
Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

AN EYES-FREE USER INTERFACE CONTROLLED BY FINGER SNAPS

Sampo Vesa and Tapio Lokki

Helsinki University of Technology
Telecommunications Software and Multimedia Laboratory

P.O. Box 5400, FIN-02015, HUT, Finland
svesa@tml.hut.fi

ABSTRACT

A novel way of controlling a simple user interface based on de-
tecting and localizing finger snaps of the user is presented. The
analysis method uses binaural signals recorded from the ears of
the user. Transient sounds are first detected from a continuous au-
dio stream, followed by cross-correlation based localization and
simple band-energy ratio based classification. The azimuth plane
around the user is divided into three sectors, each of which cor-
responds to one of the three “buttons” in the interface. As an ex-
ample, the interface is applied for controlling the playlist of an
MP3 player. The algorithm performance was evaluated using a
real-world recording. While the algorithm looks promising, more
research is needed before it is ready for commercial applications.

1. INTRODUCTION

Gesture-controlled auditory interfaces have been receiving some
attention lately [1] [2]. However, their implementation requires
special hardware, such as trackers, for detection of the gestures of
the user. Low-cost solutions are desirable in many cases. In mobile
augmented reality audio (MARA) there are two microphone sig-
nals, recorded from both ears of the user, available for analysis of
the surrounding sound environment [3] [4]. While doing research
on automatic estimation of the reverberation time [5], we came up
with an idea of using finger snaps for controlling a user interface.

Transient sounds have favorable properties for use in a sound-
controlled user interface. They can be easily localized in both time
and space. The concentration of energy into a short time window
over a relatively wide band allows azimuth localization based on
the location of the cross-correlation peak. The accurate localiza-
tion of the onset is easy for transients, allowing the use of only
the onset for localization, thus alleviating the negative effects of
the room reflections on the calculated cross-correlation. The short
duration of transients also allows a fast response in the system.

2. THE METHOD

The algorithm consists of a preprocessing and detection stage fol-
lowed by classification and localization stage, as shown in Fig. 1.
The first stage tries to extract the preliminarily interesting sound
events from the continuous stream. The events are then classified
by calculating simple frequency-domain features (band-energy ra-
tios) and evaluating their proximity to a pre-calculated feature vec-
tor which is derived as the mean of several recorded finger snaps.
Sound segments that are spectrally similar enough to the mean
vector are accepted. Finally, the sound events are localized based
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Figure 1: The overall algorithm.
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Figure 2: Preprocessing stage of the algorithm.

on cross-correlations calculated from the accepted segments. The
cross-correlation maximum locations are then mapped to input
commands to the application.

2.1. Preprocessing

The incoming sound signal is first processed by an FFT-based anal-
ysis/synthesis block that acts as some kind of a coherent signal de-
tector illustrated in Fig. 2. The segments are windowed by a square
root of a Hanning window. Short-time magnitude-squared coher-
ence (MSC) is calculated for the kth signal block (frame) using the
following set of equations [6]:

γ̂
2

lr(f, k) =
|Ĝlr(f, k)|2

Ĝll(f, k)Ĝrr(f, k)
(1)

Ĝll(f) = 〈|Xl(f, k)|2〉 (2)

Ĝrr(f) = 〈|Xr(f, k)|2〉 (3)

Ĝlr(f) = 〈X∗

l (f, k)Xr(f, k)〉 (4)
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where Glr is the one-sided1 cross-spectrum estimate between xl

and xr . Gll and Grr are the one-sided power spectrum estimates
of xl and xr , respectively. Xl(f, k) and Xr(f, k) are the Fourier
transforms of the kth signal segments of the left and right signals,
respectively. The discrete frequency index is denoted by f . The
cross and power spectra are estimated using a leaky integrator de-
fined for an arbitrary time-series Q(k) as:

〈Q(k)〉 = β · 〈Q(k − 1)〉 + (1 − β) · Q(k) (5)

where k is the time index and β ∈ [0, 1] is a forgetting factor that
adjusts the amount of smoothing2.

The coherence function γ2

lr(f) is averaged over a certain fre-
quency range of interest (e.g. 500-3000 Hz). This average value
is thresholded to track the signal parts that have high enough co-
herence. A high coherence over a wide frequency band indicates a
transient sound. Thus, the coherence thresholding scheme acts as a
transient detector. When the coherence is lower than the threshold,
all FFT bins are set to zero prior to IFFT (see Fig. 2). Otherwise
the sound is passed through unmodified. It is actually not neces-
sary to have an inverse FFT at all, since the signal could be simply
switched on and off in the time domain. This way was chosen for
convenience and simplicity of the real-time implementation.

2.2. Detection

Due to the fact that the coherence-based preprocessing block may
occasionally let some unwanted parts of the signal through, a sim-
ple energy level check takes place after the preprocessing stage.
These parts usually have very low energy compared to the tran-
sients, so they can easily be ruled out by simple energy-based
thresholding. Effectively the signal is set to zero after the detection
part in Fig. 1 for low-energy signal frames. No further processing
is made for zero-energy frames. Only the frames with high enough
energy are useful for analysis, since they are likely to contain the
transients.

A sound event is detected when the short-time energy of the
output of the preprocessing stage exceeds a certain level. The en-
ergy is evaluated from the left and right channel signals and the
largest of the two is chosen. The threshold is chosen by hand.

2.3. Classification by band-energy ratios

The finger snaps have to be discriminated from other transients.
In this algorithm a simplistic classification method was chosen,
relying on band-energy ratios, which are commonly used features
in general audio recognition (e.g. [7]). Band-energy ratio (BER)
is calculated as the ratio of the energy on a certain band compared
to the total energy. Practically the squared magnitudes of DFT
bins belonging to a certain band are summed and divided by the
sum of all squared bin magnitudes. The frequency bands in this
application were chosen to be combined Bark bands so that three
adjacent bands are merged, resulting in a total of eight bands (there
are a total of 24 Bark bands).

The calculated BER vector is compared to an average vector
by the Euclidean distance metric. The average vector is calculated
beforehand from several finger snaps. If the Euclidean distance L2

is below a certain threshold L2,thr (e.g. 0.5), the frame is accepted

1This implies that f is restricted to positive frequencies in Eqs. (1)-(4).
2Note that setting β = 0 would result in coherence being identically

one at all frequencies.

and a cross-correlation is calculated (see Fig. 1). This kind of clas-
sification is very crude, but it excludes the most unsuitable frames
from localization.

Fig. 3 presents the average spectrum of 75 finger snaps recor-
ded in an office environment. The Fourier transforms are calcu-
lated from 46.4 ms frames3 by an actual real-time implementation
of the algorithm. Most of the energy in finger snaps seems to be
concentrated around 1500-3500 Hz. This suggests that the band-
energy ratios should discriminate between finger snaps and sounds
having lots of low-frequency content. It is also hypothesized that
the system is able to detect cases where the sound segments con-
taining finger snaps are corrupted by distracting noise.
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Figure 3: Average spectrum of 75 finger snaps.

2.4. Localization

Cross-correlation between the left and right ear signals is calcu-
lated for the first signal frame of each detected sound event. Aver-
aging over a few frames would sound reasonable, but in this case a
fast response is desired. It is also assumed that the very first frame
of a sound event has the most relevant localization information,
since high coherence indicates that the interaural time difference
(ITD) is a reliable cue [8]. The calculations are performed using a
discretized version of the following formula (based on [9]):

Rlr(τ) = F−1



M(f)S(f)

|S(f)|γ

ff

(6)

where S(f) = E{X̃l(f)X̃r(f)∗} is an estimate for the cross-
spectrum between the preprocessed left and right ear signals (see
Fig. 1), M(f) is a frequency-domain mask, and γ determines
the amount of magnitude normalization. In this algorithm, the
cross-correlation is calculated over full band in frequency-domain
(M(f) ≡ 1), even though it might be useful to restrict the corre-
lation calculations to a certain band. The magnitude normalization
parameter γ was fixed to zero, i.e., no normalization is done, re-
sulting in the more accurate localization results. In this algorithm,
only one signal frame of the signals x̃l(t) and x̃r(t) is used for
estimating the cross-spectra in Eq. (6) to yield an estimate for the

32048 samples at fs = 44.1 kHz
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Figure 4: Dividing the azimuth plane into three sectors.

instantaneous cross-correlation during the finger snap onset. Ef-
fectively, Eq. (6) reduces to an inverse Fourier transform of the
cross-spectrum calculated from a single frame:

Rlr(τ) = F−1 {S(f)} = F−1 {Xl(f)Xr(f)∗} (7)

Fig. 4 shows how the front half of the azimuth plane around
the user is divided into three sectors, each corresponding to one
command in the interface. The maximum location of the cross-
correlation is mapped to an azimuth value using the simple formu-
las:

φ = cos−1(
dmaxlag

dhead

) ·
360o

2π
(8)

φ =



−(90o − φ) , dmaxlag < 0
90o − φ , dmaxlag ≥ 0

(9)

where dmaxlag is the maximum location of the cross-correlation,
converted from samples to meters, and dhead is the head diam-
eter in meters. This simplified procedure is accurate enough for
this application. A more elaborate version would use e.g. HRTF
lookup [10]. The level differences could also be considered as an
additional cue in localization.

After calculating the azimuth angle from one audio segment,
the corresponding command is executed. Eq. (9) adjusts the the
azimuth angle obtained from Eq. (8) so that negative azimuths are
to right of the center (clockwise) and positive azimuths are towards
the left (counterclockwise). If dmaxlag > dhead, Eq. (8) can not
be used and φ is set to either -90° or +90°, depending on which one
is closer. If the lag is considerably larger than the head diameter, it
is also possible that the cross-correlation function is corrupted by
echoes or by distracting noise.

Since most of the energy in finger snaps is concentrated above
1.5 kHz (see Fig. 3), the inclusion of interaural level difference
(ILD) cues would be well motivated. For example, the output com-
mand to the interface could be given only if there are no contradic-
tions between the ILD and ITD cues. Preliminary tests indicated
that the robustness of the system was increased at the expense of
decreased sensitivity. The ILD cues were calculated as the ratio of
the left ear signal to the right ear signal (in dB), so that a positive
ILD corresponds to the left ear signal being stronger. The sound
segments were discarded if any of the following conditions was
met:

1. ILD < 0 dB and ITD indicates the left sector

2. ILD > 0 dB and ITD indicates the right sector

3. abs(ILD) < 3 dB and ITD indicates a sector other than the
center

3. EVALUATION

The algorithm was tested with a real-world recording made in an
office environment by a user wearing binaural microphones. The
recording was 2 minutes long and contained 21 commands, i.e.,
finger snaps, mimicking a real usage situation. Each finger snap
was performed by the right hand of the user. The locations of the
snaps were either to the left, front or right of the user, i.e., the
azimuth angle was approximately +90°, 0° or -90°.

Fig. 5 presents the results of one algorithm run in a single pic-
ture. The frame length was 46.4 ms4, the forgetting factor in Eq.
(5) was β = 0.64, the coherence threshold was 0.67 and the band
for coherence averaging was 500-3500 Hz. The head diameter in
Eq. (8) was set to 0.2 m. A real-time implementation of the algo-
rithm was made using C++ and the Mustajuuri audio processing
software [11] running on a 1.6 GHz Linux machine5.

The algorithm detected 20 out of the 21 finger snaps correctly,
missing one low-amplitude snap (indicated by a circle in Fig. 5).
One of the snaps was incorrectly localized to the right, while the
correct localization would have been at the center. The algorithm
also detected a cough made by the user, which was correctly local-
ized to the center though.

Based on this quick experiment, a localization error ratio for
the algorithm was calculated as 2

20
= 0.1 (excluding the correctly

localized cough). Thus the algorithm correctly localized 90 % of
the commands. The cough could be ruled out by setting a threshold
for the Euclidean distance to somewhere around 0.7, which is a
reasonable choice even though one of the finger snaps would be
excluded as well. More experiments on the validity of the current
classification approach should be made. It is clear that a more
advanced method should be used in order to reliably discriminate
finger snaps from other transients. There is a lot of variation in the
Euclidean distance metric among the finger snaps, as can be seen
in Fig. 5.

When the ILD cues were included, the algorithm discarded the
first incorrectly localized finger snap. The use of ILD cues should
be investigated further and more complicated rules should possibly
be developed.

While writing this paper, the primary author also occasionally
used the algorithm for controlling the playlist of a software MP3
player called XMMS. The three commands were mapped to “skip
backwards in playlist” (xmms -r), “play/pause” (xmms -t) and
“skip forwards in playlist” (xmms -f). If the Euclidean distance
was set low enough (around 0.4-0.5) and the energy threshold was
set high enough to reject normal keyboard and mouse clicks, the
user interface was found to be quite a handy way for controlling
the playback.

4. CONCLUSIONS

A method for using finger snaps to control a user interface was pre-
sented, utilizing relatively simple, yet effective, signal processing
concepts for localizing transients from a binaural signal. While the
approach looks promising, the performance of the system should

42048 samples at fs = 44.1 kHz.
5The CPU load during the algorithm run was 35-37% on a 1.6 GHz

Linux PC.
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Figure 5: Results of a test run on a recording made in an office. The triangles /, O and . indicate the moments in time the algorithm has
detected a finger snap to the left, center (front) or right of the user, respectively. The asterisk (∗) indicates a localization to the wrong sector
(side instead of center), the circle (◦) indicates a missed finger snap and the ’x’ marks a coughing sound made by the user. The diamonds
(¦, connected by dotted lines for easier readability) indicate the Euclidean distance to the mean BER vector, calculated from each detected
event, i.e., finger snap. Note that the Y axis represents both the Euclidean distance and the amplitude of the waveform (mean between
channels), the latter being presented in the lower part of the figure.

be increased. For commercial applications, the system should have
a localization accuracy close to 100 %. Informal tests also suggest
that the current system is not very robust against loud background
noise, making the system useful only in relatively quiet indoor en-
vironments. Future research should concentrate on incorporating
more robust localization and transient classification methods into
the system. The use of feedback sounds should also be investi-
gated, since the robustness of the system might be increased if the
user gets a confirmation on each command, allowing the repetition
of a missed command and the correction of a mistaken one.
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