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ABSTRACT

This paper describes techniques for obtaining high accuracy esti-
mates, including those of non-stationarity, of parameters for sinu-
soidal modelling using a single frame of analysis data. In this case
the data used is generated from the time and frequency reassigned
short-time Fourier transform (STFT). Such a system offers the po-
tential for quasi real-time (frame-by-frame) spectral modelling of
audio signals.

1. INTRODUCTION

Spectral modelling (SM) for transformation of musical signals is
a well established area of digital audio effects [[1]. Whereas the
STFT represents a signal as grains with stationary magnitude and
phase, which overlap in time and frequency, spectral models at-
tempt to infer more intuitive and flexible representations of sound
from such data. Whilst the original signal cannot be perfectly re-
constructed from such models they are generally more amenable
to feature extraction and perceptually meaningful transformations
such as pitch shifting and hybridisation (cross-synthesis). The
spectral modelling synthesis system (SMS) of Serra represents sig-
nals as the combination of sinusoids with slowly varying amplitude
and frequency and filtered noise [2]. Other systems have extended
the component set to include transients [[1]].

Whilst SM systems exist that can perform transformations and
resynthesis from model data in real-time, the possibility of gener-
ating model data in real-time has received little attention. Since the
complete analysis-modification-resynthesis cycle cannot be cur-
rently implemented in real-time audio processors that use SM,
such a modelling paradigm is unavailable in the traditional real-
time studio effects unit. A real-time/streaming system has recently
been described but there is more than a single frame’s delay be-
tween input and output while a minimum number of ‘track points’
are acquired [3]]. There have been investigations into both single-
frame sinusoidal discrimination and non-stationarity but this has
been applied to the improvement of offline analysis. The sys-
tem described in this paper produces non-stationary ‘sinusoidal
plus residual’ model data on a frame-by-frame basis. Once a sin-
gle frame of data has been acquired, sinusoids and non-sinusoids
can be separated and the sinusoids described and synthesized with
non-stationary amplitude and frequency (i.e. these parameters can
change on a sample by sample basis).

Since this paper builds on existing work relating to single-
frame non-stationary modelling of sinusoids an overview of this
work is given in section[2] The limitations of existing non-stationary
analysis and an improved system, which is adapted to function
with reassigned STFT data and reduce parameter interdependence,
are discussed in section Bl Section H] describes how estimates of
intra-frame amplitude and frequency change obtained using the

methods described in the previous section can improve estimates
of the mean amplitude and frequency. Section ] presents a frame-
by-frame spectral modelling system which uses the analysis tech-
niques described in the previous sections.

2. EXISTING METHODS FOR PARAMETER
ESTIMATION

The non-stationary sinusoids discussed in this paper are assumed
to be of the form:

s(t) = A(t) sin (/:zt 2 f(r)dr + ¢) (1)

=0

where, for a single frame, A(t) is an exponential function describ-
ing the amplitude trajectory and f(t) is a linear function describ-
ing the frequency trajectory. ¢ is the phase of the sinusoid at the
start of the frame. Therefore in this model the amplitude is piece-
wise exponential, the frequency is piecewise linear and the phase
is piecewise quadratic. The ‘piecewise’ nature of these trajecto-
ries is inherent in the frame-by frame approach and existing cubic
phase modelling techniques require more than a single frame of
data to have been acquired [4]].

Many methods exist for the estimation of the mean instanta-
neous frequency of components in the Fourier domain. These in-
clude measuring the phase difference between successive frames,
interpolation of the magnitude spectrum and time-frequency reas-
signment. Reassignment is used in the system described here since
estimates are obtained from a single analysis frame and it pro-
vides better estimates than other single-frame methods [5]]. Time-
frequency reassignment estimates the deviation of component en-
ergy from the centre of an analysis bin (frequency) and analysis
frame (time) by taking two additional DFTs per frame. The first
DFT uses a time ramped version of the original window function,
the second uses a frequency ramped (time domain first order differ-
ence) version of the window. The estimate of frequency deviation
from the centre of an analysis bin is given by:

_ o~ DF 71frcqucncy ramped window
fdevialion = —-BS (2)
DFTuriginal window

where B is the width of a single analysis bin and Idenotes the
imaginary part of a complex number. The estimate of time devi-
ation (in seconds) from the centre of an analysis frame is given
by:

3

tdeviation =

L g ( DETime rampea window
Fs DFToriginal window

where Fs is the sampling rate and #® denotes the real part of a
complex number [6].
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Systems for the single frame estimation of the parameters of
non-stationary sinusoids have recently been proposed. These in-
clude the use of direct analytical methods for Gaussian windows
and Fresnel integral approximations or empirical adaptation of the
Gaussian methods for other window types [7, 8, 19]. The technique
adopted and adapted here is phase distortion analysis (PDA) [[10].
This method uses phase differences either side of a zero-padded
spectral peak to provide a measure of intra-frame linear frequency
change and exponential amplitude change within a single frame.
The relationship between these measures and the actual amplitude
change (dB per frame) and frequency change (bins per frame) is
dependent upon the window type and is empirically determined.
This is formally described by:

AAp =g (¢p+1 - ¢p71) C)

Afp = h(¢p+1+ ¢p-1) ®)
where p is the index of a magnitude spectrum peak, ¢ is phase, A A
and A f are the intra-frame amplitude and frequency change and
(g(z) and h(x) are the functions relating the phase difference to
the intra-frame parameter changes. Amplitude and frequency non-
stationarity produces changes in the window shape in the Fourier
domain. Therefore, if these non-stationarities can be estimated
then errors in the estimation of amplitude can be corrected and the
quality of the model data improved [11]].

3. REASSIGNMENT DISTORSION ANALYSIS

In this section we describe the adaptation of PDA to reassignment
data, referred to here as reassignment distortion analysis (RDA).
PDA uses phase deviations either side of the magnitude peaks in
the DFT spectrum. For reassignment these deviations are em-
bedded in the corresponding frequency and time offset estimates,
given by Equation (2) and Equation (3). PDA effectively models
the phase either side of a magnitude peak as a first order polyno-
mial:

y=mzx+c (6)

where y represents the phase value,  the bin number, c the value
from which the intra-frame frequency change A f is derived, and
m the value from which the intra-frame amplitude change A A is
derived. PDA uses the difference in phase between the peak bin
and those either side of the peak giving two data points. RDA
directly uses time reassignment offset data across a peak giving
three data points. Since three data points are available they can be
modelled using a second-order polynomial which better represents
the underlying shape of the phase spectrum. The non-stationary
measures are therefore given by:

y =pz’ +mz+c @)

For RDA the relationship between this polynomial and the non-
stationary measures is reversed: c is the value from which A A is
derived and m is the value from which A f is derived, p is not used.
Figures|[I] and 2] show the relationship between the RDA measure
m and various combinations of values of AA and Af for non-
stationary Hann-windowed sinusoids using first- and second-order
polynomials obtained from an 8192 point FFT of a 1025 sample
frame. Where the frequency is decreasing the sign of m changes
but its magnitude is the same.

Figures[I]and 2] show that, as for PDA, there is a limited range
of Af values for which m is monotonically increasing. This is
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Figure 1: m versus AA and Af, first order polynomial.
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Figure 2: m versus AA and A f, second order polynomial.

related to the length of the input frame and for a 1025 sample
frame at 44.1 kHz this range of values is O to approximately 260
Hz/frame. Secondly, it can also be seen that a second order poly-
nomial provides a smoother relationship between the polynomial
coefficients and the non-stationary measures. Thirdly, these mea-
sures are not independent of each other as has been assumed in
previous applications of PDA for non-stationary analysis [10, [11].
An intuitive explanation for the latter observation is that amplitude
change effectively changes the shape of the analysis window and
hence alters this relationship, since the relationship between m and
A f is dependent upon the type of window used.

Figure [3] shows the relationship between the RDA measure c
and various combinations of values of AA and Af. As for Af
and m, if the amplitude is decreasing then the sign of c changes
but its magnitude is the same. From this figure it can be seen that
¢ is monotonically increasing for all values of A A, although the
relationship is not linear, as has been assumed in previous work,
if the range of amplitude change values is wide enough to account
for full onset or offset of a component within a single frame (= 96
dB in a 16 bit system).

Large values of Af do not cause a significant change in the
effective window shape and so the influence of this parameter over
the relationship between ¢ and A A is not as great as the opposite
situation depicted in Figure 2}

The data presented in Figures 2] and 3] indicates that if highly
non-stationary sinusoids are to be accurately quantified the as-
sumption of independence for the two RDA measures is no longer
valid. The relationship between A f and m is affected by A A and
the relationship between A A and c is affected, to a lesser extent,
by A f. We deal with this by using iterative 2D table look-up. Two
modestly sized (100 by 100 element) arrays are filled with the data
obtained for Figures[2]and[3] Small arrays and linear interpolation
can be used since the functions they represent are smooth. The
range of values for A f is chosen to be that over which m is mono-
tonically increasing and the range of values for A A is chosen as
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Figure 3: c versus AA and A f, second order polynomial.

the largest range of values that can be represented in a linear 16 bit
system. These arrays are then used to look up values of AA and
A f using the values of m and c and the current estimates of AA
and A f (which are assumed to be zero if no estimate is yet avail-
able, i.e. we are at the first iteration). The steps of the algorithm
are as follows:

1. Obtain values for m and c by fitting a second order poly-
nomial to the time reassignment offset data for the spectral
component of interest.

2. Estimate AA from the amplitude change array, assuming
that A f is 0 Hz since changes in A f have a smaller effect
on c than those in A A have on m.

3. Estimate Af from the frequency change array, assuming
that A A is the value estimated in the previous step.

4. Estimate A A from the amplitude array, assuming that the
value of A f is that obtained in the previous step.

5. Repeat steps 3 and 4 until the algorithm is terminated (see
below).

The termination point may be determined by the processing
power available (particularly in a real-time context), the required
accuracy of the estimates or the number of iterations before the fi-
nal estimates of A f and A A are no longer improved by repeated
steps but begin to oscillate either side of their correct values. In-
creasing the number of iterations beyond 3 and taking the result-
ing single estimate does not improve the accuracy of the method.
However, a small improvement over the accuracy obtained with 3
steps can be achieved by taking the mean of the estimates after 3
and 4 steps.

Figure E| shows the percentage error in the estimation of A f
where AA =90 dB for existing applications of PDA and that for
the iterative 2D interpolated RDA method described here. Whereas
the estimation error for the former method rises from 58% to al-
most 80% as A f increases from 0 to 260 Hz, the error for the new
method is close to zero between 0 and 150 Hz, only rising above
10% for 220 Hz or greater with a maximum error of 20% at 260
Hz.

Figure [5] shows the percentage error in the estimation of AA
where A f = 250 Hz for the two methods. A logarithmic scale has
been used for the error since there is such a large difference be-
tween the two methods. Even for such a large change in frequency
within a single bin the error for the iterative method is never greater
than 1%.
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Figure 4: A f estimation error for AA = 90 dB.
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Figure 5: A A estimation error for Af = 250 Hz.

4. FREQUENCY AND AMPLITUDE ESTIMATION

Like most DFT based frequency estimators, reassignment gives
an estimate of the mean instantaneous frequency of a component
across an entire analysis frame. This mean is amplitude weighted
which allows the use of a windowing function to bias the estimate
towards the instantaneous frequencies which occur nearest the cen-
tre of the frame. Where the amplitude of the sinusoid is constant
throughout the frame no other biasing will occur. However where
there are amplitude and instantaneous frequency non-stationarities
this will affect the mean frequency estimate. We refer to this es-
timate as Zmp, the amplitude-weighted mean instantaneous fre-
quency. To fully separate the amplitude and frequency functions
knowledge of the non amplitude- weighted mean instantaneous
frequency, f, is required. Previous non-stationary sinusoidal mod-
els simply use famp but in the presence of large amplitude and fre-
quency changes, such as at the onset and offset of sounds, large
errors in the frequency estimation will result. Here we propose a
method to correct this bias using the estimates of Zmp, obtained
directly from frequency reassignment, and AA and A f obtained
using the RDA method described in the previous section.

Taking the continuous case of a non-stationary sinusoid, as in
Equation (I), with the parameters f, AA and Af, where AA is
given in dB and is assumed to be exponential and A f is assumed to
be linear, the sinusoid has the following amplitude and frequency
functions:

- A
o =7+=0 ®
A(t) = 10*A )
where AA

and t is in the range —1 to 1 (chosen to simplify the following
integration). For a Hann window the amplitude weighted mean
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instantaneous frequency is given by:

B %f_ll 10°tA (?—1— %ﬁ) (3 + 3 cos(t)) dt
Samp = = (1)
P : f_ll 107t A (3 + 1 cos(mt)) dt

The A in the numerator and the denominator of (TT) cancel out so
solving the integrals and rearranging to find f gives:

- = %[a(an%(nH)]

f = famp - i
) || [2 (=) —a (49
K
(12)
where
x = In(a) (13)
and

1 1 K
KZ(‘“&) (;‘m) 14

Using this equation to improve the estimate of f gives a signifi-
cant improvement in the model accuracy for highly non-stationary
components. This is illustrated by comparing figures (@) and (7)
which show the error in estimating f for different values of AA
and A f with and without this bias correction. For both figures
estimates of AA and A f obtained using the methods described
in section EL rather than the actual values used to synthesize the
sinusoids, were used in the bias correction. Again, the data was
derived from an 8 times zero-padded FFT of a 1025 sample frame.

0 -
100
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Figure 6: Amplitude biased frequency estimation error.

Figure 7: Frequency estimation error after correction.

Mean amplitude estimation is also affected by non-stationarity:
frequency change within a frame causes greater spreading of sig-
nal energy across bins around a peak, which lowers the magni-
tude of the peak bin, and amplitude change causes the signal to

be more localised in time thus widening the main lobe. In addi-
tion to this the peak magnitude varies with the difference between
?amp and the actual centre frequency of the bin in which the peak
occurs. For stationary sinusoids, knowledge of the magnitude of
the window function in the frequency domain allows amplitude
estimation errors caused by the deviation from the centre of the
analysis bin to be corrected [[12]. Since no analytical solution for a
Hann windowed sinusoid with non-stationary frequency is known
it has been proposed to calculate the magnitude spectrum of the
window for each component via FFT. From this an ‘amplitude fac-
tor’ is derived which is multiplied by the initial estimate of A (the
magnitude of the peak bin) [10]. As previously discussed, such
an approach is likely to be prohibitively expensive in a real-time
context.

Two new approaches are presented in this paper which do not
require additional FFTs to be calculated: estimation of the am-
plitude correction factor by 2D array look-up (as described in the
previous section for estimating AA and Af ) and modelling of
the relationship between the amplitude correction factor, A A and
A f with two polynomials. For the first approach a 100 by 100
element array and linear interpolation is used (as described in sec-
tion ). The values for the array are calculated by inverting the
normalised magnitude values obtained for sinusoids with f which
coincides with the centre of an analysis bin for the same range of
values of AA and A f. The second approach models the inverted
normalised magnitude values with quartic polynomials. The non-
stationary amplitude correction factor, «, is then estimated by:

a=g(AA) h(AA) (15)

where g(z) and h(z) are the quartic functions. Figures[8]and 9]
show the data obtained and the best least squares fit provided by
the quartic functions. For both figures an 8 times zero-padded FFT
of a 1025 sample frame was used. For Figure[8] AA = 0 dB, and
for Figure[Q] Af = 0 Hz.

~ DFT derived data
—Best fit quartic 7

T
3 T
1.05- T
//'///%/
1100”.._.___.#,-«-/ L . . I
0 50 100 150 200 250
Af (Hz)

Figure 8: Amplitude correction factor versus A f.
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Figure 9: Amplitude correction factor versus A A.

Figures[T0|and[TT]show the percentage error in amplitude esti-
mation for non-stationary sinusoids, whose f is at the centre of an
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analysis bin, for the 2D lookup and polynomial fit methods respec-
tively. Again, for both figures estimates of AA and A f obtained
using the RDA method rather than the actual values used to syn-
thesize the sinusoids, were used in the bias correction. The error
without any correction is greater than 75% for AA = 96 dB and
A f = 260 Hz and both methods offer a significant improvement
over this. The array lookup performs best out of the two methods,
indicating that the effects of amplitude and frequency stationarity
are not entirely independent of each other. The first method is the
one used in our system but the second may be useful in a system
where memory is scarce or where memory lookup is a relatively
expensive operation.
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Figure 10: A estimation error using 2D array lookup.
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Figure 11: A estimation error using polynomial product.

Once the corrected amplitude estimate has been obtained, the
deviation of famp from the centre of the analysis bin can be used
to produce a further correction as is performed for stationary si-
nusoids with knowledge of the window shape [12]. However for
8x zero-padding, as used here, the amplitude estimation differ-
ence between a frequency offset of zero and the maximum of half
an analysis bin is negligible (< 0.03 dB) and so this step can be
ommitted.

5. FRAME-BY-FRAME SPECTRAL MODELLING

The prime motivation for the research presented in this paper is
the development of a real-time spectral modelling system. Our
definition of real-time in this context is:

1. Quasi instantaneous: as close to instantaneous as is allowed
by the frame size of the algorithm.

2. Frame-by-frame: this is implied in point 1. Only the cur-
rent and/or previous frames may be used, waiting for future
frames is not permitted.

3. Real-time execution: the execution time of the algorithm
must be shorter than the time taken to acquire/replay the
data it analyses/produces.

We have developed a frame-by-frame spectral modelling system
which uses sinusoids to model the deterministic part of mono-
phonic signals and a bank of parametric equalisers applied to a
noise source to model the residual. Complex wavelet analysis is
used to determine the centre frequency, bandwidth and gain of the
equalisers. Since both signal types are synthesized in the time do-
main the model can be interacted with for sound transformation on
a sample-by-sample basis. The separation of sinusoidal and resid-
ual parts of the signal is performed by measuring the goodness of
fit of time reassignment offset data around magnitude peaks in the
spectrum to the second order polynomial used to produce the RDA
data. The benefit of the high accuracy description of sinusoids
presented here is that they can tracked more accurately within a
single frame, and across frames, in a real-time system. More ac-
curate modelling of amplitude and frequency trajectories within
each frame minimises discontinuities in amplitude and frequency
between frames. This is shown for frequency in Figure [[2] which
shows the partial tracks generated by the system for a synthetic
harmonic signal with fast and deep vibrato. This signal is cho-
sen to demonstrate that this method produces accurate frequency
tracks even in the presence of highly non-stationary components.
In this example the analysis frame length is 513 samples with a
window overlap of 2, therefore the synthesis frame length is 256.
The system is able to produce such partial tracking with no knowl-
edge of previous or subsequent analysis frames.
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Figure 12: Partial tracks of harmonic sound with vibrato.
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Figure 13: Flute onset: original (top), resynthesized (middle) and
pitch shifted up by a perfect fifth (bottom) .

Figure [T3] shows time domain waveforms of the onset of a
flute note, its unmodified resynthesized version and the resynthe-
sis shifted in pitch by a perfect fifth (ratio of 3:2). In this example
the analysis frame length is 1025 with an overlap of 2, giving a
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synthesis frame size of 512. Even with a relatively long analy-
sis frame the temporal envelope of the signal is largely retained,
although the onset is not quite as sharp as in the original signal.
With the signal modelled in such a way pitch shifting is a triv-
ial operation: the values for f are simply multiplied by the pitch
ratio prior to resynthesis. For the residual the centre frequencies
of the parametric equalisers are also scaled by the same amount.
Of course, the spectral envelope can be preserved by frequency-
domain interpolation of amplitudes, if required. The system has
been implemented in Matlab as a combination of ‘m’ and MEX
files. The sinusoidal analysis, modelling, discrimination and syn-
thesis is executed in faster-than-real-time for all input sound types
and the combined sinusoidal and residual modelling takes less than
twice real-time when run on a modest general purpose PC. This
suggests that a real-time spectral modelling system based on these
methods, written entirely in a low level language and/or running
on specialised hardware, can be realised.

6. CONCLUSION

A frame-by-frame sinusoidal analysis system which offers high
accuracy estimates of the intra-frame change of amplitude and fre-
quency using time reassignment data has been presented. These
estimates can, in turn, be used to reduce errors in the estimation
of the means of the amplitude and frequency functions. The high
accuracy sinusoidal model that these techniques yield can be im-
plemented with much smaller discontinuities in amplitude and fre-
quency trajectories across frames than would otherwise be possible
in such a frame-by-frame system. A detailed description and as-
sessment of the sinusoidal discrimination and residual modelling
methods used will be the subject of future papers. Further work
will investigate how the bin phase affects estimation of the param-
eters considered in this paper and whether higher-order polynomial
modelling of the time reassignment data could improve parameter
estimates.

7. REFERENCES

[1] X. Serra, “Spectral modeling synthesis:  Past and
present, keynote in Proc. Int. Conf. on Digi-
tal Audio Effects (DAFx-03), London, UK. [on-
line] http://www.iua.upf.es/~xserra/presentacions/
Spectral-Modeling-Synthesis-Past-and-Present.pdf, 2003,”
sep 2003.

[2] ——, “A system for sound analysis/transformation/synthesis
based on a deterministic plus stochastic decomposition,”
Ph.D. dissertation, Stanford University, USA, 1989.

[3] V. Lazzarini, J. Timoney, and T. Lysaght, “Alternative
analysis-synthesis approaches for timescale, frequency and
other transformations of musical signals,” in Proc. Int. Conf.
on Digital Audio Effects (DAFx-05), Madrid, Spain, 2005,
pp. 18-23.

[4] R.J.McAulay and T. F. Quatieri, “Speech analysis/synthesis
based on a sinusoidal representation,” IEEE Trans. Acoust.,
Speech, and Signal Proc., vol. 34, no. 4, pp. 744-754, 1986.

[5] F. Keiler and S. Marchand, “Survey on extraction of sinu-
soids in stationary sounds,” in Proc. Int. Conf. on Digital Au-
dio Effects (DAFx-02), Hamburg, Germany, 2002, pp. 51-58.

[6] F. Auger and P. Flandrin, “Improving the readability of time-
frequency and time-scale representations by the reassign-
ment method,” IEEE Trans. Sig. Proc., vol. 43, no. 5, pp.
1068-1089, 1995.

[71 G. Peeters and X. Rodet, “SINOLA: A new analy-
sis/synthesis method using spectrum peak shape distortion,
phase and reassigned spectrum,” in Proc. Int. Comp. Music
Conf. (ICMC’99), Beijing, China, 1999, pp. 153-156.

[8] A.S.Master, “Nonstationary sinusoidal model frequency pa-
rameter estimation via fresnel integral analysis,” Master’s
thesis, Stanford University, USA, 2002.

[9] M. Abe and J. Smith, “AM/FM rate estimation for time-
varying sinusoidal modeling,” in Proc. IEEE Int. Conf.
Acoust., Speech, and Sig. Proc. (ICASSP’05), Philadelphia,
USA, 2005.

[10] P. Masri, “Computer modelling of sound for transformation
and synthesis of musical signals,” Ph.D. dissertation, Univer-
sity of Bristol, UK, 1996.

[11] M. Lagrange, S. Marchand, and J.-B. Rault, “Sinusoidal
parameter extraction and component selection in a non-
stationary model,” in Proc. Int. Conf. on Digital Audio Ef-
fects (DAFx-02), Hamburg, Germany, 2002, pp. 59-64.

[12] M. Desainte-Catherine and S. Marchand, “High precision
Fourier analysis of sounds using signal derivatives,” J. Au-
dio Eng. Soc., vol. 48, pp. 654—667, 2000.

DAFX-258


http://www.iua.upf.es/~xserra/presentacions/Spectral-Modeling-Synthesis-Past-and-Present.pdf
http://www.iua.upf.es/~xserra/presentacions/Spectral-Modeling-Synthesis-Past-and-Present.pdf

	1  Introduction
	2  Existing Methods for Parameter Estimation
	3  Reassignment Distorsion Analysis
	4  Frequency And Amplitude Estimation
	5  Frame-By-Frame Spectral Modelling
	6  Conclusion
	7  References

