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ABSTRACT

Design method of a nonlinear filter to estimate the amplisude
of cubic difference tones is presented. To this end, a thidbr
Volterra filter is used to model the nonlinearity of our aodjt
system, and the filter coefficients are obtained using antadap
process. The results show the filtered outputs follow veogelly
the experimental data as the intensity levels and the frezes of
inputs vary especially when the frequency separation betwee
two primary tones is not large.

1. INTRODUCTION
When there is an input stimulus with two sinusoidal compdsien
calledprimary tonesat frequencies; and f> (f1 < f2), our ear
not only perceives tones at frequencjgsand f», but also hears
many other distortion tones at frequencies: + ka2 f2, ki € Z,
especially when the intensity level of the input is high. 3@elis-
tortion tones, calledombination tonesare due to nonlinear be-
havior in our auditory system. Such nonlinearity in the easw
reported as early as356 by von Helmholtz, when he wrote a the-
ory on combination tones using a power series model [1].
Among many possible combination tones, the most audible
and prominent ones are cubic difference tones or the CDTreat f
quency2f: — f2, and quadratic difference tones (QDTSs) at fre-
quencyf2 — fi1. While many experiments show that the quadratic
difference tone level observes the classical square-layeferal,
the amplitude behavior of the CDTs is so unusual that every ex
periment yields different results. Such unusual behavfathe

CDTs has caused a great deal of research on modeling auditory

nonlinearity with an attempt to match experimental dataasety

as possible. Zwicker, who was the first to observe the abriorma

behavior of the amplitude of the CDTSs, performed extensie e
periments using a cancellation tone and proposed a model wit
a nonlinear feedback loop [2]. Goldstein presented metiimds
measuring more precisely the intensity of the CDTs and diffe
ence tones by presenting a probe tone to facilitate adjutofe
the cancellation tone, and suggested the ideaseéntial nonlin-
earity, according to which the relative level of the CDT is almost
independent of the stimulus level [3]. Smoorenburg obskthiat
the CDTs can be heard at low stimulus levels only in a restlict
region belowf;, the so called “audibility region of combination
tones” [4].

In the present paper, the authors present design methods fo

a nonlinear filter that better fits various experimental datehe
cubic difference tones. To accomplish this, a third-ordelteérra
filter is used to model the nonlinearity in our auditory systand
the filter coefficients are estimated based on the adaptiveeps
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with a third sinusoidal primary tone added to an input. Ineorith
validate the model, arbitrary input stimuli of differenefuency
interval and/or different primary tone levels are fed to fitier,

and the results are compared with the experimental data.

In the next section, the basic framework of a Volterra filter
for nonlinear system identification is reviewed. In the daling
section, the authors present an algorithm to obtain the &tieffi-
cients using an LMS-based adaptive process by carefullgsshg
a desired response of the system, followed by the simulagen
sults and comparison with the experimental data.

2. VOLTERRA FILTERSFOR NONLINEAR SYSTEMS

The nonlinear behavior of the hearing mechanism propos&diy
Helmholtz [1] was later simplified by Fletcher [5] using asd&al
power series represented by
y=ao—+az+ax’+ - +anz", 1)

wherez andy are the input and output of the system, and
are constants. The nonlinearity in the power series reptede
by Equation (1) is generally considered to increase as ilgvel
increases.

A nonlinear system with memory represented by means of an
extension of power series, known\&dlterra series expansigian
be described as

y(t) =ho+ > _ hylz(t)], )

wherez(t) andy(t) are the input and output signals, and

[ [ h )

x(t — 1p)dry - - - d7p.

Rola(t) =
. ©)

The multidimensional functions, (71, - - - , 7), called the
Volterra kernels can completely characterize nonlinear systems
representable by \olterra series such as polynomial sysfén

In a manner similar to the continuous case, /drth order
discrete-time Volterra filter for the causal, nonlinearteys with
rmemory lengthV/ can be described by

(4)

N
y(n) = ho + ) hylz(n)),
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where

M M
Z Z hp(m17"'7mp)

mi1=0 mp=0

X x(n—mi) --z(n—mp). (5)
Since we are interested in modeling the nonlinear behavior o

cubic difference tones, we use a truncated Volterra filtéh whie
orderN = 3, which is defined as:

M—1

Z hi(mi)z(n — mq)

m1=0

y(n)

M-1 M-—1

+ Z Z ha(mi, m2)z(n —mi)z(n — ma)

m1=0mg=0

(6)

M—-1 M—1 M-1
+ Z Z Z hz(mi, ma2, m3)z(n — mi)zx(n — ma)z(n — m3),
m1=0mg=0mg=0
whereM is the memory length of the filter.
In the next section, we describe how to estimate filter coeffi-
cients by employing the least-mean-squares (LMS) algorith

3. ESTIMATING FILTER COEFFICIENTSUSING THE
LMSALGORITHM

3.1. TheLMSAIgorithm for Third-Order VolterraFilter

There are several ways to estimate the Volterra filter caeffis,
among which the minimum mean-square error (MMSE) estima-
tion and the least-squares estimation are well known dlgos
of direct estimation schemes. In situations where the neali
system to be modeled is time-varying and/or the statistiche
signals involved are not known a priori, adaptive filtersidooe
useful while direct estimation methods may fail [6]. We ahas
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Figure 1: Adaptive linear combiner in the form of single-input
adaptive transversal filter (adapted from [7]).

whereX (n) contains thel/ linear terms of the input signai(n),
the second and third order nonlinear terms generated fr@m).
X (n) can be obtained by defining the following data vectors [8]:

xi(n) = [z(n),z(n — 1), -+ ,z(n — M +1)]", (10)
x2(n) = [2%(n), 2%(n — 1), -+ ,2%(n — M + 1)]", (11)
x3(n) = [2°(n),z%(n — 1),--- ,2°(n — M + 1", (12)
x2e(n) = [z(n)z(n — 1), -+ ,z(n — M + a(n — M +1)]", (13)
x3c(n) = [z(n)z(n — 1z(n — 2),

z(n—M4+3z(n—M+2zn—M+1)]", (14

Xsqe(n) = [#2(n)z(n — 1), 2% (n — Da(n — 2),
czi(n = M+ a(n— M+ 1), (15)

and the input vectaK (n) in Equation (9) can be represented as

X(n) = [x] (n) x3(n) x{ge(n) x3(1) X3¢(n) x5c(n)].

(16)

adaptive algorithm so as to make the model more viable in such3 2 Obtaining Desired Response

situations.

Among many adaptive algorithms, the least-mean-square al-

gorithm, or LMS algorithm makes use of a special estimatéef t
gradient, and is represented by the following two equatj@hs

e(n) = d(n) = XT(n)W(n), @)
and
Wn+1) = W(n)—uV(n)
= Wi(n) + 2ue(n)X(n), (8)

wheree(n) is the error signald(n) is the desired responsk(n)
is the input vectorW (n) is the weight vector at time index, and
w1 is the gain constant that regulates the speed and the statfili
adaptation. Figure 1 shows such an adaptive linear comtiitier
the memory lengthd/.

The LMS algorithm for linear adaptive filtering can be eas-
ily expanded to implement the third-order adaptive Voldilter
since the filter output defined in Equation (6) is simply thedr
combination of its linear input signals and the second aivdl th
order cross-products of its linear input signals.

The third-order Volterra filter can be represented in veftion
as

y(n) =X (n)W(n), 9)
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In the adaptive process described in Equations (7) andh@)e-
sired response is needed to derive the error sigrednd thus to
update the weight vectdWV of the filter. The desired response in
the adaptive system is usually obtained by a learning psomese-
rived from the input signal, both of which are not easy in case
When the input is composed of two sinusoidal tones, howeaer,
can predict the output of the cubic Volterra filtée., the filtered
output would be composed of the original two sinusoidal comp
nents and many other combination tones. Therefore, if wes#o
carefully the desired response, the error signal or theluessig-

nal may consist of the CDT with the amplitude behavior seen in
the experiments. We have chosen the desired response hsing t
following processes.

First, we assumed that the amplitudes and the frequencies of
the two input primary tones are known to the system. This as-
sumption is fair enough since it is not difficult to estimatern
using the frequency analysis technique such as the STFan8gc
we created a third primary tone that produces with the lower p
mary tone a quadratic difference tone whose frequency isahe
as that of the CDTi.e.,, 2f1 — f2. The frequency of the QDT that
satisfies such a condition turns out to se= 3f1 — f2. We used
the third primary tone as well as the original two primaryesras
our input signals. Finally, as the desired response, we tsed
primary tones - the original two primary tones plus the ititen
ally generated third one - and the quadratic difference, tehese
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amplitude behavior is known to follow closely the classegliare-
law behavior [2, 3]. Following this setup, we could imagihaitt
the error or residual signal would consist of the QDT ovepkb
with the CDT at the same frequency Df; — f» and other com-

bination tones, which can be neglected. Figure 2 shows tiekbl 607 |

diagram of the filter.
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Figure 2: Third- order adaptive Volterra filter with desired re-
sponse and error signalxz, and z. indicate the quadratic and
cubic difference tone at frequengy; — f2, respectively. oo,

30 40 50 60 70 80
L, (@8)

The most critical point in the system is how to determine the
amplitude of the QDT which will be contained in the desired re
sponse, and has a great effect on the output level of the CDT.Figure 3:Comparison between experimental data and filtered out-
Because our assumption was that the level of the QDT follows put showing the amplitude of the CDT as the input level of the
quite precisely the classical square-law representedldyr = lower primary varies with the higher primary level as a pareter
L1 + Ls — C dB, whereC depends on the relative amplitude of (fi = 1620Hz, f> = 1800Hz, A f = 180Hz). Experimental data
the quadratic distortion, and approximately is a constarshawn are adapted from [2].
in [2], we could determind.qpr with suitable values of.sxs
andC. In our algorithm, we set the level of the third primary tone
to be the same as that of the first primary tone at frequgncide-
ally, the level of the QDT can be obtained using the abovetagua
with an appropriate value @, but it has turned out that it also re-
quires the level of the second primary tabgin order to precisely
estimate the level of the CDT.

After the filter has converged, the error signal would cantai : :
not only the CDT but also other combination tones produced by ok ,
three primary tones, but we concentrated on and analyzethgis
CDT, since the amplitude behavior is what we are trying tdarp
using the filter. sor

4. RESULTSAND DISCUSSION a0

Ler (@B)

Using the third-order adaptive Volterra filter with the desii re-
sponse obtained by the processes described above, we tiested
algorithm with the various input signals with different itpevels
and frequencies of primary tones, and compared the resiths w 20
the measured data provided in [2]. Figure 3 shows compakisen
tween the experimental data and the estimated data usiriidf¢ne

In Figure 3, we can clearly see that the filtered output falow
very closely the amplitude behavior of the CDT seen in theexp 30 2 50 80 70 80
mental data. Particularly, the decrease in the CDT witheasing b @®
levels of the lower primary can be observed in the filtereghout
as well, which is the largest difference between the datacip
from the regular cubic distortion and the data obtained fthe
experiments.

Figure 4 also shows the filtered output is very close to the mea
sured data when the frequency separation between the tmanyri
tones increases.

Figure 5 shows the amplitude behavior of the CDT when the
frequency separation is larg& { = 572Hz). Different from the
two previous figures, we can see there is an offset between the

30

Figure 4:Comparison between experimental data and filtered out-
put showing the amplitude of the CDT as the input level of the
lower primary varies with the higher primary level as a pawter

(f1 = 1620Hz, f> = 1944Hz, Af = 324Hz). Experimental data
are adapted from [2].
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measured data and the filtered output. However, the offspliie when the frequency separation is small.

constant at all levels, and thus can be easily compensatedrby

trolling the level of the third primary tone we added to anutp 6. ACKNOWLEDGMENT
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As has been mentioned above, in calculating the amplitude of
the quadratic difference tone to be added to the desiredmesp
not only the amplitudes of the first and third primary tones bu
also that of the second primary tone was needed, which was not
expected if we just think of the square-law behavior of theTQD
produced by the first and third primary tones. This may be due
to much more complicated nonlinear interaction betweeiQhé&
and the CDT when their frequencies coincide.

5. CONCLUSIONS

A novel model of the nonlinear amplitude behavior of the cubi
difference tone has been presented using a third-ordertieglap
\olterra filter. In obtaining the desired response of theeffitb
derive the error signal, a third sinusoidal primary tone wsn-
tionally generated and added to an input in such a way that the
frequency of the quadratic difference tone produced by tist fi
and third primary tones should coincide with that of the cutif-
ference tone produced by the original two primary tones. [&bel

of the QDT was calculated using the classical square-laditta
QDT as well as three primary tones were added to the desired re
sponse. The error signal or the residual signal after cgevee
contained the CDT whose amplitude follows very closely what
was seen in most of the experimental data provided in [2] difth
ferent intensity levels and frequencies of primary tongeeiglly
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