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ABSTRACT
In this article we propose a method to improve the accuracy of si-
nusoid modeling by introducing parameter variation models into
both the analyzer and the synthesizer. Using the least-square-error
estimator as an example, we show how the sinusoidal parameters
estimated under a stationary assumption relate to the real nonsta-
tionary process, and propose a way to reestimate the parameters
using some parameter variation model. For the synthesizer, we
interpolate the parameters using the same model, with the phase
unwrapping process reformulated to adapt to the change. Results
show that the method effectively cuts down the systematic error of
a conventional system based on a least-square-error estimator and
the McAulay-Quatieri synthesizer.

1. INTRODUCTION

Sinusoid modeling expresses a pitched sound as the linear com-
bination of time-varying sinusoids. This involves an analyzer and
a synthesizer. The analyzer does sinusoidal parameter estimation
and the synthesizer rebuilds the signal from the estimated param-
eters. However, since parameter estimators rarely consider the in-
frame dynamics, most current sinusoid modeling systems carry an
inborn error even if the signal being analyzed strictly matches the
sinusoid model. This error is often ignorable when a clean residue
is not crucial, but becomes significant when one tries to subtract a
sinusoid from the original. The systematic error is a combination
of an analyzer error and a synthesizer error. In section 2 we give
a short review of sinusoid modeling. Section 3 explains how the
analyzer error occurs and how it can be mended. Section 4 gives
an example on what we can do to cut down the synthesizer error.

2. SPECTRAL MODELING SYNTHESIS

The complete sinusoid modeling was first presented by McAulay
and Quatieri [1] and later refined by several. The parameter esti-
mator has been improved by more accurate parameter estimation
methods, such as those summarized in [2]. Partial tracking has
been improved by using more natural tracking methods to connect
spectral peaks in consecutive frames [3, 4]. The model itself has
been extended to involve non-stationary noise [5]. On the synthe-
sizer side, the reconstruction process proposed in [1] remains the
same. Suppose we have a single time-varying complex sinusoid

x(n) = a(n)ejϕ(n), where ϕ(n)−ϕ(n−1) = 2π

Z n

n−1

f(t)dt (1)

where n is a sampled version of the continuous time, t. The instan-
taneous amplitude a(n) > 0 and frequency f(t) > 0 are slow-
varying functions of time. The complete sinusoid model is con-
structed by summing up multiple sinusoids (partials) in the form
of (1). For each sinusoid, the analyzer estimates its amplitudes,

frequencies and phase angles at a set of points n0, n1, ..., nF , F +
1 being the total number of measurements. We denote the esti-
mates as â(n0), f̂(n0), etc. We use the term estimator error to
refer to the difference between the estimates and their true val-
ues, such as between â(n1) and a(n1). The analyzer also includes
a peak tracker which forms sinusoids from local spectral peaks.
When the signal has two or more partials, there may also be a peak
tracker error.

The McAulay-Quatieri synthesizer connects two consecutive
measure points with a sinusoid segment by interpolating the pa-
rameters. As the true parameter variation laws usually do not co-
incide with the interpolation laws, this interpolation introduces a
synthesizer error.

Using all the F + 1 measured parameter sets, we can recon-
struct a sinusoid covering the interval [n0, nF ]. We denote the re-
built signal x̂(n), n0 ≤ n ≤ nF , and define the relative modeling
error as

e =
1

nF − n0 + 1

nFX
n=n0

‚‚‚‚ x̂(n)− x(n)

a(n)

‚‚‚‚2

(2)

in which the difference of corresponding values is normalized
by the instantaneous amplitude. When the signal being analyzed
strictly fits the model, this final error (2) is a combined result of
estimator, peak tracker, and synthesizer errors.

3. PARAMETER REESTIMATION

Most sinusoid modeling systems use a frame-based spectral ana-
lyzer. For each frame, the amplitude and frequency are assumed
constant during the whole frame and calculated from the short-
time Fourier transform, along with a phase angle [2]. In most
cases the results are intuitively assigned to be the instantaneous
parameters at the frame centre.

Let N be the frame width. As any estimate is calculated from
N data points, it depends on N instantaneous parameter sets rather
than equals its instantaneous value at N/2, the frame centre. In-
stead of using the estimates directly, we try to recover the instan-
taneous values from a sequence of multiple estimates, using pa-
rameter variation information derived from the estimates. That is,
given a sequence of parameter estimates, we try to find a sinusoid
in the form of (1) which, when fed into the analyzer, generates the
given estimates. To do this we need to study the quantitative re-
lation between the true parameters and the frame-based estimates.
Naturally the relation depends how the parameters are estimated.

In this article we use a least-square-error (LSE) estimator
for parameter measurement, which minimizes the square error
between the spectrum of a pure sinusoid and that of a narrow-band
signal. In short, for any pure sinusoid with parameter set (a, f, ϕ),
we can calculate its spectrum aejϕHf (k). Given a narrow-band
spectrum X(k), the LSE estimator finds the frequency f̂ that
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maximizes the inner product 〈X, Hf 〉 by the norm, which can be
shown to yield the least square error. The amplitude and phase
angle are then given by âejϕ̂ = 〈X, Hf̂ 〉/‖H‖2, where ‖H‖2

is a normalizing factor determined by the window function. In
this article the window function is always real, symmetric and
lowpass.

Let our data frame be

x(n) = a(n)e
j
“

ϕc+2π
Rn
N/2 f(t)dt

”
, 0 ≤ n < N (3)

Let the window function be w(n), ϕmn = 2π
R n

m
f(t)dt, ϕn =

ϕ N
2 ,n, then the short-time Fourier transform of x(n) is

Xk =

N−1X
n=0

w(n)a(n)ej(ϕc+ϕn−2πk n
N ), 0 ≤ k < N (4)

The Fourier transform of a pure zero-phase unit sinusoid is

Hk =

N−1X
n=0

w(n)ej2π(f0(n−N
2 )− kn

N ), 0 ≤ k < N (5)

Define b(n) ≡ w(n)2a(n), ∆ϕmn(g) = ϕmn − 2π(n − m)g,
we calculate the square norm of 〈X, H〉

‖〈X, H〉‖2 = N2

 
N−1X
n=0

b(n)2

+ 2

N−1X
n=1

n−1X
m=0

b(n)b(m) cos∆ϕmn(f0)

!
(6)

To maximize the above we set its derivative regarding f0 to 0:

d‖〈X, H〉‖2

df0
= N22π

N−1X
n=1

N−1X
m=0

(n−m)b(n)b(m) sin∆ϕmn(f̂)

= 0 (7)

where f̂ is the frequency that maximizes ‖〈X, H〉‖2, i.e. the LSE
estimate. Let wmn = (n−m)w(m)2w(n)2. After some math we
get

f̂ =

PN−2
l=0 ηl(f̂)

R 1

0
f(l + t)dtPN−2

l=0 ηl(f̂)
(8)

where ηl(g) =
PN−1

n=l+1

Pl
m=0 wmna(n)a(m)sinc ∆ϕmn(g)

π
,

and the sinc function sinc(x) = sin πx
πx

. The amplitude and phase
estimates â and ϕ̂ are given by

âejϕ̂ =
ejϕc

PN−1
n=0 w(n)2a(n)e

j2π
“Rn

N/2 f(t)dt−(n−N
2 )f̂

”
PN−1

n=0 w(n)2
(9)

Eq. (8) implies that the frequency estimate is a weighted average of
the instantaneous frequency over the frame. The weights depend
on the window function, instantaneous amplitudes, and the instan-
taneous frequencies themselves. In particular, if the frequency re-
mains constant, it equals the estimate regardless of the amplitude.

3.1. Pure Amplitude Change

The easiest case of parameter dynamics is amplitude change while
the frequency stays constant. The signal can be written as

x(n) = a(n)ej(2πfn+ϕ) (10)

As stated above, the estimated frequency shall equal f . An im-
mediate result is that the phase estimate is accurate as well. The
amplitude estimate can be easily expressed using (9):

â =

P
n a(n)w(n)2P

n w(n)2
(11)

The symmetry if (11) implies that only the even-symmetric part
of a(n), regarding the frame centre, contributes to the estimate.
Pure amplitude change happens to stable-pitch sound sources such
as piano or oboe. If a sinusoid is assumed to have a constant fre-
quency, we can re-estimate the centre amplitude using (11).

3.2. Frequency and Amplitude Change

Instantaneous frequency change rarely happens without accompa-
nying amplitude change. The general form of such a sinusoid is

x(n) = a(n)e
j
“

ϕc+2π
Rn
N/2 f(t)dt

”
(12)

The frequency estimate is a weighted average of the instantaneous
frequency during the frame. Calculation shows that when the
amplitude is constant, the averaging weights ηl is symmetric and
slightly more concentrated towards the frame centre than the
square of the window function.

Like the constant frequency case, when the amplitude is con-
stant during a frame, only the even part of f(t) contributes to the
frequency estimate. This implies that the frequency measurement
is exact for a linear chirp. Considering amplitude change, a more
general result is that the even part of f(t) contributes to the fre-
quency estimate when the even part of a(n) is non-zero, and the
odd part of f(t) contributes to the frequency estimate when the
odd part of a(n) is non-zero.

3.3. Reestimation of Parameters

We formulate the error compensation task as follows: given
F + 1 measure points, say, n0, n1, ..., nF , and F + 1 parameter
measurements (âm, f̂m, ϕ̂m)m=0,1,...,F , find a series of param-
eters (am, fm, ϕm), m = 0, 1, .., F , that generate the estimates
through the analyzer.

Our key equation (8) involves 2N − 1 unknowns, i.e. a(n),
0 ≤ n < N , and

R 1

0
f(l + t)dt, 0 ≤ l < N − 1. This is too

many to recover from the given estimates. We introduce para-
metric models f(t, Σf ) for frequency and a(n, Σa) for ampli-
tude variation, so that all the unknowns can be calculated from
a sequence of F + 1 parameter sets. Denote such a sequence
P =

n
(am, fm, ϕm)P |m=0,...,F

o
, and the corresponding varia-

tion model parameters Σ(P). (8) and (9) relates a parameter set P
to its estimate P̂ in the form of

P̂ = P (Σ(P)) (13)

That is, given any P, we can estimate Σ(P) = {Σf (P), Σa(P)},
then calculate P̂ by (8) and (9). The reestimation task is just the
opposite: given P̂ we try to find the original P. We rewrite (13) as

P = P̂− P (Σ(P)) + P (14)

A recurrent method for solving (13) is derived from (14) as fol-
lows:

0◦ Define distance function D(P1,P2), convergence
threshold ε, and the maximal number of iterations MAX;
set P0 = P̂;

1◦ for n = 1, 2, ..., MAX, do 2◦–5◦;
2◦ estimate the variation parameters Σ (Pn−1);
3◦ calculate P̂n−1 = P (Σ (Pn−1)) using (8) and (9);
4◦ if D(P̂, P̂n−1) < ε, output Pn−1, return;
5◦ calculate Pn = P̂− P̂n−1 + Pn−1;
6◦ output P with non-convergence tag.
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We ignore phase estimates during this stage to avoid phase wrap-
ping problem. The phase angle can be reestimated as

ϕ = ϕ̂− arg

N−1X
n=0

w(n)2a(n)e
j2π

 R N
2

n f(t)dt−(n−N
2 )f̂

!
(15)

which is an immediate result of (9).

3.4. Test Examples

We use cubic splines to model amplitude and frequency variation.
A cubic spline is a piecewise trinomial with continuous 1st and
2nd derivatives. Accordingly, the phase angle function is a quartic
polynomial.

Let F + 1 be the total number of estimates (frames). Param-
eters are estimated at points 0, N/2, ..., NF/2. The cubic spline
fills the gaps between 0 and NF/2. However, the reestimation
of the first point 0 requires half a frame before zero. In this case
we extrapolate the spline half a frame beyond its effective interval.
The same is done to the last frame.

The test signals are synthesized sinusoids for which we have
the “true" instantaneous parameters at any point. The error be-
tween the true parameter set P and an estimate P̃ is defined as

ERR(P̃,P)=
1

F+1

FX
m=0

N−1X
n=0

w(n)2
“
ãm cos(ϕ̃m+2πf̃m(n−N/2))

−am cos(ϕm + 2πfm(n−N/2)))2 /
a2

m

2

N−1X
n=0

w(n)2 (16)

We run tests on three types of signals: exponential-decay am-
plitude with constant frequency, constant amplitude with sinusoid-
modulated frequency, and exponential-decay linear chirp. The first
two are simplified cases of real sounds, and the last is included to
represent combined amplitude-frequency change. Reestimated re-
sults are compared with the original. Tests show that the error
hardly depends on the absolute signal level, frequency or phase.
In all the tests we set central frequencies of three concurrent sinu-
soids to 0.151, 0.251, 0.351 (the Nyquist frequency being 0.5), and
phase angles to 0. 11 frames are extracted with a Hann window of
size 1024. So F = 10. The maximal iteration count is set at 25.
1. Exponential amplitude The main variable in this test is the
rate of amplitude decay, defined as λa = a(0)

a(N/2)
, i.e. the ampli-

tude drops by a factor of a per hop size. In the test λa varies be-
tween 1 and 4. The results are given in Figure 1(a), in which line
¬ is the error calculated for the LSE estimate, and line ­ from the
reestimates. Line ­ lies below ¬ between λa = 1 and λa = 3, an
improvement of 15–25 dB for most of the interval. When λa > 3
the cubic spline can no longer keep up with the global signal dy-
namics (e.g. 95 dB for λa = 3), and the reestimation fails. Line
® gives the result we get after one iteration. It is shown that most
improvement is achieved by the first iteration of up to 25.
2. Sinusoid-modulated frequency The frequency modulator has
three parameters: amplitude aM , frequency fM and phase angle.
We fix the modulator phase to 0 at time 0, fM to 0.2 and 0.33
per frame, and vary aM between 0 and 10 bins. The maximal fre-
quency change rate is 2πaMfM bins per frame. Results are given
in Figures 1(b) and 1(c). We see that the first iteration is normally
enough when the modulation is small, but more are needed when
the modulation is high.
3. Exponentially decreasing linear chirp In this example we
have two variable parameters: the linear frequency change and
exponential amplitude change rates. We measure the frequency
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Figure 1: Testing analyzer error. (a) exponential amplitude; (b)(c)
modulated frequency; (d)(e)(f) exponential-decay linear chirp.

change rate ∆f in bins per frame, and the amplitude change decay
rate λa as in the first example. We let ∆f be 2, 4, 8, and vary λa

between 1 and 4. Results are given in Figures 1(d)–1(f). Again we
see that the reestimation fails for high decay rates. It is also shown
that the more the frequency varies, the less the first iteration con-
tributes to the total improvement.

4. RESYNTHESIS

We consider only the resynthesis with phase. As the amplitude and
frequency variations are modeled with cubic splines, it is natural
to use this model in resynthesis instead of the standard interpola-
tion method in [1]. The sample-wise amplitudes can be derived
from the cubic spline interpolation. For the phase angles, we can
compensate for the model-to-measurement difference as follows.

Let the cubic spline frequency 0 and N be
f(t) = a t3 + b t2 + c t + d (17)

and the phase estimate be ϕ(0) = ϕ0, ϕ(N) = ϕN . The model
phase function can be written as

ϕ̃(t) = 2π

„
a

4
t4 +

b

3
t3 +

c

2
t2 + d t

«
+ ϕ0 (18)

We write the final interpolation function ϕ as
ϕ(t) = ϕ̃(t) + θ(t) (19)
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that satisfies
ϕ(0) = ϕ0, ϕ(N) = ϕN + 2kπ,
ϕ′(0) = ϕ̃′(0), ϕ′(N) = ϕ̃′(N)

(20)

where k ∈ Z is chosen to minimize θ(t). We write (20) in term of
θ(t): θ(0) = 0, θ(N) = ϕN − ϕ̃(N) + 2kπ,

θ′(0) = 0, θ′(N) = 0
(21)

The four conditions of (21) suggests the use of a trinomial for θ(t),
i.e. θ(t) = pt3 + qt2 + rt + s. By solving (21) we get

p = −2
N3 d(k), q = 3

N2 d(k), r = s = 0,
d(k) ≡ ϕN − ϕ̃(N) + 2kπ

(22)

To minimize θ(t) we choose the integer k that minimizes d(k),
which is simply the integer nearest to (ϕ̃(N)− ϕN ) /2π. This is
very similar to the phase unwrapping process in [1], which can be
regarded as a linear spline version.
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Figure 2: Testing synthesizer error. (a) exponential amplitude;
(b)(c) modulated frequency; (d) exponential-decay linear chirp.

(a) (b) (c)

Figure 3: Testing vocal vibrato. (a) original; (b) cubic spline mod-
eling; (c) LSE-MQ modeling.

4.1. Test Examples

In this section we compare the synthesizer error to the original one
in [1] for signals used in section 3.4, plus a real recorded excerpt.
For the synthesized sounds an extra result is given for using the
[1] resynthesizer the true parameters to give some idea of pure
synthesizer error. Errors are evaluated using equation (2).

1. Tests on synthesized signals The results are given in Figure
2(a)–2(d) for the first four test settings in Figures 1. The synthe-
sizer errors show similar development trends to the analyzer errors
in Figures 1. Both the absolute value and the measured improve-
ments are slightly better than the analyzer error values, thanks to
the use of interpolation.
2. Test on recording For this example we take a recording of
soprano vibrato from the RWC database [6]. The spectrogram of
the original is given in Figure 3(a). Figure 3(b) is the residue we
get by subtracting the resynthesized result using cubic spline mod-
eling, while Figure 3(c) is the result derived from the old system.
The new system outperforms the old one except for the part where
the residue shows some transient. Averaging over frames, the new
modeling achieves 22 dB SNR, compared to 16 dB for the old
one. We also see that the new residue is less sinusoidal, or more
noise-like, than the old one.

5. CONCLUSION

In this article we have addressed the problem of estimating pa-
rameters from non-stationary sinusoids. Rather than directly using
the results obtained using a stationary assumption, we propose to
reestimate the parameters incorporating frequency and amplitude
variation models. Although we have chosen an LSE estimator and
a cubic spline model for our system, this reestimation framework
is open to many other methods. For the resynthesizer part we have
reformulated the phase unwrapping process in the context of cubic
spline interpolation. Tests show the improvement in the accuracy
of parameters, as well as in the resynthesized signals.
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