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ABSTRACT

Pulse clarity is considered as a high-level musical dimension
that conveys how easily in a given musical piece, or a particular
moment during that piece, listeners can perceive the underlying
rhythmic or metrical pulsation. The objective of this study is to es-
tablish a composite model explaining pulse clarity judgments from
the analysis of audio recordings, decomposed into a set of indepen-
dent factors related to various musical dimensions. To evaluate the
pulse clarity model, 25 participants have rated the pulse clarity of
one hundred excerpts from movie soundtracks. The mapping be-
tween the model predictions and the ratings was carried out via
regressions. More than three fourth of listeners’ rating variance
can be explained with a combination of periodicity-based and non-
periodicity-based factors.

1. INTRODUCTION

This study is focused on one particular high-level dimension that
may contribute to the subjective appreciation of music: namely
pulse clarity, which conveys how easily listeners can perceive the
underlying pulsation in music. The notion of pulse clarity is con-
sidered in this study as a subjective measure that participants were
asked to rate whilst listening to a given set of musical excerpts.
The aim is to model these behavioural responses using signal pro-
cessing and statistical methods. Specific descriptors have been de-
signed, that indicate diverse characteristics related to the amplitude
envelope and its periodicities. The estimation of these primary rep-
resentations, on the other hand, is based on a compilation of state-
of-the-art research in this area. The objective of the experiment
is to select the best combinations of primary representations and
secondary descriptors correlating with listeners’ judgements. This
paper presents a subset of the model developed in [1]].

2. COMPUTING THE ONSET DETECTION FUNCTION

In the analysis presented in this paper, several models for onset
or beat detection and/or tempo estimation have been partially inte-
grated into one single framework. Beats are considered as promi-
nent energy-based onset locations, but more subtle onset positions
(such as harmonic changes) might contribute to the global rhyth-
mic organisation as well.

* This work has been supported by the European Commission (Brain-
Tuning FP6-2004-NEST-PATH-028570), the Academy of Finland (project
119959) and the Center for Advanced Study in the Behavioral Sciences,
Stanford University. We are grateful to Tuukka Tervo for running the lis-
tening experiment.

2.1. Amplitude envelope

When the onset detection curve is computed by way of envelope
extraction, the audio signal is usually decomposed first into bands.

e This decomposition can be performed using a bank of fil-
ters ("filterbank"” in figure EI), featuring between six [2], and
more than twenty bands [3]]. Filterbanks used in the mod-
els are Gammatone ("Gamm." in table [I) and two sets of
non-overlapping filters : "Scheirer" [2] and "Klapuri" [3].
The envelope is extracted from each band through signal
rectification and low-pass filtering. The low-pass filtering
is implemented using either a simple auto-regressive fil-
ter ("IIR") or a convolution with a half-Hanning window
("half-Hanning") [2} 13].

e Another method consists in computing a spectrogram ("spec-
trum") and reassigning the frequency ranges into a limited
number of critical bands [4)]. The frame-by-frame succes-
sion of energy along each separate band, usually resampled
to a higher rate, yields envelopes.

Important note onsets and rhythmical beats are characterised
by significant rises of amplitude in the envelope. In order to em-
phasize those changes, the envelope is differentiated ("diff"). Dif-
ferentiation of the logarithm ("log") of the envelope has also been
advocated [3,4]. The differentiated envelope can be subsequently
half-wave rectified ("HWR") in order to focus only on the increase
of energy. The half-wave rectified differentiated envelope can be
summed to the non-differentiated envelope, with a specific A weight
fixed here to the value .8 proposed in [4] ("HWR=.8" in table E])

2.2. Frequency-based strategy

Instead of focusing on the temporal evolution of the global energy,
frequency-based onset detection curve describe temporal changes
in the spectral distribution of the signal.

e One method consists in computing the spectral flux ("flux"),
i.e., the distance between spectra computed on successive
frames.

e Another method consists in computing distances not only
between strictly successive frames, but also between all frames
in a temporal neighbourhood of pre-specified width [3]]. Inter-
frame distanceﬁ are stored into a similarity matrix, and
a "novelty" curve is computed by means of a convolution

'In our model, this novelty-based method is applied to frame-
decomposed autocorrelation ("autocor").
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along the main diagonal of the similarity matrix with a Gaus-
sian checkerboard kernel [6]. Intuitively, the novelty curve
indicates the positions of transitions throughout the tempo-
ral evolution of the spectral distribution.

2.3. Energy along frames

A simpler evaluation of the temporal evolution of energy consists
in computing the root-mean-square energy ("rms") of each succes-
sive frame of the signal.

3. NON-PERIODIC CHARACTERISATIONS OF PULSE
CLARITY

Some characterisations of the pulse clarity might be estimated from
general characteristics of the onset detection curve that do not re-
late to periodicity.

3.1. Articulation

Articulation, describing musical performances in terms of staccato
or legato, may have an influence in the appreciation of pulse clar-
ity. One candidate description of articulation is based on Average
Silence Ratio (ASR), indicating the percentage of frames that have
an RMS energy significantly lower than the mean RMS energy of
all frames [7]. The ASR is similar to the low-energy rate [8], ex-
cept the use of a different energy threshold: the ASR is meant
to characterize significantly silent frames. This articulation vari-
able has been integrated in our model, corresponding to predictor
"ART" in Figure[l}

3.2. Attack characterization

Characteristics related to the attack phase of the notes can be ob-
tained from the amplitude envelope of the signal.

e [ocal maxima of the amplitude envelope can be considered
as ending positions of the related attack phases. A com-
plete determination of the attack requires therefore an es-
timation of its starting position, through an extraction of
the preceding local minima using an appropriate smoothed
version of the energy curve. The main slope of the attack
phases [9] gives one candidate ("ATT1") for the prediction
of pulse clarity.

e Alternatively, attack sharpness can be directly collected from
the local maxima of the temporal derivative of the ampli-
tude envelope ("ATT2") [4].

4. PERIODIC CHARACTERISATION OF PULSE
CLARITY

Besides low-level characterization of dynamics developed in en-
velopes, pulse clarity seems to related more specifically to the de-
gree of periodicity exhibited in these envelopes.

4.1. Pulsation estimation

The periodicity of the onset curve can be assessed via autocorrela-
tion ("autocor") [[10]]. If the onset curve is decomposed into several
channels, as is generally the case for amplitude envelopes, the au-
tocorrelation can be computed either in each channel separately,
and summed afterwards ("sum after"), or it can be computed from

the summation of the onset curves ("sum bef."). A more refined
method consists in summing adjacent channels into a lower num-
ber of wider band ("sum adj."), on each of which is computed the
autocorrelation, further summed afterwards ("sum aft.") [4].
Peaks indicate the most probable periodicities. In order to
model the perception of musical pulses, most perceptually salient
periodicities are emphasized by multiplying the autocorrelation
function with a resonance function ("reson."). Two resonance curve
have been considered, one presented in [[11]] ("res1" in tableE]), and
a new curve developed for this study ("reson2"). In order to im-
prove the results, redundant harmonic in the autocorrelation curve
can be reduced by using an enhancement method ("enhan.") [12].

4.2. Previous work: Beat strength

One previous study on the dimension of pulse clarity [13] — where
it is termed beat strength — is based on the computation of the auto-
correlation function of the onset detection curve decomposed into
frames. The three best periodicities are extracted. These periodic-
ities — or more precisely, their related autocorrelation coefficients
— are collected into a histogram. From the histogram, two esti-
mation of beat strength are proposed: the SUM measure sums all
the bins of the histogram, whereas the PEAK measure divides the
maximum value to the main amplitude.

This approach is therefore aimed at understanding the global
metrical aspect of an extensive musical piece. Our study, on the
contrary, is focused here on an understanding of the short-term
characteristics of rhythmical pulse. Indeed, even musical excerpt
less than a few seconds long can easily convey to the listeners a
strong sense of rhythmicity.

4.3. Statistical description of the autocorrelation curve

For that purpose, the analysis is focused on the analysis of the
autocorrelation function itself, and tries to extract from it any in-
formation related to the dominance of the pulsation.

o The most evident descriptor is the amplitude of the main
peak ("MAX"), i.e., the global maximum of the curve. The
maximum at the origin of the autocorrelation curve is used
as areference in order to normalize the autocorrelation func-
tion. In this way, the actual values shown in the autocorre-
lation function correspond uniquely to periodic repetitions,
and are not influenced by the global intensity of the to-
tal signal. The global maximum is extracted within a fre-
quency range corresponding to perceptible rhythmic peri-
odicities, i.e. for the range of tempi between 40 and 200
BPM.

e The global minimum ("MIN") gives another aspect of the
importance of the main pulsation. The motivation for in-
cluding this measure lies in the fact that for periodic stim-
uli with a mean of zero the autocorrelation function shows
minima with negative values, whereas for non-periodic stim-
uli this does not hold true.

e Another way of describing the clarity of a rhythmic pul-
sation consists in assessing whether the main pulsation is
related to a very precise and stable periodicity, or if on the
contrary the pulsation slightly oscillates around a range of
possible periodicities. We propose to evaluate this char-
acteristic through a direct observation of the autocorrela-
tion function. In the first case, if the periodicity remains
clear and stable, the autocorrelation function should display
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Figure 1: Flowchart of operators of the compound pulse clarity model, where options are indicated by switches.

a clear peak at the corresponding periodicity, with signif-
icantly sharp slopes. In the second and opposite case, if
the periodicity fluctuates, the peak should present far less
sharpness and the slopes should be more gradual. This char-
acteristic can be estimated by computing the kurtosis of the
lobe of the autocorrelation function containing the major
peak. The kurtosis, or more precisely the excess kurtosis
of the main peak ("KURT"), returns a value close to zero
if the peak resembles a Gaussian. Higher values of excess
kurtosis correspond to higher sharpness of the peak.

o The entropy of the autocorrelation function ("ENTRI" and
"ENTR2") characterizes the simplicity of the function and
provides in particular a measure of the peakiness of the
function. This measure can be used to discriminate periodic
and non-periodic signals. In particular, signals exhibiting
periodic behaviour tend to have autocorrelation functions
with clearer peaks and thus lower entropy than non-periodic
ones.

e Another hypothesis is that the faster a tempo ("TEMP") is,
the more clearly it is perceived by the listeners. This con-
jecture is based on the fact that fast tempi imply a higher
density of beats, guiding the rhythmic understanding of the
listeners more tightly.

4.4. Harmonic relations between pulsations

The clarity of a pulse seems to decrease if pulsations with no har-
monic relations coexist. We propose to formalize this idea as fol-
lows. First a certain number of peaks are selected from the au-
tocorrelation curve. Let the list of peak lags be P = {li}ic[o,n],
and let the first peak [ be the one considered as the main pulsation.
The list of peak amplitudes is {p(l:) }ie(o, n]-

A peak will be inharmonic if the remainder of the euclidian
division of its lag with the lag of the main peak (and the inverted
division as well) is significantly high. This defines the set of inhar-

monic peaks H:
(mod lo)
(mod ;) @

= l Oélo, 1—O¢lo
H:{ N]‘ zoee alz,((lfa))l%

where « is a constant tuned to .15 in our implementation.
The degree of harmonicity is hence decreased by the cumula-
tion of the autocorrelation coefficients of the non-harmonic peaks:

1 Zigﬁp(li))

r p(lo) @

HARM = exp (—

where r is another constant set to 4.

5. MAPPING MODEL PREDICTIONS TO LISTENERS’
RATINGS

In order to assess the validity of the models predicting pulse clarity
judgments presented in the previous section, an experimental pro-
tocol has been designed. 25 musically trained participants rated
the clarity of the pulse on one hundred 5-second excerpts using a
computer interface that randomized the excerpt orders individually
[14]. These ratings were considerably homogenous (Cronbach al-
pha of 0.971) and therefore the mean ratings will be utilized in the
following analyses.

The major factors correlating with the ratings are indicated in
table[T} The best predictor is the global minimum of the autocor-
relation function, with a correlation r of .59 with the ratings. For
the following variables, ~ indicates the highest cross-correlation
with any factor of better r value. A low x value indicates a good
independence of the related factor, with respect to the other factors
considered as better predictors.

Table 1: Majors factors correlating with pulse clarity ratings, in
decreasing order of correlation r with the ratings. Factor with
cross-correlation k exceeding .6 have been removed.
var r K parameters
MIN .59 Klapuri, half Hamming,
log, HWR, sum bef., resonl
Scheirer, IIR, sum aft.
Scheirer, 1IR, log, HWR, sum aft.
Klapuri, IIR,
log, HWR=.8, sum bef., reson2
Flux, resonl

KURT | 42 | 55
HARMI | 40 | 53
ENTR2 | -4 | 54

MIN 40 | 58

Table|2|shows the result of the stepwise regression between the
ratings and all computed variables. A compound model of pulse
clarity can be obtained through a linear combination of six of the
best factors, explaining up to 76 % of the variability of listeners’
ratings.
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Table 2: Result of stepwise regression between pulse clarity ratings
and all computed variables, with accumulated adjusted variance
r? and standardized 3 coefficients.

step var r? B parameters
1 MIN A48 | 1.57 | Scheirer, half Hamming,
sum bef.

2 HARM?2 | .68 | -.81
3 TEMP | .76 | .64

Spectrum, log, sum adj.
Gamm., half Hamming,
HWR=.8, sum aft., res2

6. MIRTOOLBOX 1.2

The whole set of algorithms used in this experiment has been im-
plemented using MIRtoolboxﬁlS]: the set of operators available
in the version 1.1 of the toolbox have been improved in order to
incorporate a part of the onset extraction and tempo estimation ap-
proaches presented in this paper. The different paths indicated in
the flowchart in figure[I] can be implemented in MIRtoolbox in al-
ternative ways:

e The successive operations forming a given process can be
called one after the other, and options related to each oper-
ator can be specified as arguments. For example,

a = miraudio('myfile.wav’)
f = mirfilterbank (a,’Scheirer’)
e = mirenvelope (f,’HalfHann’)

ete.

e The whole process can be executed in one single command.
For example, the estimation of pulse clarity based on the
MIN heuristics computed using the implementation in [3]]
can be called this way:

mirpulseclarity (‘myfile.wav’,
"Min’,’Klapuri99’)

e A linear combination of best predictors, based on the step-
wise regressionﬂcan be used as well. The number of factors
to integrate in the model can be specified.

e Multiple paths of the pulse clarity general flowchart can
be traversed simultaneously. At the extreme, the complete
flowchart, with all the possible alternative switches, can be

computed as well. Due to the complexity of such computa-

tiorﬁ optimization mechanisms limit redundant computa-
tions.

The routine performing the statistical mapping — between the
listeners’ ratings and the set of variables computed for the same
set of audio recordings — is also integrated in the new version of
MIRtoolbox. This routines includes an optimization algorithm that
automatically finds optimal Box-Cox transformations [16] of the
data ensuring that their distributions becomes sufficiently gaus-
sian, which is a prerequisite for correlation estimation.

2 Available at hitp://www.jyu.fi/music/coe/materials/mirtoolbox

3The final multi-feature model available in the latest version 1.2 of
MIRtoolbox actually results from more advanced results of this study [1].

“In the complete flowchart, the number of individual variables exceeds
6000.
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