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ABSTRACT

Blind source separation algorithms typically involve decorrelat-
ing time-aligned mixture signals. The usual assumption is that all
sources are active at all times. However, if this is not the case, we
show that the unique pattern of source activity/inactivity helps sep-
aration. Music is the most obvious example of sources exhibiting
repetitive structure because it is carefully constructed. We present
a novel source separation algorithm based on spatial time-time dis-
tributions that capture the repetitive structure in audio. Our method
outperforms time-frequency source separation when source spec-
tra are highly overlapping.

1. INTRODUCTION

Source separation techniques attempt to decompose a set of time-
aligned mixture signals (e.g.,a song) into their constituent source
signals (e.g.,instrument tracks). The usual assumption is that all
sources are active at all times. However, many sources exhibit
repetitive structure in the form of activation patterns. We utilize
this structure in order to separate sources.

As a motivating example, consider a repeating source such as a
bell tower or public address system that obscures the separation of
other local signals such as people talking. Because the bell tower
chimed an hour ago among a different mix of sounds, we expect to
better separate it in the current instance,e.g.,either by producing a
cleaner recording of the bells or by removing their contribution to
the mixture. A bell tower sounds very similar every time it chimes
whether or not the exact melody is duplicated. We identify when a
source repeats itself and use this to separate it from a mixture. This
is in contrast to blind source separation (BSS) techniques that uti-
lize correlations between mixtures computed globally on an entire
signal or locally at different time or time-frequency points. These
techniques decorrelate time-aligned mixture signals, whereas we
decorrelate between mixtures at different points in time.

In general, BSS attempts to separateN source signals fromM
mixtures by estimating the sources and mixing matrix according to
the following:

x(t) = As(t), (1)

wherex = [x1(t), · · · , xM (t)]T is a time varying vector repre-
senting the mixtures,xi(t), s = [s1(t), · · · , sN (t)]T represents
the sources,si(t), andA is theM × N real mixing matrix. The
ith column ofA is the spatialpositionof si in the mixture,i.e., its
contribution to each mixture channel.

Independent component analysis (ICA) is a class of algorithms
for BSS that assume sources are statistically independent. Earlier
techniques additionally assume that sources are stationary (i.e.,do
not change over time) [1, 2, 3, 4]. These algorithms operate on
a single correlation matrix computed on the entire multichannel

mixture signal. Because source signals are assumed to be statisti-
cally independent, the correlation matrix computed on the source
signals is diagonal. Therefore, diagonalizing these second-order
mixture correlations via a whitening transform is an important first
step for source separation. Because independence implies higher-
order decorrelation, these techniques use additional criteria such
as information maximization, minimum mutual information, and
higher-order decorrelation to separate stationary sources. How-
ever, many real source signals are not stationary, and this non-
stationarity can be leveraged for source separation.

Non-stationary signals have statistical properties that change
over time,e.g.,signal or spectral energy. Correlations between the
time-varying energy of signals are 4th-order relationships that are
explicitly minimized in the stationary case [3]. For non-stationary
signals, changes in energy affect the local 2nd-order correlations.
Instead of diagonalizing a single global correlation matrix and op-
timizing an additional criterion, sources can be separated by joint
diagonalization of multiple correlation matrices computed within
different time blocks [5, 6, 7].

The energy of a non-stationary signal may also change within
a frequency band. Techniques that isolate these changes apply to
time-frequency distributions [8, 9, 10]. A correlation matrix is
computed for each time-frequency point. Points that correspond
to single source contributions are isolated and jointly diagonalized
to separate sources.

The previous techniques do not consider the repetitive struc-
ture of audio. Non-stationary techniques only benefit from source
inactivity if it uncovers time-frequency points containing only one
source. Our method maximizes the utility of repetitive structure
by pinpointing unique source repetitions and isolating their spatial
positions.

Repetitive structure informs other tasks including segmenta-
tion [11], summarization [12], and compression [13]. Foote visu-
alizes repetitive structure in audio and video in a two-dimensional
self-similarity matrix [14]. This representation is a time-time en-
ergy distribution. Just as correlation matrices at time-frequency
points separate sources with unique spectral shape, we show that
time-time correlations separate signals exhibiting unique repetitive
structure.

2. SPATIAL TIME-FREQUENCY SEPARATION

Time-frequency distributions (TFD) estimate the energy of a sig-
nal at time-frequency points. The spectrogram is often used to
estimate the energy content in a single signal. Other distributions
enable the estimation of the energy shared between two signals,
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e.g.,the pseudo Wigner distribution [15]:

Dx1x2(t, f) =

Z
h(τ)x1(t +

τ

2
)x∗2(t−

τ

2
)e−j2πfτdτ (2)

whereh is a time window and superscript∗ is the complex conju-
gate. Some blind source separation techniques leverage the unique
TFDs of source signals. Belouchrani and Amin construct a TFD
for every pair of mixture signals. These are viewed as anM ×M
spatial correlation matrix for every time-frequency point [8]:

[Dxx(t, f)]ij = Dxixj (t, f) (3)

The correlation matrices of the mixtures are related to those of the
sources according to the following equation [8]:

Dxx(t, f) = ADss(t, f)AH , (4)

whereDxx is theM × M mixture correlation matrix,Dss is the
N × N source correlation matrix, and superscriptH indicates the
Hermitian transpose. The whitened correlation matrices,

Dzz(t, f) = WDxx(t, f)WH , (5)

can be constructed from the mixtures using the whitening trans-
form W, or from the sources by applying a unitary transformU:

Dzz(t, f) = UDss(t, f)UH . (6)

If only one source is active at a time-frequency point,Dss(t, f)
is quasi-diagonal [16]. These single-source time-frequency points
are called autoterms. MatrixU can be estimated as the unitary ma-
trix that jointly diagonalizesDzz at all time-frequency autoterms.
This requires that each source generates at least one autoterm. Be-
louchrani and Amin [8] estimateA as

Â = W#U, (7)

where superscript# indicates the pseudoinverse.
Autoterm candidates are estimated using the energy and rank-

oneness at each time-frequency point [8, 9, 10]. When the time-
frequency distributions of sources do not overlap, more sources
than mixtures can be extracted [16, 17]. However, the performance
of time-frequency separation degrades as source distributions be-
come more overlapping. In the extreme case, there are no time-
frequency autoterms and thereforeA cannot be estimated. Our
approach leverages a source’s repetitive structure in order to over-
come this shortcoming.

3. REPETITIVE STRUCTURE

Many audio signals exhibit structure in the form of repetition. Mu-
sic is the most obvious example because the structure is carefully
constructed. Different combinations of instruments play at differ-
ent times and the notes they play are repeated over the course of
a song. Repetitive structure also exists in other audio signals such
as speech and natural recordings. Words, syllables, and phonemes
are repeated in a conversation. The sounds of keyboards, tele-
phones, and printers permeate an office building. Because each
sound repeats in a different pattern and emanates from the same
physical location, we expect to more easily separate or cancel it
from a recording.

Foote’s self-similarity matrix is an example of a time-time rep-
resentation that operates on a single signal [14]. The original audio
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Figure 1: Self-similarity matrix for “March of the Pigs” by Nine
Inch Nails.

is partitioned into short audio frames (≈ 50 milliseconds), fea-
tures are computed on these frames, and every pair of frames is
compared via a similarity metric. Here we use the magnitude of
the fast Fourier transform for features, and the cosine of the angle
between them for similarity. This produces a matrix of compar-
isons that represents the structure and repetition within the audio.
In Figure 1 self-similar segments appear as white (i.e., similar)
squares along the main diagonal of the matrix. Repetitions appear
as white rectangles off the main diagonal. In this case, the first
verse (25–55 seconds) is very similar to the second verse (85–125
seconds) indicated by the large off-diagonal white rectangles cen-
tered at (40,105) and (105,40). Each verse is followed by a chorus
(55–75 seconds and 125–145 seconds) with off-diagonal repetition
squares centered at (65,135) and (135,65).

4. SPATIAL TIME-TIME SEPARATION

Using the repetition in audio, we propose a novel approach to
source separation: spatial time-time distribution (TTD) separa-
tion. Following the same general procedure as the spatial time-
frequency separation described above, we identify time-time au-
toterms and estimate the mixing matrix via joint diagonalization
of autoterm spatial correlation matrices.

We construct our time-time distribution by manipulating the
pseudo Wigner distribution to be a function of two points in time:

D′
x1x2(t1, t2, f) =

Z
h(τ)x1(t1 +

τ

2
)x∗2(t2 −

τ

2
)e−j2πfτdτ

(8)
To mimic the self-similarity matrix we remove the dependence on
frequency:

Sx1x2(t1, t2) = D′
x1x2(t1, t2, 0) (9)

We focus on the application of time-time distributions, and leave
the potential of time-time-frequency distributions for future work.
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In the self-similarity example above, we compare the frequency
components between audio frames. Here, time-time distributions
compare windowed frames in the time domain, the second of
which is reversed. This defines a self-similarity matrix (or time-
time distribution) for every pair of mixtures. Alternatively, we rep-
resent them asM ×M spatial correlation matrices:

[Sxx(t1, t2)]ij = Sxixj (t1, t2) (10)

Once again, we frame the source separation problem in terms of
our time-time distribution:

Sxx(t1, t2) = ASss(t1, t2)A
H . (11)

By applying the whitening matrixW, we generate the whitened
time-time correlation matrices:

Szz(t1, t2) = WSxx(t1, t2)W
H (12)

As before, we estimateA using the unitary matrixU that satisfies
the following:

Szz(t1, t2) = USss(t1, t2)U
H , (13)

When two points in time contain only one common source,
Sss(t1, t2) is nearly diagonal. Thus, we estimateU as the uni-
tary matrix that jointly diagonalizesSzz at time-time autoterm
points. Alternatively, because an autoterm’s principal eigenvector
best diagonalizes it [16], we may construct the columns ofU as
the unique principal eigenvectors of the autoterm correlation ma-
trices. This enables the estimation of fewer source positions, if not
all sources have unique repetitions.

Figure 2 shows the time-time distribution for the same song
depicted in Figure 1. In all of the following figures, higher energy
content is darker. One important difference between Figure 1 and
2 is that each frame of the self-similarity matrix is normalized to
unit energy. Because the time-time distribution varies with the
energy in the signal, the darkness of the image trails off at the end
of the song. Otherwise, much of the same structure is visible in
both representations.

We identify time-time autoterms in an analogous way to time-
frequency autoterms. We estimate the energy at a time-time point
as the trace of its spatial correlation matrix:

E(t1, t2) = |Trace[Sxx(t1, t2)]| (14)

We estimate the rank-oneness of the matrix at a time-time point as

R(t1, t2) =
max(λi)P

i λi
, (15)

whereλi are the singular values ofSxx(t1, t2). Time-time corre-
lation matrices above an energy and rank-oneness threshold corre-
spond to time-time autoterms. Currently, we use the mean energy
as the energy threshold and 0.95 as the rank-oneness threshold.

Figure 3 illustrates autoterm selection using time-time separa-
tion (left) and time-frequency separation (right). The sources were
drawn from a zero mean and unit variance Gaussian distribution
and filtered using a conjugate pair filter at different normalized
center frequencies,fi:

ri(t) = N(0, 1)

zi = pej2πfi

ai = [1,−2<{zi}, ziz
∗
i ]

si(t) = x(t)− ai(2)si(t− 1)− ai(3)si(t− 2) (16)
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Figure 2:Time-time distribution for “March of the Pigs” by Nine
Inch Nails.
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Figure 3: Autoterm selection: Time-time distribution (left) and
time-frequency distribution (right)
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where superscript∗ indicates complex conjugate andp = 0.85.
For this example, we usef1 = 0.25 andf2 = 0.35. In addition,
each source exhibits a different activity pattern. Sourcess1 ands2

activate in the patterns [on, off, on] and [off, on, on], respectively.
This can be seen as a checkerboard pattern in Figures 3(a) and
3(c) and alternating frequency content in Figures 3(b) and 3(d).
Figures 3(a) and 3(b) show the energy content in the two distri-
butions. Figures 3(c) and 3(d) show the selected autoterm points.
Notice that the high energy content appearing between 2 and 3 sec-
onds (when the sources overlap) is not as likely to be chosen as an
autoterm. Otherwise, high energy content is correctly identified as
an autoterm.

5. RESULTS

We have described the application of spatial time-time separation
in an analogous way to spatial time-frequency separation. Our al-
gorithm provides an alternative to time-frequency separation when
sources exhibit unique repetitions. When this is the case, our
method outperforms time-frequency separation when sources have
overlapping source spectra, and performs comparably well when
they do not.

In our first experiment, we test how the similarity of sources
affects their separability using time-time and time-frequency sepa-
ration. We generate three random signals according to Equation 16
with f1 = 0.25−δf , f2 = 0.25, andf3 = 0.25+δf . The unique
activation sequences fors1, s2, ands3 are [on, on, off], [on, off,
on], and [off, on, on], respectively. The autoterms forδf = 0.2
are shown in Figure 4. The sections of Figure 4(a), annotated by
dividing lines, indicate different source autoterms as labeled (e.g.,
s1 is the only source active the first two seconds). Relatively few
autoterms are selected for time-time points within the same second
because more than one source is active. Notice that each source’s
autoterms are also delineated in the time-frequency distribution of
Figure 4(b).

We evaluate the quality of separation as the maximum inter-
ference-to-signal ratio (ISR) among all sources:

I = max
p

P
q 6=p |(Â

#A)pq|2

|Â#A)pp|2
(17)

If Â is a good estimate ofA, Â#A is close to diagonal, and the
ISR is near zero.

We tested the performance of the separation algorithms over
500 Monte-Carlo runs. At each iteration, we drew another set of
random signalssi(t) and a mixing matrix from a uniform distribu-
tion with elements in the range(0, 1). We repeated this experiment
with δf ∈ [0, 0.002, 0.01, 0.05, 0.2]. Table 1 shows the average
maximum ISR for eachδf . The two approaches perform compa-
rably when the sources are sufficiently dissimilar. However, asδf
approaches zero, the performance of the time-time separation im-
proves relative to the time-frequency separation. Therefore, repeti-
tive structure contains additional information for source separation
that does not exist in spatial time-frequency distributions.

In our second experiment, we compare time-time separation
and time-frequency separation using highly similar musical au-
dio from the Iowa Musical Instrument Samples Database [18].
We extracted one-second examples of the same note played on
bass clarinet, B[ clarinet, and E[ clarinet. These instruments pro-
duce quite similar frequency spectra as shown by the log of their
time-frequency distributions in Figure 5. The range from light to

δf Time-time ISR Time-frequency ISR
0.000 0.0832 0.1357
0.002 0.0825 0.1344
0.010 0.0767 0.1276
0.050 0.0380 0.0493
0.200 0.0082 0.0087

Table 1: Average maximum interference-to-signal ratio (ISR) for
time-time and time-frequency separation as a function of dissimi-
larity (δf )
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Figure 4:Autoterms selected from similarity experiment

dark indicates mean energy to max energy. The horizontal lines
are harmonics that overlap nearly perfectly. The self-similarity or
time-time distribution of the bass clarinet ([Sss(t1, t2)]11), B[ clar-
inet ([Sss(t1, t2)]22), and E[ clarinet ([Sss(t1, t2)]33) are shown
in Figure 6(a), 6(e), and 6(i), respectively. The cross-correlations
are contained in the off-diagonal matrices of Figure 6. The ma-
trix formed by connecting the matrices in Figure 6 is the time-time
distribution of a recording containing the three instruments played
consecutively. If the sources were not correlated the off-diagonal
matrices would be white (i.e.,no correlation). Here, these sources
are highly correlated. The autoterms selected for this example
are shown in Figure 7. In spite of the similarity of the instruments,
many time-time autoterms are identified. The alternating black and
white lines perpendicular to the main diagonal indicate the fluctu-
ating energy pattern in the clarinet sources. Each color change
identifies when the energy crosses the energy threshold. The den-
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Figure 5:Time-frequency distribution for three clarinets
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Figure 6:Time-time distribution matrices between and within in-
struments

sity of the autoterms reflect the same pattern as Figure 4(a) because
the activation pattern is the same.

For all mixing matrices that we generated randomly, time-
time separation estimates

Â#
ttA =

2
4 1.0001 −0.0044 −0.0044

−0.0483 1.0012 0.0074
0.0267 −0.0308 1.0004

3
5 (18)

with an ISR of 0.0488. Time-frequency separation estimates

Â#
tfA =

2
4 1.0005 −0.0069 0.0310

−0.0443 0.9874 −0.1906
−0.0178 0.1682 0.9817

3
5 (19)

with an ISR of 0.1982. Because the instruments are non-stationary
with highly overlapping frequency components, time-time sepa-
ration outperforms time-frequency separation. These results were
confirmed by listening to the estimated source audio. Sections of
inactivity in the original source audio are silent in a perfect recon-
struction. During these sections, neither technique estimated silent
sources. However, time-time estimated sources are clearly quieter
than their time-frequency counterparts.

The activation patterns in the previous two experiments were
constructed in order to emphasize time-time autoterms. Now, we
show the performance of our algorithm on a real musical signal.
Using a 20-second excerpt from a multi-track recording we arti-
ficially mix the bass guitar and organ tracks. Although the two
sources overlap most of the time, there are times when only one
source is active. Figure 8 shows that both algorithms leverage time
points when only one source is present. The autoterms chosen by
time-time separation focus on the large “plus” symbol centered at
12 seconds when the organ stops playing. These points are also
chosen by time-frequency separation and illustrated by the short
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Figure 7:Time-time autoterms (in black) from clarinets example

dense low-frequency content of the bass around 12 seconds in Fig-
ure 8(b). This is the only place where the low-frequency content is
present without overlapping organ content. For all mixing matrices
that we generated randomly, time-time separation estimates

Â#
ttA =

�
1.0000 0.0013
0.0120 1.0001

�
(20)

with an ISR of 0.0120. Time-frequency separation estimates the
mixing matrix as

Â#
tfA =

�
1.0000 −0.0024
0.0157 1.0001

�
(21)

with an ISR of 0.0157. In this real musical example, repetitive
structure is as informative for source separation as time-frequency
structure.

Our final experiment is a synthetic version of the “bell tower”
example. That is, the same source is presented twice while the
sources surrounding it change. We expect this to improve the sepa-
ration of the repeated source when using time-time separation. We
construct 5 sources using Equation 16 withf1 = 0.05, f2 = 0.15,
f3 = 0.25, f4 = 0.35, andf5 = 0.45. Sourcess1 ands2 are
active for the first one-second segment. Sourcess4 and s5 are
active for the second one-second segment, and sources3 is the
obscuring source that plays the whole time. Figure 9 shows the
autoterms selected by time-time and time-frequency separation.
Time-frequency analysis only finds autoterms associated with
sourcess1 ands5 because there is less overlap at the edge of the
spectrum. The time-time autoterms accurately identifys3 at repe-
titions between each half of the signal (i.e., the annotated first and
third quadrant of Figure 9(a)). We use the principal eigenvector
of the time-time autoterms as a column vectoru and estimate the
spatial position ofs3 asW#u. We can estimate the ISR of this
spatial position by inserting it intoA to form A′ and computing
the ISR betweenA andA′. Over 500 Monte-Carlo trials, we esti-
mated an ISR of 0.0176, whereas time-frequency separation could
not identify anys3 autoterms with which to separate.
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Figure 8:Autoterm selection for bass guitar and organ
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Figure 9:Autoterm selection for bell tower example

6. CONCLUSIONS AND FUTURE WORK

We present a novel spatial time-time distribution source separa-
tion algorithm that leverages the repetitive structure of sources.
This requires that each source has a unique repetition (i.e., time-
time autoterm). Repetitions do not have to be identical, only cor-
related. When sources repeat uniquely, our time-time separation
performs comparably to time-frequency separation. When sources
have overlapping time-frequency distributions, our method outper-
forms time-frequency separation.

Time-time separation is an alternative to time-frequency sepa-
ration when sources exhibit unique repetitions. Our future work in-
cludes combining these methods in order to leverage the repetitive
and time-frequency separateness of sources. Algorithmically find-
ing time-time-frequency autoterms is straightforward. However,
the shear number of time-time-frequency points makes it unattrac-
tive to compute.
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