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ABSTRACT
In this paper the problem of the synthesis of plucked strings by
means of physically inspired models is reconsidered in the context
of the player’s interaction with the virtual instrument. While solu-
tions for the synthesis of guitar tones have been proposed, which
are excellent from the acoustic point of view, the problem of the
control of the physical parameters directly by the player has not re-
ceived sufficient attention. In this paper we revive a simple model
previously presented by Cuzzucoli and Lombardo for the player’s
touch. We show that the model is affected by an inconsistency that
can be removed by introducing the finger/pick perturbation in a
balanced form on the digital waveguide. The results, together with
a more comprehensive model of the guitar have been implemented
in a VST plugin, which is the starting point for further research.

1. INTRODUCTION

The plucked string is often regarded as the simplest musical acous-
tic system, which is amenable to an easy-to-implement physically
inspired model for sound synthesis. However, this assertion is only
true in a very crude approximation, which, besides disregarding
the non-linearities, does not take into account the interaction of the
player’s finger, or of the pick, with the string. Modeling and con-
trolling the player’s touch is indeed a complex problem that to date
has only found partial solution. The practical system proposed in
[1] totally refrains from modeling this interaction by introducing,
instead, two databases of string excitation and damping signals
that are applied as input to the string Karplus-Strong like filter via
a pluck-shaping filter in cascade with a comb filter modeling the
plucking point. Although the quality of the acoustic result justifies
the method, in applications where the interaction of the player with
the string plays an essential role in the sound control interface, the
proposed system is not usable.

In [2] Cuzzucoli and Lombardo introduce an interesting and
simple model for the interaction of the finger/pick with the string.
The proposed model is linear and derives the shape of the excita-
tion from the coupling of two dynamical systems, the string and
the finger/pick. The models proposed in [3] for the force exerted
by the player, which include friction between the nail/pick and the
string, help shaping the control functions of the model.

Unfortunately, the published version of [2] contains a few ob-
vious typos and, in our point of view, also a model inconsistency
which makes the use of special tricks necessary for retriggering
the played string. In this paper we present a correction of the
Cuzzucoli-Lombardo model and point out some of its extensions.
In a recent paper [4] a modal approach to the synthesis of guitar
pluck has been presented. In the paper no model for the interac-
tion of the player with the string is reported. The model illustrated

in this paper in the context of digital waveguide synthesis is also
useful in the context of modal synthesis.

The player-string interaction model, completed by an acoustic
model of the guitar body, has been implemented in a VST plu-
gin, which includes a specific user interface for controlling the
model parameters, also illustrated in the paper. The plugin has
been developed for research purposes and is freely available at
http://staffwww.itn.liu.se/∼giaev/soundexamples.html.

2. THE CUZZUCOLI-LOMBARDO MODEL

In this section we review the model of interaction of the finger/pick
with the string presented in [2]. The finger/pick is represented by a
damped spring-mass system, defined by a mass M , a spring stiff-
ness K and a damping coefficient R. When plucking the string, the
finger/pick is in contact (solidal) to a string segment, positioned on
the interval [x1, x2], of length ∆ = x2 − x1 and linear mass den-
sity µ. The remaining portions on the left and on the right of the
plucking segment behave like two strings, each attached to one
termination (nut or bridge) and both coupled to the plucked seg-
ment. Within the strings, the transversal waves propagate as in
a waveguide and reflect at the boundaries. As a result of pluck-
ing, an incremental deformation of the string is produced over the
plucking segment, which propagates along the strings.

Let y = y(x, t) denote the deformation of the string with re-
spect to the equilibrium position. At the plucking segment, the
following forces are available:

• the external force F0(t) exerted by the player

• the restoring force −Ky of the finger/pick (spring model)

• the damping term −R ∂y
∂t

of the finger/pick

• the resultant of the transversal component of the tensile
force of the string F (t) acting at the extreme points of the
plucking segment.

These forces balance the force of inertia (M + µ∆) ∂2y
∂t2

of the
mass system composed by the finger/pick and the string segment in
contact with it. Therefore, the equilibrium equation can be written
as follows:

(M + µ∆)
∂2y

∂t2
+ R

∂y

∂t
+ Ky − F (t) = F0(t) (1)

In the linear approximation of the string, valid for small deforma-
tions, the force F (t) is given by

F (t) = K0

 
∂y

∂x

˛̨̨̨
x=x2

− ∂y

∂x

˛̨̨̨
x=x1

!
, (2)
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where K0 is the tension of the string, which is assumed to be con-
stant. When the interaction of the finger/pick with the string is
lumped to a single point, a discontinuity of the first spatial deriva-
tive of the deformation of the string is introduced at the plucking
point similar to that caused by a concentrated force applied to the
point (see, for example, [5] p. 19).

The main control function of the model is the player’s force
F0(t). However, in order to model the movement and detachment
of the finger/pick from the string, time varying mass M , damping
coefficient R and stiffness K functions must be assigned, which
fast decay to 0 immediately after the pluck phase is over. In order
to be consistent, the model should revert to that of a freely oscil-
lating string when these parameters vanish.

A discrete-time model of the pluck interaction can be de-
rived from (1) and (2), by space-time sampling the solution y(x, t)
and replacing the derivatives with finite differences. Away from
the plucking segment the classical wave equation for the flexible
string holds, whose solution can be written in terms of propagating
waves. Given a temporal sampling interval T and propagation ve-
locity c =

p
K0/µ along the string, the spatial sampling interval

is, as is common practice, chosen as X = cT , which simplifies
the form of the discrete traveling wave solution. The length of the
string L is assumed to be an integer multiple N of the spatial sam-
pling interval: L = NX . Tuning the discrete model of the string
also requires the use of additional fractional delays, which we will
disregard in these preliminary considerations. Central differences
are introduced to approximate the time derivatives:

∂y

∂t

˛̨̨̨
x=nX, t=mT

↔ y(n, m + 1)− y(n, m− 1)

2T

∂2y

∂t2

˛̨̨̨
x=nX, t=mT

↔ y(n, m + 1)− 2y(n, m) + y(n, m− 1)

T 2

(3)
Assuming, for simplicity, that ∆ = X and that the plucking
segment coincides with the interval

ˆ`
np − 1

2

´
X,
`
np + 1

2

´
X
˜
,

where np < N is a positive integer, a discrete counterpart of (2) is

F (m) =
K0

X
[y(np + 1, m)− 2y(np, m) + y(np − 1, m)] ,

(4)
where the spatial derivatives are replaced by central differences,
centered on half-integer multiples of X .

With (3) and (4), the discretization of (1) yields the following
finite difference equation:

c1y(np, m + 1)− c0y(np, m) + c−1y(np, m− 1)

= y(np + 1, m) + y(np − 1, m) + X
K0

F0(m),
(5)

where
c1 =

“
1 + M

µX
+ ρ
”

c0 =
“

2M
µX

− κ
”

c−1 =
“
1 + M

µX
− ρ
” (6)

and we defined the adimensional parameters

ρ =
R

2
√

µK0

κ =
KX

K0
.

(7)
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Figure 1: A three delay line structure to compute plucked string
oscillations.

The structure shown in Figure 1 and consisting of three delay
lines has been proposed in [2] in order to compute the solution of
(5) together with the connected wave equation for the rest of the
string. The frequency dependent losses of the string are temporar-
ily left out of our discussion. In order to fix our ideas, we assume
that the nut is placed at the leftmost extreme of the waveguide and
the bridge at the rightmost extreme, where the nut stands from the
actual guitar nut or the fret bar for non open-string sounds. Two
of the three delay lines implement the right and left propagation
of waves along the string as in a conventional 1D waveguide. The
third delay line consists of two delay lines, one oriented toward
the left and one toward the right of the plucking segment. Both
these sub-lines host the propagation of the perturbation caused by
the pluck excitation, respectively, from the left of the plucking seg-
ment to the nut and from the right of the plucking segment to the
bridge. At the terminations, the perturbation wave is mixed with
the inpinging wave from the conventional waveguide, g(0, m) at
the nut and f(N, m) at the bridge, and reflected together. The de-
formation of the string at any point along the string is obtained by
adding the content of the three lines at the given point. The pertur-
bation ĥ(m) at the plucking point, which will propagate along the
upper line, is computed from the state of the three-line waveguide
at the plucking point and at adjacent spatial locations. However,
it easy to see that the three delay line scheme is equivalent to the
two delay line structure shown in Figure 2, where, with reference
to Figure 1, we let

ŷ+(n, m) = f(n, m) + ĥ(m− n + np), for n > np

ŷ+(n, m) = f(n, m), for n 6 np

ŷ−(n, m) = g(n, m) + ĥ(m + n− np), for n < np

ŷ−(n, m) = g(n, m), for n > np.

(8)

An update equation for the perturbation ĥ(m) can be obtained
from (5) by relating the terms at location different from np to those
at location np. From the diagram in Figure 2 we have:

y(np + 1, m) = ŷ−(np, m + 1) + ŷ+(np, m− 1)

+ĥ(m− 1)

y(np − 1, m) = ŷ−(np, m− 1) + ŷ+(np, m + 1)

+ĥ(m− 1).

(9)
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Figure 2: Equivalent two delay line structure to compute plucked
string oscillations.

Thus,

y(np + 1, m) + y(np − 1, m) = y(np, m + 1)− ĥ(m + 1)

+y(np, m− 1) + ĥ(m− 1)
(10)

and substitution in (5) yields:

ĥ(m + 1) = ĥ(m− 1) + (1− c1)y(np, m + 1) + c0y(np, m)

+(1− c−1)y(np, m− 1) + X
K0

F0(m).

(11)
For the sake of computation, the term in y(np, m + 1) can, in
turn, be rewritten in terms of ĥ(m + 1) and ŷ+(np, m + 1) and
ŷ−(np, m + 1), which yields a causal recurrence for ĥ(m). How-
ever, from (11) we immediately note the following inconsistency:
when the contact of the finger/pick with the string is removed, i.e.,
when M , K, R and F0 all go to zero then the coefficients 1− c±1

and c0 also go to zero. In this case we are left with the recurrence
ĥ(m + 1) = ĥ(m − 1), which admits the constant or alternating
solutions. Therefore, as the finger/pick is removed, the perturba-
tion term ĥ(m) does not necessarily vanish. Indeed, in our exper-
imentation with the model we determined that as the finger/pick is
removed before the string oscillation is fading away, the sequence
ĥ(m) is likely to get stuck or oscillate between two non-zero val-
ues, as required in order to provide the accurate solution of (5).
This poses control problems when replucking the string: all per-
turbations caused by previous plucks are still active when a new
note is played on the same string.

Although tricks can be devised to fade away the perturbation
when the string needs to be replucked [6], discontinuities of the
waveform are generated when the string is plucked at different
locations. These are due to the fact that the wave variables ŷ+

and ŷ− tend to be discontinuous around the plucking segment, al-
though, due to cancellation, their sum is continuous. When the per-
turbation is artificially faded, these discontinuities present them-
selves as transients on the waveguide. The effect of discontinuities
can be mitigated by the use of velocity waves [7], which do not
depend on constant deformations. However the extra control func-
tion to drive the perturbation to zero is quite arbitrary and unnec-
essary. In fact, in the following section a method for the solution
which does not suffer from these problems is presented. While
the derivation can be performed using impedance models, as de-
scribed in [8], we will take a finite difference approach in order to
compare the model with that proposed in [2] and illustrated in this
section.
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2

Figure 3: Diagram of the balanced waveguide for the plucking
interaction.

3. IMPROVING THE PLAYER’S TOUCH MODEL

A simple and effective way to fix the inconsistency of the
Cuzzucoli-Lomabardo player’s touch model discussed in the pre-
vious section is to introduce the plucking perturbation in balanced
form on the digital waveguide. This is achieved by means of the
diagram in Figure 3, where the perturbation h(m) is split in half
and injected in the digital waveguide in a symmetric way on the
two delay lines, on each side of the adder providing y(np, m).
Consequently, the propagation equations (9) are replaced by

y(np + 1, m) = y−(np, m + 1) + y+(np, m− 1) + h(m−1)
2

y(np − 1, m) = y−(np, m− 1) + h(m−1)
2

+ y+(np, m + 1)
(12)

and the analogon of (10) for the balanced waveguide is

y(np + 1, m) + y(np − 1, m)

= y(np, m + 1)− h(m + 1) + y(np, m− 1).
(13)

An important consequence is that now

h(m + 1) = (1− c1)y(np, m + 1) + c0y(np, m)

+(1− c−1)y(np, m− 1) + X
K0

F0(m),
(14)

which implies that h(m) vanishes as soon as the finger/pick con-
tact with the string is removed, i.e., when M , K, R and F0 all go
to zero.

Notice that although both wave variables y+ and y− and per-
turbation h(m) differ from the wave variables ŷ+ and ŷ− and
perturbation ĥ(m) of Figure 2, they still yield the same solution
y(n, m) of the plucked string problem. The reason why this wave
representation is more convenient is that no special measure has
to be taken in order to control and fade out the perturbation when
re-triggering a note played on the same string.

A causal update equation for the perturbation h(m) can be
derived from (14) by expressing all the terms in y(np, r), for r =
m− 1, ..., m + 1, in terms of the wave variables and perturbation
at instant r. Passing to the z-transform, we obtain:

H(z) = B(z)
A(z)

`
Y +(z) + Y −(z)

´
+ Xz−1

K0A(z)
F̃0(z), (15)

where Y +(z), Y −(z) and F̃0(z) respectively are the z-transforms
of y+(np, m), y−(np, m) and F0(m). For the polynomials A(z)
and B(z) we have the following expression:

A(z) = c1 − c0z
−1 − (1− c−1)z

−2

B(z) = (1− c1) + c0z
−1 + (1− c−1)z

−2.
(16)
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Figure 4: Diagram of the balanced waveguide including the com-
plete scattering junction for the plucking interaction.

From (15) and the diagram of Figure 3 one obtains the dia-
gram of Figure 4, where the pluck interaction is represented as a
scattering junction [8] with force input, and the extra unnecessary
delay in the force path has been removed. Notice that the numer-
ator B(z) of the scattering wave transfer function tends to 0 when
the finger/pick is removed, while the numerator A(z) tends to 1.
As a result, after plucking, the propagation along the line reverts
to that of an unperturbed single string.

3.1. Velocity Wave Variables

The obtained structure can be converted for use with velocity wave
variables in place of displacement waves. In this case, the wave
variables can be first integrated with a leaky integrator filter to ob-
tain displacement, then the scattering junction processing is per-
formed and the result is differentiated in order to obtain the veloc-
ity increment due to plucking. Since integration and differentiation
along the path approximately cancel each other, the procedure is,
in principle, equivalent to using for the velocity waves the same
scattering junction as in Figure 4, provided that the force input
is differentiated. Alternately, the force input can be described in
terms of its time derivative, i.e., yank. However, notice that the
scaling factor X/2K0 in the force path converts force into dis-
placement [8], where the factor 1/2 is borrowed from the denomi-
nator 2A(z). Since X/2K0 = T/2Z0, where Z0 =

√
µK0 is the

impedance of the string, converting force into velocity, then the
input can be written in terms of the velocity v injected in the string
by striking it with force F0. The factor 1/2 takes into account
the fact that two portions of the string (left and right) are “seen”
at the excitation point, acting as impedances connected in series.
Hence XF0(m)/2K0 = v(m)T . Differencing this term yields
2(v(m) − v(m − 1)) to be presented as input at the scattering
junction, in place of XF0(m)/K0, when velocity wave variables
are chosen for the waveguide.

3.2. Transfer Function and Stability

The overall structure in Figure 4 including string waveguide, ex-
citation scattering junction and boundary scatterers is a linear sys-
tem, which can be described by a transfer function. However, the
parameters of the scattering junction, such as finger mass, damp-
ing and stiffness, depend on time and are non-zero only during the
excitation time interval. Therefore, the transfer function is time

varying. After removal of the string-finger contact, the structure
behaves like a waveguide modeling stationary waves in the string.
Including losses, modeled as a gain factor g ≤ 1 for each delay
element of the waveguide, from the diagram of Figure 4 we obtain

Q(z) =
Xz−(N−np)(1− g2npz−2np)

K0 [2A(z)(1− g2Nz−2N ) + B(z)P (z)]
, (17)

with

P (z) = g2(N−np)z−2(N−np)− 2g2Nz−2N + g2npz−2np , (18)

where we retained as output the forward propagating wave signal
y+(N, m) at the bridge. The transfer function is still comb-like,
as that of a Karplus-Strong string model to which it reverts when
A(z) = 1 and B(z) = 0, but the presence of the polynomials
A(z), B(z) and P (z) has the effect of spreading some energy
of the excitation to frequencies lying in between the teeth of the
comb, as shown in Figure 5. This is observed in guitars and other
instruments, where, in the attack phase, energy in between the har-
monics is present, which decays rapidly after the initial transient.
At the onset, the waveform looks like a set of pulse trains superim-
posed to the forming oscillation. In the model this is mainly due
to the force input filtered by 1/2A(z) in the excitation path of the
waveguide (see Figure 4). The filter implements a passive damped
mass-spring system. Although we did not obtain the discrete-time
filter by applying the bilinear transform to the Laplace version of
the differential equation (1) – which guarantees stability but intro-
duces frequency warping – the filter can be shown to be stable for
all ranges of the physical parameters.

In order to establish string oscillations, the system typically
operates in under-damped regime. This is reflected by complex
conjugate poles responsible for the bandpass frequency response
shown in Figure 6. The discriminant of the polynomial A(z) is:

D = −M(κ + 1)

µX
+

k2

4
+ ρ(ρ + 1). (19)

In the under-damped regime D < 0 and the magnitude square of
the two complex conjugated poles z± is:

|z±|2 =
M − ρ µ X

M + (1 + ρ) µ X
, (20)

which is clearly smaller than 1, so that the filter is stable. How-
ever, for a small damping coefficient ρ and mass of the finger/pick
M much larger than the mass µX of the plucked segment of the
string, the poles can get close to the unit circle. As a result, in a
finite arithmetic implementation, suitable scaling is necessary in
order to prevent overflow throughout the valid range of values of
the physical parameters.

The dependency of frequencies f± of the poles on the physical
parameters is the following:

f± = ± 1

2πT
tan−1

q
M(κ+1)

µX
− k2

4
− ρ(ρ + 1)

M
µX

− k
2

. (21)

When both damping and stiffness parameters are negligible with
respect to the mass ratio, we have:

f± ≈ ±
1

2πT

r
µX

M
, (22)
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Figure 5: Typical frequency response of string waveguide struc-
ture: (a) during excitation; (b) during free oscillation.

0 0.5 1 1.5 2

x 10
4

-60

-40

-20

0

20

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

Figure 6: Typical frequency response of the filter 1
2A(z)

in the ex-
citation path of the pluck model.

which shows that the peak frequency of the bandpass filter
1/2A(z) decreases as the finger/pick mass grows.

The filter B/2A(z) in the wave path of the pluck scattering
junction in Figure 4 typically has a high-pass response, almost flat
in the passband, as shown in Figure 7. The phase response of the
filter is however such that the net transfer function 1+B(z)/2A(z)
in the wave path is slightly low-pass, with a few dB attenuation in
the stopband, as shown in Figure 8.

In realistic models of the string, the elementary losses g are
frequency dependent. They are consolidated at the boundaries of
the string and implemented as low-pass filters, one at each end
of the waveguide (loop filters). In our scheme, the frequency re-
sponse of the loop filters varies according to the position of the
pluck point along the string. This effect is simulated by employ-
ing as loop filters two low-pass filters with variable cut-off fre-
quency. The overall waveguide comb filter operates at the margins
of stability in order to produce sustained oscillations. The loop
filters (consolidated gains) determine the frequency dependent de-
cay rate of the tone partials. The bridgeside loop filter includes an
additional filter modeling the scattering of the waves at an elastic
bridge.
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Figure 7: Typical frequency response of the filter B(z)
2A(z)

in the wave
path of the pluck model.
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Figure 8: Typical frequency response of the complete filter 1 +
B(z)
2A(z)

in the wave path of the pluck model.

4. PLAYING AND CONTROLLING THE STRING
INTERACTION MODEL

A major asset in enforcing a physical model for the finger/pick
interaction with the string lies in the fact that simple functions, re-
lated to the force and contact dynamics, can be employed to feed
the waveguide and obtain realistic sounds. The major benefit ob-
tained from putting the Cuzzucoli-Lombardo model in consistent
form is that re-plucking the string, especially at different positions,
does not involve special care, otherwise necessary in order to drive
the string wave variables to a rest state. In the improved model,
when force, finger/pick mass, damping and stiffness control sig-
nals all go to zero, the string reverts to a stationary wave oscillating
state without showing discontinuities of the wave variables along
it.

Simple control functions, as the ones shown in Figure 9 can
be employed to effectively excite the string, with good acoustical
results. In the variation of the physical parameters we distinguish
a pre-damping phase, in which the finger/pick comes in contact
with the string and mostly damps residual oscillations, an exci-
tation phase, where the player applies force to the string through
the finger/pick (with possibly time varying contact characteristics)
and a detach phase, where the contact of the finger/pick with the
string is removed. In the pre-damping phase, increasing damping
R(t) is applied until a limit level is reached. This phase can last
a few milliseconds and can be much shorter than the one shown
in the figure. The main purpose of the pre-damping phase is to
control the plucking style: a longer pre-damping phase features
a “softer” playing style. After pre-damping, a gradually increas-
ing force F0(t) is applied to the string and, simultaneously, both
the finger/pick inertia, parametrized by the mass M(t), and elastic
recoil forces, characterized by the stiffness coefficient K(t), are
applied to the string. These quantities vary in an arbitrary fashion
and much depend on the pluck style (apoyando, tirando, etc.) and
medium (finger, nail or plectrum). Constant stiffness and mass
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Figure 9: Time-line of simple control functions for the physical
parameters.

are most likely not representative of a real pluck. For example,
the stiffness can be considered to increase as a soft plectrum is
deformed during contact, or vary when the player switches from
driving the string with the finger to grab it with the nail, a situa-
tion when also the mass parameter can be assumed to change. A
non-linear sping model can also be employed, similar to the felt
hammer model in the synthesis of piano. Finally, in the detach
phase, all external forces abruptly decay to zero, leaving the string
free to vibrate.

The force exerted on a guitar string may be represented by
a two-segment signal. During the initial attack phase, the force
rises from zero to a final maximum and then rapidly goes back
to zero as the string is released. Depending on how the player
approaches the string, the force curve is here assumed to take on
different shapes and time durations. Two types of curves are used
for the construction of force signal segments: an “S-shaped” one
and an exponential curve with variable decay. Denoting the attack
and release time intervals, respectively, by ta and tr , and given
the maximum force magnitude Af , the “S-shaped” force segment
curves are given by

F (t) =

8>>>>>>><>>>>>>>:

Af
1
2

h
1− cos

“
π t
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”i
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1
2

h
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,

(23)
while the exponential curves are given by

F (t) =

8>>>>>>><>>>>>>>:
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“
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”sa
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Af

“
t−ta

tr

”sr

for ta < t ≤ ta + tr

0 for t > tr + ta

(24)

The parameters sa and sr determine the curve slopes: if sa =
sr = 1 a linear segment is obtained. Modifying these slope pa-

t
(I) (II) (III)

t0

F(t )

t0

Af

F(t )

0

F(t )
Af Af

Figure 10: (I) Exponential segments with sa and sr < 1; (II)
Exponential attack and linear release with sa > 1 and sr = 1;
(III) Linear attack segment with “S-shaped“ release segment.

rameters together with ta and tr , a range of differently shaped
force inputs can be generated. The segment shapes may also be
combined, so a linear attack segment may for example precede an
“S-shaped” release. Three possible variations are depicted in Fig-
ure 10.

If the release time is too long, the string will be unnaturally
damped during the detach phase, as if the string were slowly re-
leased and never really given any excitation. As in [2], proper
release times is taken to be around one half a period of the strings’
fundamental frequency. The finger mass and stiffness coefficients
are obtained by amplitude modulating their peak values, respec-
tively Ma and Ka. The corresponding control signals are calcu-
lated as follow:

M(t) = Ma ×Mmod(t)

K(t) = Ka ×Kmod(t)
(25)

where Mmod(t) and Kmod(t) are piecewise linear functions com-
posed of 4 segments (similar to an ADSR envelope generator), fol-
lowed by a final release segment with exponential decay. Methods
involving different equations for generating time varying parame-
ters are of course possible, our choice rested on the convenience
of the user interface. In our scheme, the damping parameter ρ
remains constant during the action of the force. Although it is pos-
sible to modulate this parameter as well, but this was not found
to make a particularly significant perceptual difference to the pro-
duced sound.

The approach taken to tune the simulated string and make the
guitar model playable was to add a third termination to the string
simulation, placed in between the nut and bridge terminations. The
termination structure and control setup mimics a guitar player’s
finger action on the fretboard. The structure used is similar to the
scattering junction illustrated in Section 3, with the exclusion of
the external force term. Statically, this force is perfectly balanced
by the reaction of the fret once the finger is pressed against it (tap-
ping the string is not modeled here). Muted playing or stopping
the string at the fret can also be simulated by means of this junc-
tion [7]. Structurally, the finger on fret junction is equivalent to the
one-filter dynamic scattering junction in [9], with the addition of
impedances due to the damping and elastic terms. As positioning
of the fret junction is only possible at a distance integer multiple
of the spatial sampling X , an all-pass filter is added in cascade
to the loop filters at the bridge in order to fine tune the tones by
introducing a fractional delay.

5. THE PLUCKSYNTH USER INTERFACE

The PluckSynth guitar pluck synthesizer has been implemented
within the SynthEdit environment [10], with C++ modules inter-
faced with the SynthEdit SDK. A graphical user interface (GUI),
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Figure 11: The control panel of the PluckSynth VST plugin.

built around standard control blocks, allows for the real/time con-
trol of the meaningful parameters. Some of these parameters, such
as damping, can also be controlled via MIDI input and assigned
to gesture controllers, such as wheel or joystick. The main control
panel of the PluckSynth GUI is shown in Figure 11.

The system implements the waveguide based string interac-
tion model described in Section 3, complete of loop filters at the
terminations, fine-tuning allpass filter and fret model. A linear su-
perposition of two waveguides is employed for each string, one
modeling vertical vibration and one representing perpendicular
horizontal movement (polarization). We enforced the approxima-
tion that the planes of vibration are linearly coupled and that cou-
pling occurs at the bridge position [11]. In order to extend the
excitation model for use with a two polarizations string model,
the string feedback is taken as a linear combination of the two
waveguides. The computed excitation signal h(m) is distributed
to the waveguides through an angle of string approach parameter
“Angle”, in the range 0 to 1 and controlled by the correspond-
ing knob, using hvert(m) = Angle × h(m) and hhoriz(m) =
(1 − Angle) × h(m). During the excitation, this causes an addi-
tional coupling point between the two polarizations to be present at
the plucking position. The audible effect depends upon the settings
for the sustain/bridge polarization coupling. Separate knobs avail-
able in the GUI allow us to control the sustain of each mode and the
amount of coupling between vertical and horizontal planes. An ad-
ditional “inharmonicity” knob controls the detuning of the vibra-
tions in the two planes, allowing for the introduction of beating or
chorus effects. Allpass interpolated delay lines are employed here
to insert in the waveguides a MIDI controlled time varying delay
equivalent to a maximum pitch bend of one semitone. Sympathetic
coupling among different strings is not currently implemented in
the system.

The user can choose between electric or acoustic guitar. In
the former case two moving magnetic pick-ups can be placed at
will between the bridge and the last fret on the fretboard. A sim-
ple pickup model is used. Magnetic guitar pickups are sensitive
to the string velocity and behave much like resonant low pass fil-
ters. Hence, a pickup is simply an observation point in the velocity
wave delay lines, whose output is filtered with a 12db/octave res-
onant low pass filter. This filter cutoff and merit factor determines
the sound character of pickup. For the acoustic guitar, an empir-
ical model of the body is provided, which includes a number of
filters, each of which representing a resonant mode of the body.
The initial values of the center frequencies, gains and roll-off fac-
tors of these filters were obtained by matching the measured fre-
quency response of a specific acoustic guitar. In a secondary con-
trol panel of the user interface, these values can be altered at will
or loaded from file. Moreover, according to their center frequen-
cies, the body filters are grouped into three bands (“Low”, “Mid”
and “High”), which allow the user to control the overall charac-
teristic by changing the gain factor of each group. A “brightness”
control, using standard equalization techniques, is also included.
Presets concerning the string type, from nylon to metal can also be
selected in the panel.

The parameters of the finger/pick interaction with the string
can be selected in the upper-right section of the GUI. There, two
xy-pads control the force signal segments: the “relax” axis con-
trols, respectively, the attack and release time, while the “style”
axis controls the shape of the segments, respectively sa and sr in
(24). If the cursor is positioned at a zero value on the style axis,
the force excitation segment coincides with the half period cosine
function of Equation (23). The finger mass and stiffness peak val-
ues and modulations in (25) can be controlled respectively by two
knobs and two editable piecewise linear curves. Two sliders con-
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trolling the amount of modulation are available.
Pre-damping time and amount of damping, as discussed in

Section 4, are controlled by two knobs in the GUI. In order to
simulate the friction of the finger/pick sliding on the string, in our
implementation we also added a noise term on the force excitation,
whose amount can be controlled by the “scratch” knob. Different
surfaces are represented by a set of sampled noise types, selectable
using the “pick surface” presets. A more accurate friction model is
currently at study that should allow us to describe finger and string
surface characteristics on a physical basis.

In the PluckSynth implementation, the final detach phase (see
Figure 9) is governed by an additional parameter α. The detach
starts at the end of the forced excitation, where the physical pa-
rameters F0, M , K and R may still have a non-zero value. In this
phase the value of these parameters is recursively multiplied by a
parameter 0<α<1 at each time step. This has been found to al-
ter the string shape around the excitation position as the excitation
model is detached from the string. Setting α to 0 yields a “pointy”
string shape, increasing α towards 1 causes the string shape to be
smoother, resulting in a softening of the perceived plucked string
sound. In the absence of a spatially distributed excitation, the
α parameter is used to conveniently model the shape of the fin-
ger/plectrum and is selected by means of the “shape” knob in the
GUI.

The “attack” knob of the GUI controls the amount of longi-
tudinal modes. These modes, leading to the presence of phantom
(inharmonic and high pitched) partials, are computed as described
in [7], inspired by methods found in [12, 13].

A fret change on the same string can be generalized as raising
the finger, relocating it and pushing it down again, a sequence tak-
ing place during a time span of a few milliseconds up to a second,
depending on the players style. In addition, a player may change
a string from open state to fret terminated state and vice versa. To
mimic such transitions, the parameters of the finger-on-fret model
are varied over time using curves similar to the S-shaped functions
given in (23). The corresponding controls are located in the GUI
just above the fretboard.

The plucksynth features two playing modes. In addition to the
“Solo” mode, where the instrument is played similar to an ordinary
keyboard instrument, a “Chord” mode was also implemented. In
the leftmost bottom corner of the user interface, a set of 12 chords
can be pre-defined. A special keyboard layout becomes active in
which the lower octave (player’s left hand) is used to select and
tune the strings to form a chord from the pre-defined set, while the
upper octave (player’s right hand) excites the strings [7]. With the
“pb” toggle buttons located in the leftmost part of the fretboard
display, the user can choose which strings will be affected by the
pitch bend MIDI signal, making it possible to pitch bend only par-
ticular strings inside a chord.

6. CONCLUSION

A refined model of the player’s touch on guitar strings has been
presented in this paper. The model improves playability of the
model in [2], which suffers from control inconsistencies due to a
peculiar choice of the wave variables. The model, together with
other state of the art or approximated for real-time computation
models for the various components of electric or acoustic guitars
has been implemented in an experimental VST plugin. It can be
evaluated that the acoustical results are quite realistic. Further
studies and implementations are envisaged in order to better model

friction on the string and to efficiently incorporate stiffness and
non-linearities of the string model, which would improve realism
especially for the lower pitched tones.
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