − mp). (5)

Since we are interested in modeling the nonlinear behavior of
cubic difference tones, we use a truncated Volterra filter with the
orderN = 3, which is defined as:

y(n) =

M−1
X

m1=0

h1(m1)x(n − m1)

+

M−1
X

m1=0

M−1
X

m2=0

h2(m1, m2)x(n − m1)x(n − m2) (6)

+

M−1
X

m1=0

M−1
X

m2=0

M−1
X

m3=0

h3(m1, m2, m3)x(n − m1)x(n − m2)x(n − m3),

whereM is the memory length of the filter.
In the next section, we describe how to estimate filter coeffi-

cients by employing the least-mean-squares (LMS) algorithm.

3. ESTIMATING FILTER COEFFICIENTS USING THE
LMS ALGORITHM

3.1. The LMS Algorithm for Third-Order Volterra Filter

There are several ways to estimate the Volterra filter coefficients,
among which the minimum mean-square error (MMSE) estima-
tion and the least-squares estimation are well known algorithms
of direct estimation schemes. In situations where the nonlinear
system to be modeled is time-varying and/or the statistics of the
signals involved are not known a priori, adaptive filters could be
useful while direct estimation methods may fail [6]. We chose an
adaptive algorithm so as to make the model more viable in such
situations.

Among many adaptive algorithms, the least-mean-square al-
gorithm, or LMS algorithm makes use of a special estimate of the
gradient, and is represented by the following two equations[7]:

ε(n) = d(n) − X
T(n)W(n), (7)

and

W(n + 1) = W(n) − µ∇̂(n)

= W(n) + 2µε(n)X(n), (8)

whereε(n) is the error signal,d(n) is the desired response,X(n)
is the input vector,W(n) is the weight vector at time indexn, and
µ is the gain constant that regulates the speed and the stability of
adaptation. Figure 1 shows such an adaptive linear combinerwith
the memory lengthM .

The LMS algorithm for linear adaptive filtering can be eas-
ily expanded to implement the third-order adaptive Volterra filter
since the filter output defined in Equation (6) is simply the linear
combination of its linear input signals and the second and third
order cross-products of its linear input signals.

The third-order Volterra filter can be represented in vectorform
as

y(n) = X
T(n)W(n), (9)

+

−

+
+

Desired response
w0(n) w1(n) w2(n) wM−1(n)
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Figure 1: Adaptive linear combiner in the form of single-input
adaptive transversal filter (adapted from [7]).

whereX(n) contains theM linear terms of the input signalx(n),
the second and third order nonlinear terms generated fromx(n).
X(n) can be obtained by defining the following data vectors [8]:

xl(n) = [x(n), x(n − 1), · · · , x(n − M + 1)]T, (10)

x2(n) = [x2(n), x
2(n − 1), · · · , x

2(n − M + 1)]T, (11)

x3(n) = [x3(n), x
3(n − 1), · · · , x

3(n − M + 1)]T, (12)

x2c(n) = [x(n)x(n − 1), · · · , x(n − M + 2)x(n − M + 1)]T, (13)

x3c(n) = [x(n)x(n − 1)x(n − 2),

· · · , x(n − M + 3)x(n − M + 2)x(n − M + 1)]T, (14)

xsqc(n) = [x2(n)x(n − 1), x
2(n − 1)x(n − 2),

· · · , x
2
(n − M + 2)x(n − M + 1)]

T
, (15)

and the input vectorX(n) in Equation (9) can be represented as

X(n) = [xT
l (n) x

T
3(n) x

T
sqc(n) x

T
2(n) x

T
2c(n) x

T
3c(n)]. (16)

3.2. Obtaining Desired Response

In the adaptive process described in Equations (7) and (8), the de-
sired responsed is needed to derive the error signalε and thus to
update the weight vectorW of the filter. The desired response in
the adaptive system is usually obtained by a learning process or de-
rived from the input signal, both of which are not easy in our case.
When the input is composed of two sinusoidal tones, however,we
can predict the output of the cubic Volterra filter;i.e., the filtered
output would be composed of the original two sinusoidal compo-
nents and many other combination tones. Therefore, if we choose
carefully the desired response, the error signal or the residual sig-
nal may consist of the CDT with the amplitude behavior seen in
the experiments. We have chosen the desired response using the
following processes.

First, we assumed that the amplitudes and the frequencies of
the two input primary tones are known to the system. This as-
sumption is fair enough since it is not difficult to estimate them
using the frequency analysis technique such as the STFT. Second,
we created a third primary tone that produces with the lower pri-
mary tone a quadratic difference tone whose frequency is thesame
as that of the CDT,i.e., 2f1 − f2. The frequency of the QDT that
satisfies such a condition turns out to bef3 = 3f1 − f2. We used
the third primary tone as well as the original two primary tones as
our input signals. Finally, as the desired response, we usedthree
primary tones - the original two primary tones plus the intention-
ally generated third one - and the quadratic difference tone, whose
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amplitude behavior is known to follow closely the classicalsquare-
law behavior [2, 3]. Following this setup, we could imagine that
the error or residual signal would consist of the QDT overlapped
with the CDT at the same frequency of2f1 − f2 and other com-
bination tones, which can be neglected. Figure 2 shows the block
diagram of the filter.

−
+

3rd−order Volterra Filter

+xc + xq + · · ·

x1 + x2

x3

x1 + x2 + x3

xc + · · ·

x1 + x2 + x3 + xq

Figure 2: Third- order adaptive Volterra filter with desired re-
sponse and error signal.xq and xc indicate the quadratic and
cubic difference tone at frequency2f1 − f2, respectively.

The most critical point in the system is how to determine the
amplitude of the QDT which will be contained in the desired re-
sponse, and has a great effect on the output level of the CDT.
Because our assumption was that the level of the QDT follows
quite precisely the classical square-law represented byLQDT =
L1 + L3 − C dB, whereC depends on the relative amplitude of
the quadratic distortion, and approximately is a constant as shown
in [2], we could determineLQDT with suitable values ofL3xs
andC. In our algorithm, we set the level of the third primary tone
to be the same as that of the first primary tone at frequencyf1. Ide-
ally, the level of the QDT can be obtained using the above equation
with an appropriate value ofC, but it has turned out that it also re-
quires the level of the second primary toneL2 in order to precisely
estimate the level of the CDT.

After the filter has converged, the error signal would contain
not only the CDT but also other combination tones produced by
three primary tones, but we concentrated on and analyzed just the
CDT, since the amplitude behavior is what we are trying to explain
using the filter.

4. RESULTS AND DISCUSSION

Using the third-order adaptive Volterra filter with the desired re-
sponse obtained by the processes described above, we testedthe
algorithm with the various input signals with different input levels
and frequencies of primary tones, and compared the results with
the measured data provided in [2]. Figure 3 shows comparisonbe-
tween the experimental data and the estimated data using thefilter.

In Figure 3, we can clearly see that the filtered output follows
very closely the amplitude behavior of the CDT seen in the experi-
mental data. Particularly, the decrease in the CDT with increasing
levels of the lower primary can be observed in the filtered output
as well, which is the largest difference between the data expected
from the regular cubic distortion and the data obtained fromthe
experiments.

Figure 4 also shows the filtered output is very close to the mea-
sured data when the frequency separation between the two primary
tones increases.

Figure 5 shows the amplitude behavior of the CDT when the
frequency separation is large (∆f = 572Hz). Different from the
two previous figures, we can see there is an offset between the
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Figure 3:Comparison between experimental data and filtered out-
put showing the amplitude of the CDT as the input level of the
lower primary varies with the higher primary level as a parameter
(f1 = 1620Hz,f2 = 1800Hz,∆f = 180Hz). Experimental data
are adapted from [2].
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Figure 4:Comparison between experimental data and filtered out-
put showing the amplitude of the CDT as the input level of the
lower primary varies with the higher primary level as a parameter
(f1 = 1620Hz,f2 = 1944Hz,∆f = 324Hz). Experimental data
are adapted from [2].
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measured data and the filtered output. However, the offset isquite
constant at all levels, and thus can be easily compensated bycon-
trolling the level of the third primary tone we added to an input
signal. In addition, the measured data shown in the figures are the
means from six subjects, and the deviation is the largest in the third
experiment, which is as large as about 25 dB, whereas the largest
gap between the measured data and the filtered output shown in
Figure 5 is less than 20 dB.
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Figure 5:Comparison between experimental data and filtered out-
put showing the amplitude of the CDT as the input level of the
lower primary varies with the higher primary level as a parameter
(f1 = 1620Hz, f2 = 2192Hz, ∆f = 572Hz). Experimental data
are adapted from [2].

As has been mentioned above, in calculating the amplitude of
the quadratic difference tone to be added to the desired response,
not only the amplitudes of the first and third primary tones but
also that of the second primary tone was needed, which was not
expected if we just think of the square-law behavior of the QDT
produced by the first and third primary tones. This may be due
to much more complicated nonlinear interaction between theQDT
and the CDT when their frequencies coincide.

5. CONCLUSIONS

A novel model of the nonlinear amplitude behavior of the cubic
difference tone has been presented using a third-order adaptive
Volterra filter. In obtaining the desired response of the filter to
derive the error signal, a third sinusoidal primary tone wasinten-
tionally generated and added to an input in such a way that the
frequency of the quadratic difference tone produced by the first
and third primary tones should coincide with that of the cubic dif-
ference tone produced by the original two primary tones. Thelevel
of the QDT was calculated using the classical square-law, and the
QDT as well as three primary tones were added to the desired re-
sponse. The error signal or the residual signal after convergence
contained the CDT whose amplitude follows very closely what
was seen in most of the experimental data provided in [2] withdif-
ferent intensity levels and frequencies of primary tones especially

when the frequency separation is small.
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