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ABSTRACT

Parameter interpolation (PI) of biquadratic IIR filters (biquads) is
widely used in audio applications to avoid very undesirable audi-
ble effects like plops, clicks etc. It is shown that although the sim-
plest linear PI of numerator and denominator coefficients of the
transfer function of a biquad guarantees the stability it, however,
may sometimes lead to other audible side effects caused, for ex-
ample, by the possible growth of the magnitude response at some
frequencies in some intermediate states of PI procedure. To avoid
audible transients and to make the PI easily portable into digital
signal processor (DSP) a special technique is applied called here
“sliding edges”. The detailed description of this technique and
their comparison is the goal of the present paper.

1. INTRODUCTION

Biquadratic IIR filters (biquads) are used in many audio appli-
cations; for example, for individual equalization of audio chan-
nels, or in some measurement algorithms to extract signal compo-
nents within a certain bandwidth, etc. Sometimes it is necessary to
change the parameters of one or several biquads together during a
certain time with no undesirable audible transient effects that may
occur in case of simple switching. The smooth PI is needed, for
example, in case of changing the equalization filter-set in the cabin
of a car from driver optimized setting to front seats.

A perfect PI must be smooth, safe and rather easy from the
viewpoint of computations. The smoothness of PI may be well de-
scribed at consideration of the behavior of magnitude to frequency
response (MR) of the biquad during the PI procedure. It is natu-
rally to require that MR had no sudden changes within the duration
of PI. The term “safe” in this context means that during PI no in-
stability or being very close to the stability boundaries may occur.
The last demand is also of great importance as some audio systems
may involve 100 and more biquads, 20-30 percents of which are to
be interpolated in real-time. PI algorithm during rather short work-
ing time (usually 2-3 sec) requires additional computation power
for all those filters. Using the complicated PI algorithm may be
critical for the DSP installed in the audio system.

Different approaches of PI are described in [} 12} 13| 4} 15 |6}
7,18, 9]. The general classification of PI techniques is done in
[2]. According to this classification the following types of PI are
known: a) Cross-fading method; b) Gradual variation of coef-
ficients [3]-15]; c) Intermediate coefficient matrix [6]; d) Input
switching method [[1] and e) Updating of the state vector (8], [9].
Theoretically, all above methods are DSP-implementable. How-
ever, all of them have the restricted range of use: methods a) and
d) require duplicating the processing power during PI; method b)

may cause audible transients especially at harmonic signals; meth-
ods ¢) and e) imply the representation of filters in state-space form;
method e) requires a lot of computations. We emphasize on the
design of easy-to-implement approach that would operate for the
case, when the filter, whose parameters are to be changed, is rep-
resented as a cascade of biquads. An attention to DSP-portability
will be given.

2. PROBLEM STATEMENT

2.1. Notations and assumptions
Biquad may be described by its transfer function (TF) in z-domain:

1 + b12:_1 + b22_2
k -
1+a1z7 4+ ag22

W(z) = (1)
where a;, b; — coefficients being normally constants, £ — gain,
z € C. Using the form of TF is usual in DSP applications.
Let Wi (2) and Wi (2) are the TFs of initial and final state of the
biquad whose appearance corresponds to (I). Let Ty is the time
of duration of PI. In case the duration of PI is long enough so that
it corresponds to rather large number of input signal samples PI
may be done with the lower discreteness than the discreteness of
the input signal, i.e. updating of coefficients of (1)) may be done
not every sample but every 2, 3, 4, ... sample. We denote the num-
ber of samples after which the next update is done as Lyjock . Then
Tpt = Nps * Lpiock *+ Ts, where T is the sampling period; the in-
teger number Npj is called the length of PI, i.e. the total number
of updates to complete PI. The notations like Wiy, (2), a1[m). etc
m = 0,1, 2, ..., Np provided with the index within square brack-
ets relates to the stage of PI, i.e. to the number of update. Note
that Wio) = Wie(2), Wing (2) = Wiar(2).

2.2. Criteria for the parameter interpolation algorithm

The practical criteria for PI can be described in the following way:

1. No instability must occur while PI is done. In other words,
for every m, Wiy, (z) must not have any instable pole.

2. No remarkable audible side effects (like clicks, plops, ring-
ing etc.) must occur during PI.

3. The complexity of PI algorithms must not be very high due
to PI is done in real-time.

To illustrate the importance of the above criteria consider the sim-
plest linear PI results drawn in Figure E}i PI is done for Np; = 10.
It is clear that there are substantial drawbacks as PI procedure is
not smooth because of great difference of MRs at two neighbor PI
stagesm =0andm =1.
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3. PROBLEM SOLUTION

The most important requirement while PI is in progress is to ensure
the stability at all stages. As the stability condition does not depend
on the numerator of (I it is reasonable to make PI for numerator
and denominator of the biquad’s TF separately.

3.1. Parameter interpolation of the denominator
3.1.1. Linear PI

Fortunately, according to the investigations made in [10], the sta-
bility area of biquad is defined by the following condition:

la1| < a2 +1, and |az| < 1. )
It shows that all boundaries of the stability region are straight lines
and that in theory the linear PI

Qifm] = Gifm—1] + Aai,  Aa; = (@i ae — Gise) /No1,  (3)

(where ¢ = 1, 2) will result in the stability at every m if and only
if Wiee(2) and Wy (2) are stable. In practice the stability may be
lost in case of inaccurate computations due to accumulated error
at the summation in (). To avoid this, the non-recurrent formula
must be used:

Qi[m] = Qi src +m- Aai; Aai = (ai dst — ;5 src) /NPI 4)
It is easy to show that the summation error which is most impor-
tant due to different order of the values a; and Aa; will not be
accumulated in case (@). Note also that linear PI is applied to
each coefficient independently and it requires minimal computa-
tions. Additional tricks must be made to ensure the stability at
fixed-point computations.

3.1.2. Pole PI

Although the linear PI of denominator is very simple and provides
the system stability it may result in undesirable behavior of poles
which are responsible also for resonances in MR. The resonance
may cause some audible side effect like “ringing” and in practice
may even lead to “clipping” due to extremely high output values.
Experiments have shown that in most practical cases it does not
take place. However, if the source or the destination filters has the
Q-factor more than 5-6, then in some cases high resonances may
occur. If such cases a more sophisticated PI law should be applied.

The idea of the PI of poles is in step-by-step shifting of the
poles and then recomputing new values of the coefficients a; at
each stage. Let the poles (the roots of denominator) of (I) are
z1 and z2. The association between a; and z; is expressed in the
following formulae:

a1 = —(z1+ 22), a2 =21 22, 3)

212 =0.5" (—a:l: \/a? — 4(12) . (6)

Basing on @ it is possible to calculate z; ¢ and z; 45 Depending
on a; s and a; ¢« three cases of PI trajectories are possible:

1. Both couples of poles z; i and z; 4y are real numbers;
2. Both couples of poles are complex[] values;
3. One pole is complex and another one is real.

UIn principle, R C C. However, in this context saying that a value z is
complex, we imply that z € C N R.

In case of complex poles z; and z2 they must be conjugant, i. e.
z1 =25 <= RN(21) = N(22),S(21) = —(22). Depending
on the type of poles there may be different but linear PI trajectories;
see Figure[T] a-c. In case 3 the trajectory of poles consists of two
straight-line pieces. The shift of poles at each straight piece is done
according to linear law:

Zi tm] = Zi jo] + M- Az (7

With a small adaptation the formula is valid even if PI trajec-
tories are of type 3. Note that formulae (3) and are also very
simple from the viewpoint of computation and thus satisfies the
criterion 3.

3.2. Parameter interpolation of the numerator.
edges” algorithm

“Sliding

The algorithm for the readjustment of the numerator coefficients of
TF is based on the idea which can be called “sliding edges”. This
term relates to two specific points of frequency response: namely,
w1 = 0 and wy = 7 (i.e. Nyquist frequency). Let the source
biquad has the edge points equal to

91 (0] = Apoj(w1) = Age(wr), ®)
92 (0] = A[o] (wz) =A

where
A (W) = [Wim (2)] ©)

Thus, g1 and g2 are non-negative. Let the destination biquad has
the edge points

z=exp(jw)’

91 [Np] = ANy (w1) = Adse(wr), (10)
92 [Npr] = Avp) (W2) = Adgst(w2).

Then, moving the edges:

91 m] = Am)(W1), 92 (m] := Apm)(w2) (11)

use of some smooth law (for example, linear law) will be assumed
to result in the appropriate intermediate MRs through all transi-
tions. The above idea exploits the assumption based on the anal-
ysis of experimental data that the biggest “jump” between two
neighbor stages of MR may occur namely because of big jump
at the edge values. Then, the natural way to “impel” MRs not to
“jump” very strongly is to move their edges along vertical axis
w1 = 0 and w2 = 7 using some smooth law. As hinted before the
linear law

9i [m] = Gi m—1] T Agi = gise +m - Ags,
Agi = (giast — Gise) /N1, 3= {1,2}

is chosen. Let us establish the correspondence between edge val-
ues g; and the coefficients a;, b; and k. Note that as it follows
from (9) the value of argument at the edges w = 0 and w = 7 cor-
responds to z = 1 and z = —1 respectively. Taking into account
this fact and also we may conclude that:

Wiy (D] =91 tmps Wiy (=1)| = 92 (- (13)

Unwrapping and taking into account (2) will result in:

12)

\1+b1 [m]+b2 ['m.]| _
(1401 fmj+a2 () [opml = g1
|11y +b2 |
(1=01 [y +ag (m)

(14)
Nkpm| = 92 s
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Assuming that for most practical applications k£ and the values in
the module brackets are non-negative, we can express the numera-
tor values:

b (91 (=92 ) (1402 [m])+ 91 [(m]+92 [m])91 [m]
1[m] = Elm

(91 (m1+92 [m] )(1+a2 ml) (15)
1

(

]
+( 1 [m]—92 m])al [m]
—1 .

ba (m) = -
Thus, applying the linear or pole PI for denominator, linear PI for
k{1 and the formula (T2), one can obtain from (T3) the numerator
coefficients b; automatically.

3.3. Aspects of parameter interpolation for cascaded biquads

If it is necessary to do PI in a cascade of biquads all the above
formulae are valid. The only difficulty may occur due to the cir-
cumstance that the gains k of each cascade are normally not stored
in the memory due to storing only the entire overall gain being a
multiplicative product of gains of all cascades. Unfortunately di-
rect PI of overall gain may generally lead to extremely big or small
values in intermediate MRs. It is easy to see from the following
fact:

k1 m] X K2 [m] X oo X KL [(m] 7 Koverall [m] (16)
where k; () = Kise + m - Ak is the gain of cascade number
Il ={1,2,...,L} at the PI stage number m; L is the number of

cascades; overall Koverall [m] = Koverall sre + 0 - Akoveranl 18 the over-
all gain at the PI stage number m. Thus, two variants are possible:
either to store and then interpolate the gain of each cascade indi-
vidually, or to use the multiplicative PI for overall gain, i.e.

koverall [m] = koveral] src 6m, 0= (koverall dst/koverall src)l/m- (17)

The inequality (T6)) in the last case would turn to the equality. This,
however, may cause different problems if Koverai sre < 0.

3.4. Capability to start new parameter interpolation while
previous interpolation is still in progress

Practical usage of filters with PI may require the ability to start new
PI while the previous PI is still in progress. This feature must be
implemented in case when it is not 100% priory defined that the
next service command used for starting PI will not interrupt the
previous one. To start new PI it is necessary to store current values
of @; {m]» bi [m]» k[m) and to consider them as source values. All
the above mentioned PI methods allow us to do this procedure.

4. RESULTS OF MODELLING

To show the quality of each PI algorithm the modeling is done at
the number of PI stages Np; = 10. For the synthesis of biquads
the formulae from [10] are used. The computation of all types of
biquads is based on four parameters: a) filter type: LPF1, LPF2,
HPF1, HPF2, Notch, Peak, BPF, APF1, APF2; b) fo — cut-off
frequency; ¢) L — pass band level and d) Q) — Q-factor. First two
letters in the filter type abbreviation denote: LP — low-pass, HP
— high-pass, BP — band-pass, AP — all-pass; the third letter “F”
denotes “filter”’; the number denotes the order of filter. Three vari-
ants of PI are compared: 1) linear denominator + linear numerator
(LDLN) PI; 2) linear denominator + sliding-edge numerator (LD-
SEN) PI; 3) pole denominator + sliding-edge numerator (PDSEN)
PI. The results of modeling are represented in Figures 23] a-c.

5. ANALYSIS OF THE RESULTS AND CONCLUSIONS

Let us analyze the suitability of the modelling results to the crite-
ria 1-3 introduced in the section 2.2} LDLN PI satisfies fully the
criteria 1 and 3. However, in some cases the criterion 2 is failed.
LDSEN PI also satisfies the criteria 1 and 3; a set of potential cases
leading to the failure of the criteria 2 is reduced in comparison with
LDLN. PDSEN PI satisty the criteria 1-3 (the criterion may prob-
ably fail only in some “exotic” cases). Its drawback is the relative
complexity of program implementation due to separate considera-
tion of three types of trajectories described in the subsection[3.1.2}
But, it does not mean that PDSEN will require a lot of processing
power in real-time mode: only the program code will grow.

Although the proposed LDSEN and PDSEN PI techniques are
not the ideal solutions they are the good alternatives to the intuitive
linear PI LDLN. Anyway the solution on what type of PI to use
follows from the prior information about possible type of the filter
to be interpolated.
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Figure 2: Pl examples of a filter with the parameters: source: type:
HPF2, fo = 100 Hz, L = 0 dB, @ = 0.707; destination: type:
LPF2, fo = 1kHz, L = 0dB, Q = 0.707; a) LDLN, b) LDSEN,

¢) PDSEN.
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Figure 3: Pl examples of a filter with the parameters: source: type:
PEAK, fo = 1kHz, L = 6 dB, Q = 3.0; destination: type: LPF2,
fo =TkHz L = 0dB, Q = 0.707; a) LDLN, b) LDSEN, c¢)
PDSEN.
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