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ABSTRACT

This paper explores a computationally efficient, physyci
formed approach to design algorithms for emulating guitstod-
tion circuits. Two iconic effects pedals are studied: theéstbr-
tion” pedal and the “Tube Screamer” or “Overdrive” pedal.eTh
primary distortion mechanism in both pedals is a diode €ipp
with an embedded low-pass filter, and is shown to follow a non-
linear ordinary differential equation whose solution isnuta-
tionally expensive for real-time use. In the proposed mettzo
simplified model, comprising the cascade of a conditionittgrfi
memoryless nonlinearity and equalization filter, is chok®nts
computationally efficient, numerically robust propertie®ften,
the design of distortion algorithms involves tuning thegmaeters
of this filter-distortion-filter model by ear to match the sduof
a prototype circuit. Here, the filter transfer functions anemo-
ryless nonlinearities are derived by analysis of the pyp®tcir-
cuit. Comparisons of the resulting algorithms to actualgbed
show good agreement and demonstrate that the efficientthigar
presented reproduce the general character of the modeatietspe

1. INTRODUCTION

Guitarists tend to feel that digital implementations oftalison
effects sound inferior to the original analog gear. This kvat-
tempts to provide a more accurate simulation of guitar disto
and a physics based method for designing the algorithm dicepr
to the virtual analog approach[d, 2].

Often guitar effects are digitized from a high level undansk
ing of the function of the effecf]3,14]. This work describéet
results of a more detailed, physical approach to model gdita
tortion. This approach has been adopted previously in theegd
of generating tube-like guitar distortidnl [5], not to modedpecific
effect as done here. This approach starts with the equdtiahde-
scribe the physics of the circuit and is an alternative t@ioliig
the static transfer curves of a nonlinear system by measnem

[el.

Many digital distortion pedals feature pre- and post-difia
filters surrounding a saturating nonlinearity. The filters @om-
monly multiband (three or four bands) parametric filters tra
tuned to taste.

An analysis of the circuits shows that analog solid-state ci
cuits tend to use low-order filters. To keep costs down, dscu
are designed with minimal component count, which limitsefilt
order. For the purpose of distortion effect modeling, tiegjfrency
range of interest is from just above DC to 20 kHz. Featurekén t
frequency domain above 20 kHz can be ignored, also contribut
ing to low-order filters. Frequency features below 20 Hz niest

retained, however, because intermodulation due to mixirayio-
sonic components with audio frequency components is radtlee
in the audio band.

Stages are partitioned at points in the circuit where avecti
element with low source impedance drives a high impedaraxt lo
This approximation is also made with less accuracy whersiyas
components feed into loads with higher impedance. Neglgcti
the interaction between the stages introduces magnitudel®ra
scalar factor and neglects higher order terms in the trafisfie-
tion that are usually small in the audio band.

The nonlinearity may be evaluated as a nonlinear ordindry di
ferential equation (ODE) using numerical techniquiés 7 Hejw-
ever, the solution of nonlinear ODEs is computationallgirgive,
and the differences are subtle. Therefore in this work, tdin-
earity is approximated by a static nonlinearity and taladaflhis
can be justified on perceptual grounds.

Itis well known that nonlinearities cause an expansion ofba
width that may lead to aliasing if the sampling rate is ingigfatly
high [3]. Consequently typical digital implementationsdi$tor-
tion upsample by a factor of eight or ten, process the noatine
ties, and downsample back to typical audio rates[3, 9]. kreaqy
content tends to roll off with increasing frequency, and aerimg
aliases at oversampling factors of eight or above tend todsked
by the dense spectrum of guitar distortion.

Because the filters in this work are derived from analog pro-
totypes, upsampling also increases the audio band accafacy
the discretization by bilinear transform. An alternate rapgh
would be to design low order filters so that the response atisyq
matches the continuous time transfer function [10, 11].

The following is an analysis of the stages in two typical dis-
tortion pedals.

2. FUNDAMENTAL TOOLS

2.1. SPICE simulation

For circuits that are difficult to analyze, SPICE simulatjomo-
vides detailed numerical analysis. DC analysis in SPICEop®is
static sweeps of voltage or current sources to measure rgemor
less transfer curves. AC analysis finds the frequency respoh

a circuit linearized about an operating point. These respeican
be imported into Matlab and converted to digital filters aglih
SPICE also serves as a reference solver for numerical soutif
the time domain response for nonlinear ODEs.
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Figure 1:Non-inverting op amp gain

2.2. Continuous time pole-zero analysis

Linear circuits are described by rational transfer funtiio For
most low-cost audio circuits such as guitar effects, thasfier
functions are typically low order. The poles and zeros caiadée-

tified on a log-frequency plot of magnitude in dB. In dB, it can

be seen that the magnitude contributions of poles subtrattte
magnitude contributions of zeros add. For the low pass fidter

the pole frequency, the magnitude is 3 dB lower than at its low

frequency asymptote. For the high pass filter, the magniaide
the pole frequency is 3 dB lower that at its high frequencyngsy
tote. Therefore, well separated pole and zero frequenciese
identified from the decibel magnitude response by lookingtie
3-dB points. These frequencies can then be used to reconidteu
rational expression for the transfer function.

2.3. Analysis of operational amplifier circuits

Transfer functions can be easily found analytically focaits with
operational amplifiers (op amps).

2.3.1. Ideal op amp approximation

The ideal op amp approximation states that if negative faeklis
present,

1L V=V,
2.1, =1_=0

whereV, is the voltage at the- terminal of the op amp ant_,
the voltage at the- terminal. I, and/_ are the currents flowing
into the two terminals. These conditions do not hold if negat
feedback is not present, for exampleVif is not connected t&_
or if the op amp output is close to the supply voltages, cauiin
to clip.

2.3.2. Non-inverting configuration

An example of this analysis is done for the non-inverting oppa
configuration shown in Fidll 1. The ideal op amp rule givVes=
Vi, so the current througW is I, = V;/Z,. Becausd_ = 0,
all the current flows acros&y, soVy = Vi + I.Zy = V; +
Vi/Z,. After algebraic manipulation, the transfer function isrid
to be Yo — Z:tZs
V; Zs
function if complex impedances are used #r and Z,. Writing

bjt buf Gain + filter
in
I > out
9V 4.5V
- i - bjt buf
— Saturating nonlin Tone filter
—  pwrsupply "Distortion" effect

. This results in a continuous time transfer

Figure 2:Block diagram of Distortion pedal.

it in the form shown in[{IL) allows the poles and zeros to be seen

more easily:

Ay(s) = ? (g—f + 1) @

2.4. Bilinear Transform of low order transfer functions

Once a continuous time transfer function is obtained elilgemal-
ysis or by inspection of the magnitude response, the bilitraas-
form can be used to digitize this filter. First- and secondeor
continuous time systems are common, so their mappings\&a gi
below.

The continuous time system,

H(S)_ bps™ + ... +b1s+ by (2)
T ans" +...+ais+ao’

results in
Bo+Biz '+ ..+ Bz "
H =

(=) Ao+ Azt + .o+ Apz—’ @)

where for a second order system, coefficient#/¢t) are
By = bo + bic + bac?, 4
B1 = 2by — 2bac?, (5)
By =byg — bic+ b2C27 (6)
Ao = ao + aic + axc?, 7
A1 = 2ap — 2&202, (8)
Ay = ap — arc + asc’, 9)

and for a first-order system, coefficientsidéf ) are

Bo = by + bic, (10)
B = bO — b107 (11)
Ao = ao + axc, (12)
A1 = ap — aicC. (13)
(14)

Herec = 2/T is chosen as typical for the bilinear transform.

3. CIRCUIT ANALYSIS OF DISTORTION PEDAL

The block diagram of the Boss DS-1 Distortion pefial [12] isveh
in Fig.[2. It is basically gain with a saturating nonlinegritand-
wiched between filters. However, distortion from the bipatan-
sistor (BJT) emitter follower buffers and first gain stage aot
negligible.
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Figure 3:Input buffer: Emitter follower circuit.
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Figure 4:BJT transimpedance gain

3.1. Emitter Follower buffers

A typical guitar pedal has an emitter follower (Fig. 3) at thput
to buffer the signal from the guitar pickups, and anotherilaim
emitter follower at the output to drive the cable and subsatu
load. The emitter follower topology is nominally linear iper-
ation and flat in frequency response in the audio band. Tifpica
it is used in conjunction with high pass filters, whose cufoéf
quency can be determined from the resistance and capazitahc

ues. Here itis 3 Hz. The stage can be implemented as cascade

low order high pass filters . Implementation of high passrflie
straightforward with the bilinear transform method of tizjhg an
analog prototype as described in Secfibn 2.

3.2. Single bipolar transistor transimpedance gain stage

Gain can be provided by a single bipolar junction transiéBdiT)
in a transimpedance gain topology shown in Elg. 4.

The frequency response is found from SPICE and digitized by
finding the continuous time poles and zeros, forming thesfiean
function and taking the bilinear transform. This stage shdé/dB
of bandpass gain (Fi@l] 5). There are two zeros at DC, one pole a
3 Hz, one pole at 600 Hz, and another at 72 kHz, which is ignored
because it is well outside the audio band. A transfer funcigo
formed directly in[(Ib):

2

HE) = oDt tm)

(15)

Magnitude response (dB)

10° 10
Frequency (Hz)

10

Figure 5:Frequency response of BJT stage

The bilinear transform applied t& (s) with a sampling rate
fs = 44.1 kHz gives a second order digital filter whose coeffi-
cients can be found usingl(9).

This stage introduces significant nonlinearity at largeutap
but this is neglected for now.

3.3. Op amp gain stage

Non-inverting op amp “buffers” are common in guitar circuite-
cause they minimize loading on the preceding stage. To amaly
the circuit in Fig[® impedances are usedlh (1). The finalsien
function in factored form is given by (16).

(s + R,,lcc)(s + Rblcz) + RbscC

(s + me) (5 + 7o)

R,C>

whereR; = D-100kQ2, R, = (1—D)100k24-4.7kQ2, C, = 1uF,
andC. = 250pF. CapacitoiC, blocks DC to prevent the output

from saturating in the presence of DC offset, while stabilizes

the op amp and contributes a low pass pale.ranges between
0, 1) and is the value of the “DIST" knob that controls the amount
f gain before saturation and therefore the intensity ofdilseor-

tion.

The frequency response is shown in Hiy. 7 for valuesDof
from 0 to 1 in increments of0.1. This is a second-order stage
than can be digitized directly by the bilinear transfornrning
a second-order section with variable coefficients. Theueagy
response of this stage depends on the “DIST” knob. Notice tha
the frequency response at half the audio sampling [&f¢f =
22050)], is not zero and considerable warping will take place with-
out oversampling or the filter design method by Orfanidig [10

This transfer function can be discretized by the bilineansr
form, (@), which also preserves the mapping of the “DIST gar
eter.

The op amp provides the main nonlinearity of the Distortion
effect. To first order, the op amp hard clips the signdlat/2. In
reality the op amp response is much slower because itis open |
and needs to recover from overdrive. Itis also typicallynas\etri-
cal in behavior, leading to significant even-order harmemibere
otherwise only odd-order harmonics are expected. Refinenaoén

H(s) =

(16)

where the numerator is the product of two zergsnd the denom-
inator is the product of the polesat = 273 andw; = 27600.

the op amp clipping model can be based upon the macromodel-
ing technique as done in SPICE to speed up simulatioris [13]. A
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Figure 8:RC low pass filter with diode limiter

black box approach, the macromodeling technique emulates t
input/output behavior of the op amp instead of simulatire k-
havior of its internal devices.

3.4. Diode clipper

Following the op amp clipper is a RC low pass filter with a diode
limiter across the capacitor (Figl 8). The diode clipperitiénthe
voltage excursion across the capacitor to about a diode idrop
either direction about signal ground.
The model of the pn diode is
Iy =1,V

- 1),

where the reverse saturation currépntand thermal voltag&; of

7
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Figure 9: Static nonlinear functions compared: tabulated, tanh,
arctan, approximation to tanh

the device are model parameters that can be extracted fran me
surement.

The nonlinear ODE of the diode can be derived from Kirch-
hoff’s laws:

dav,
dt

ViVo L

RC c

whereV;, V, are the input and output signals respectively.

This is not a memoryless nonlinearity because it is a lowspas
filter whose pole location changes with voltage. [Eid. 10 depi
the input-output characteristic, which can be describeal ‘&sip-
ping” function, along with various analytic approximat®hased
on hyperbolic tangent and arctangent. At high amplitudelv
the differences between different clipping functions ibti

For efficiency, this nonlinearity is approximated as staitd
the DC transfer curve is computed by settiﬁgél = 0in (I8),
and tabulating the functiol, = f(V;) by Newton iteration. A
nonuniform sampling of the input to output transfer curvessd
that utilizes a constant error percentage or signal to dgatign
noise ratio. The rationale for this is that at small ampksidthe
curve is most linear with the highest gain, and most sudoiept
guantization noise. At high levels, the nonlinearity is @oessive,
reducing the gain and quantization error. A logarithmic gtmg
with a floor about zero is chosen. Linear interpolation isduse
further reduce quantization noise.

Alternatively an approximation such as

(sinh(Vo/V2)), (18)

xT

T 7 ()

can be used to compute the nonlinearity. This formuld (19) we
approximates hyperbolic tangent when= 2.5. The transfer
curve of the tabulated function is compared with that of tarh-
tan, and[(IP) in Fid9. The curves are normalized so thatitipes
aboutV; = 0 matches visually anil, at the extremes match. The
formula [19) can be seen to be a good approximation of tantx. Ar
tan looks like a close approximation to the actual DC norliitg
but it is not as linear about; = 0. The approximatior (19) has the
advantage of an additional parametethat can be varied to better
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Figure 10:Small signal approximation of diode clipper
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Figure 11:Tone circuit of Distortion pedal

match the actual function. In this work, the tabulated nuedrity
is chosen.

3.5. Tone stage

The tone stage (Fifg11) is a highly interconnected passitigark
that cannot be accurately separated. However, an analydig o
circuit shows its design intent, and the error due to sejparahe
blocks is less than that due to component tolerance in aralactu
circuit.

This circuit involves a fade between high pass filter and low
pass filter blocks. The fading affects the cutoff frequenaitthe
filters, but this effect is small. A digitization of this cirit can
capture the essence of its operation, which is a loudnesst:boo
a V-shaped equalization as commonly observed for toneitsrcu
intended for electric guitars[s] 1].

A full analysis is straightforward but tedious, so AC anays
performed in SPICE, and the corner frequencies found gcafi
The weightings for the fade are also determined by simuiatio
The high pass corner frequencyfis,y = 1.16 kHz and the low
pass corner frequency j&,r = 320 Hz.

This is implemented digitally as a weighted sum of first-orde
high pass and low pass filters discretized by the bilineasfaam
rather than discretizing the complete transfer functiohisBim-
plification eliminates time-varying filters and the comgiga to
update the coefficients, using static coefficients inst&éatleling
a user controlled parameter with greater accuracy is ussacg

Normalized magnitude response (dB)

-20

10° 10
Frequency (Hz)

10

Figure 12:Distortion pedal tone circuit frequency response. Solid
line is actual. Dashed line is digitized implementation.

Gain + filter bjt buf
Saturating nonlin Tone filter

"Overdrive" effect

—  pwrsupply

Figure 13:Block diagram of Overdrive pedal.

because a user would not likely notice the difference inrfilte
sponse.

The magnitude response of the original circuit is compared
with the Matlab approximation in FiflL2. The responses arg v
similar with < 1 dB error in most cases.

4. CIRCUIT ANALYSIS OF OVERDRIVE PEDAL

The block diagram of an overdrive pedal, specifically thendra
Tube Screamer, is given in Fig.JL3[14]. It is characterizgdhigh
pass filters, followed by the summation of a high-pass fittened
clipped signal summed with the input signal. This is folla®y
low-pass tone filtering and a high pass in the output buffére T
following is an analysis of the circuit in rigor

4.1. High pass filters

The first stages of the overdrive pedal are high pass filtettstive
following cutoff frequenciesyf.: = 15.9 Hz, fco = 15.6 Hz.

4.2. Non-inverting op amp with diode limiter

The non-inverting op amp (FifJL4) of the overdrive pedaliis-s
ilar to that of the distortion except the diode limiter is neaross
Z¢. The diode limiter essentially limits voltage excursiomass
the op amp keeping it within ideal op amp conditions. Theagst
at the minus input of the op amp is then the same as that on the
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Figure 14:Clipping stage of overdrive pedal.
plus terminal. This generates a current actéss
_ Vaeg : s
In=— —VZRI(H%), (20)

wherew, = (R1C.)™!, R1 = 4.7kQ, C. = 0.047uF. I,, flows
through the components connected between the minus tdrmin
and the output of the op amp. Circuit analysis produces the fo
lowing equation:

Vo—Vi d Vo —Vi

I, = e— (Vo — Vi) + 215 sinh 21
o+ Cogp(Vo = Vi) 4 2L sinh (=) (21)
Making a variable substitution’ = V,, — V; yields,
v I, %4 2[5 .
E = a — m — CC Sll’lh(‘//‘/t)7 (22)

whereC¢c = 51pF, R2 = 51k + D500k, andD € (0, 1), control-
ling the intensity of the overdrive. It can be seen that th¥EJs
the same as that for the Distortion pedal] (18), wheis replaced
by Vi/R.

The arithmetic introduced by the variable substitution ban
described in block diagram form as depicted in Eig. 13. Tiselese
of the overdrive circuit is the summation of the input signéh
the input filtered and clipped. The above variable subgtituis
solved forV:

Vo =V + ‘/iy

whereV is obtained by solvind(22).

(23)

4.3. Tone stage

The tone stage (Fifl_1L5) can also be analyzed accordingaboge
amp rules. The algebra is complicated, but the result is

V, (RiR;+Y) s+ Wuw.

(24)

V. YR.Cs (s+wp)(s+ws)+ Xs’
where
Y
- RiRy + Y’
R, 1

X = ,
Rl + R'r (Rz + RLHRT)CZ

Y = (Rl + Rr)(Rz + Rl||Rr)7

4.5V

Vi

1k

| | | |
N N PP |
o o o o u
T T T T

Magnitude response (dB)

-30 t=0.0001
a5k |77 t=0.9999
t=0.5
_40 L
-45 1 ‘ 2 ‘ 3 ‘ 4 5
10 10 10 10 10

Frequency (Hz)

Figure 16: Overdrive tone circuit frequency response for T = 0,
0.5, 1.

we = 1/(C: (R: + Ri||Rr)), wp = 1/(Cs (Rs||R:)), Ry
1k, R. = (1 — T)20k, R; = T20k, R, = 220, C, = 0.22uF,
R; = 10k, Rs = 1k, Cs = 0.22uF, andT" € (0, 1) controls the
cutoff frequency of the low pass.

This is a second-order transfer function with variable fioef
cients. Fig.[Ib shows the essentially low-pass characténeof
magnitude response.

5. RESULTS

Actual Distortion and Overdrive pedals are compared to tieadl
emulations for a 220 Hz sine signal with amplitude of 200 m\q a
an exponential sine sweep. The settings on the actual peglal a
adjusted until the spectrum resembles that of the digitaion for

the sine input. Adjustments were made approximately to imtéie
difference in magnitude of the first two harmonics, and toamat
the position of notches in the frequency domain.

The time waveforms and magnitude spectra for the single-
frequency excitation are shown in Figs.]1[720. The sinagoid
sweeps are represented by a log-frequency spectrodiranin15]
Figs.[21E2% with 80-dB dynamic range.

The waveforms show a general similarity. The spectrograms
indicate that frequency equalization is close. The measspec-
tra exhibit a strong even-order nonlinearity that is not gled in
the digital implementation. The emulated versions usimggsim-
plified algorithms in both cases sound slightly brightemttiae
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Figure 20:Normalized spectrum of response to 220 Hz sine, over-
drive pedal (top), algorithm (bottom)
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Figure 18:Normalized spectrum of response to 220 Hz sine, dis-
tortion pedal (top), algorithm (bottom) =70
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Figure 21:Measured distortion pedal, sine sweep log spectrogram

Time (ms)

Figure 19: Time response to 220 Hz sine, measured overdrive
pedal (dashed) and algorithm (solid)

Freq (log10)

actual pedals, possibly due to the lack of even-order neatity
and a difference in equalization..

The digitally emulated result also deviates from the measur 0 1 5 3 a s -80
one because there was no attempt to calibrate the model to the Time (sec)
actual pedal with its particular component values and patam
settings. Itis more representative of a circuit whose camepts Figure 22:Distortion algorithm, sine sweep log spectrogram

are exactly the values as in the schematic.
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tion algorithm, and a starting point from which further togican
be done. The computational power needed is comparable tto tha

available in commercially available guitar effects boxesduse of Dec 1974. . ) )
the similar architecture comprising oversampling, lowesriters, [14] R. G. Keen, “The Technology of the Tube Screamer,” Avail
and a tabulated nonlinearity. able at| http://www.geofex.com/fxtech.htm, Accessed Mar
) . o ) 22,2007.

In th's. WOF".’ BJT gain stagg and op amp clipping behaviors [15] J. C. Brown, “Calculation of a constant Q spec-
are oversimplified. Nonlinearities are assumed to come faom | B " |
single symmetrical diode clipper, which is not true undegda tral - transform, J. Acoust. Soc. Am vol. 89,

! pp. 425-434, 1991, Matlab code available at

signal conditions. Improved models of remaining nonliitéss

are the subject of ongoing research. http://web.media.mit.edu/ brown/cqtrans.htm.
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