
Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

COMPOSITIONAL SKETCHES IN PWGLSYNTH

Mikael Laurson, Vesa Norilo, and Mika Kuuskankare

CMT,
Sibelius Academy
Helsinki, Finland

laurson@siba.fi
vnorilo@siba.fi
mkuuskan@siba.fi

ABSTRACT

PWGLSynth has already a long history in controlling physics-
based instruments. The control system has been score-based, i.e.
the user prepares a score in advance, and by interactive listening
process the result can be be refined either by adjusting score infor-
mation, performance rules and/or the visual instrument definition.
This scheme allows detailed control on how the instrument model
reacts to control information generated from the score. This paper
presents a complementary approach to sound synthesis where the
idea is to generate algorithmically typically relatively short musi-
cal textures. The user can improvise with various compositional
ideas, adjust parameters, and listen to the results in real-time ei-
ther individually or interleaved. This is achieved by utilizing a
special code-box scheme that allows any textual Lisp expression
to be interfaced to the visual part of the PWGL system.

1. INTRODUCTION

This paper presents the latest developments in our visual synthe-
sis environment PWGLSynth [1] which is situated in PWGL [2].
PWGLSynth has been controlled either by using our score-based
scheme, or directly at patch level by using real-time sliders and/or
MIDI controllers. Especially the first approach has been used ex-
tensively to produce simulations of several physics-based instru-
ment models.

Thus our environment has not been particularly suitable in
more experimental contexts, where the user could quickly sketch
musical ideas algorithmically. For this end we present in the fol-
lowing a new system that allows to control visual synthesis in-
strument definitions with the help of short textual code fragments.
This is achieved with two additions to our system. First, the code
is interfaced to the visual part of PWGL using a special box type,
called code-box. The visual code-box can then be triggered at
patch level by the user. Typically this results in a musical texture
that is played by the system in real-time. Several code-boxes can
be triggered simultaneously or interleaved resulting in overlapping
realizations of the active code fragments. Second, we present the
new syntax addition that allows the user to control low-level syn-
thesis parameters from Lisp. The syntax is used to send triggers,
write floats or float vectors to memory locations, and to send MIDI
events.

PWGL is one of the three major Lisp-based composition en-
vironments along with IRCAM’s OpenMusic (OM; [3]) and Com-
mon Music (CM; [4]). CM differs from the other environments as

it relies on text-based programming and various third party appli-
cations. CM can be used for sound synthesis with outside systems
such as Csound. OM, like CM, does not contain a dedicated soft-
ware synthesizer and thus control information has to be exported
to external synthesis environments. SuperCollider (SC) [5], al-
though not Lisp-based, is closer in this context to our environment
than CM or OM, as it allows to combine sound synthesis with
event generation facilities within one environment (events are gen-
erated in SC with the help a library of pattern and stream classes).
However, the difference between SC and PWGLSynth is that our
scheme is not strictly a real-time system as the user can call any
Lisp code to calculate the control information. Thus, depending on
the complexity of the application, there can be a noticeable delay
before a sequence starts playing. If necessary, this delay can be
minimized by caching results at the patch level before the actual
playback. By relaxing the strict real-time constraint we are able
to solve more complex (and hopefully more interesting) musical
problems: a typical case is for instance a search problem that may
require backtracking (recently real-time constraint systems have
been investigated in [6], but these are clearly special cases which
can handle only a limited set of problems). Thus our system al-
lows to combine sound synthesis besides with Lisp also with sev-
eral aspects of the underlying PWGL environment, such as visual
instrument definitions, compositional tools, and high-level music
representation schemes.

The rest of the paper is organized as follows. We start by pre-
senting the two new tools in our system: code-box (Section 2) and
event syntax (Section 3). After this we give several case studies
with increasing complexity that demonstrate how the system can
be used to realize various compositional situations when preparing
musical raw material for sound synthesis.

2. CODE-BOX INTERFACE

This section presents a special PWGL box type, called code-box,
which can be seen as an extension to our already elaborate col-
lection of visual boxes. The code-box allows the user to harness
the full power of the underlying Lisp language yet preserving the
visual nature and functionality of a normal PWGL box. It allows
the user to effectively express complex control structures, such as
loops, thereby hiding those details from the patch. While the user
writes the code in a text editor, the code is simultaneously anal-
ysed. This analysis consists of basic syntax checks and extraction
of free variables and function names that result in a parameter list
of the final Lisp expression. This scheme provides the main inter-

DAFX-1

http://cmt.siba.fi/
mailto:laurson@siba.fi
mailto:vnorilo@siba.fi
mailto:mkuuskan@siba.fi

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

face to PWGL and allows the user to access information from the
visual part of the system. The appearance of the box is calculated
automatically based on this analysis. By default the code-box is
called ’code-box’. This name can be changed by the user. In order
to distinguish this box from the ordinary ones, there is a label ’C’
at the low-right corner of the box.

For instance, after entering the following Lisp expression the
system will detect the free variables ’a’ and ’b’, and this analysis
will automatically create a box with two inputs (one input for each
free variable):

(iter (for i from 0)
(for x in a)
(for y in b)
(when (oddp i) (collect (list x y))))

The code-box has many interesting applications and it is used
extensively in our system. The code-box provides an important
complement to our visual system and it allows the user to change
programming style from visual to textual and vice versa whenever
appropriate.

3. INSTRUMENT DEFINITIONS AND EVENT SYNTAX

Next the code-box scheme is used in a sound synthesis context
to calculate control information using Lisp code. All code exam-
ples are wrapped inside the ’with-synth’ macro that will send synth
events to the running synthesis patch. ’with-synth’ has before the
main code entry two arguments: (1) ’instrument’ (gives the current
instrument definition, a pointer to an abstraction containing the in-
strument), and (2) ’max-poly’ defining the maximum number of
voices required by the texture realization.

Typically, the user starts with a visual instrument definition
that is situated in a PWGL abstraction. Figure 1 gives a simple
resonator example. Here the boxes that have a ’S’ label at the
down-right corner are ordinary synth modules producing audio.
The figure contains also five ’synth-plug’ boxes that define control
entry points for our instrument. Four of them contain the label ’D’
(stands for ’discrete’) and they allow to update float values at the
leaves of the patch. The synth-plug box with the ’T’ designation,
in turn, is used to send triggers. All synth-plug contain in their first
input a name or label (e.g. ’:amp’, ’:trig’, etc.). These symbolic
references allow the user to refer to specific inputs while sending
control events to the instrument. Note that the names within an
abstraction should be unique. Identical names can, however, be
used in different instrument abstractions as each abstraction has its
own name space.

The synth events are created calling either the ’synth-trigger’
or the ’synth-event’ method.

’synth-trigger’ has two arguments: (1) ’time’ (delay in sec-
onds, 0 means immediate), and (2) ’name’ (a keyword, must match
one of the ’synth-plug’ labels of the current instrument).

’synth-event’, in turn, has three required arguments: (1) ’time’
(delay in seconds, 0 means immediate), (2) ’name’ (a keyword,
must match one of the ’synth-plug’ labels), and (3) ’value’ (a float,
or a list of floats). Two optional keyword arguments can be given
to add an ID number (this is used to distinguish different box in-
stances in a polyphonic situation; this case will be dealt with later
in this paper), or to give a type specifier if the event is not a normal
one (this can be used for instance to send MIDI events instead of
ordinary synth events).

reson-bank

S

sig freq
0.02 5

synth-plug

T

:trig
impulse-trigger

S

amp <<trig>>

synth-plug

D

:amp 0.1
synth-plug

D

:freq 100

vbap2d-dist

S

sig azim
dist 0.15

1

synth-plug

D

:pan 0synth-plug

D

:dist 1

Figure 1: A visual instrument definition containing an impulse
trigger, a resonator, and a spatialization module.

For example, we could trigger immediately the resonator in
the patch in Figure 1 using the following code (we assume that
’ins’ is a pointer to the instrument abstraction given in Figure 1):

(with-synth ins 1 (synth-trigger 0 :trig))

Or, we could trigger the resonator after 2s:

(with-synth ins 1 (synth-trigger 2 :trig))

We could also change the ’freq’ input of the resonator:

(with-synth ins 1 (synth-event 0 :freq 200))

4. A SIMPLE RESONATOR EXAMPLE

The following Lisp code can be used in conjunction with the in-
strument patch given in Figure 1 to produce a dense cloud or clus-
ter of notes. The code-box code analyzer will find the following
free variables: ’ranges’, ’dur’, ’dtime’, and ’instrument’, where
’ranges’ gives the pitch limits of the resulting texture, ’dur’ gives
the global duration of the result, ’dtime’ gives the delta-time be-
tween individual events, and ’instrument’ is the instrument defini-
tion. In the actual code we use here the ’iter’ loop construct to gen-
erate the events. At each iteration step we send three events that
control the distance, pan, and frequency parameters (i.e. ’:dist’,
’:pan’, ’:freq’) of our instrument definition. Finally, we also trig-
ger the resonator:

(with-synth instrument 1
(let ((rnd1 (first ranges)) (rnd2 (second ranges))

(pan (mk-circ-list ’(-5 0 5))))
(iter (for time from 0 to dur by dtime)
(synth-event time :dist (random2 1 6))
(synth-event time :pan (pop-circ pan))
(synth-event time :freq

(random2 (m->f rnd1) (m->f rnd2)))
(synth-trigger time :trig))))

DAFX-2

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

Reson-patch

A

code-box

1 C

ranges
1
0.05
instrume1 2 3 4

64.2870.82

pwgl-box-ptr

synth-box

S

patch

indexor

S

vector
0
2

indexor

S

vector
2
1

Reverb

A

sig
2
-0.02
-0.05

output
add-vector

S

vector1 vector2

1 2

3

Figure 2: The top-level patch with the code-box (1), the instrument
abstraction (2), and synth boxes (3) defining a global reverb and
the final synth output.

Figure 2 shows the complete top-level patch definition of our
resonator example. The code is situated inside the code-box (1)
(note that the free variables found in the code are represented visu-
ally by the four inputs), the instrument definition–see Figure 1–is
inside the ’Reson-patch’ abstraction (2). While the synth is run-
ning the user can trigger the code-box resulting in a sequence of
note events. The user can adjust here in the visual part of our sys-
tem various aspects of the result. For instance, the two sliders to
the left control the ’ranges’ parameter.

5. A POLYPHONIC SAMPLER EXAMPLE

Next we discuss a more complex case where a polyphonic stream-
ing sample player is controlled by our event scheme. Figure 3
gives our visual instrument definition. The main difference be-
tween this one and the one found in Figure 1 is that we use here the
’copy-synth-patch’ box to copy the patch connected to the ’patch’
input ’count’ times. Thus we will produce here a polyphonic ver-
sion of an instrument definition. The symbolic references of the
synth-plug boxes will be modified by this scheme by adding to the
name an index at each iteration step during the copying process.
Thus for instance the name ’:env’ will become ’:1/env’, :’2/env’,
and so on, until ’count’ has been reached. This is done in order to
keep the names of each copied plug box instance separate.

Figure 3 contains also a plug input that accepts a list of floats
as input instead of single float values. This is useful as here we
can define and control envelopes in our system. The envelope
generator–see the ’envelope-trigger’ box–accepts a list of y and
x values at the ’envelope’ input.

Our event code example utilizing the instrument definition in
Figure 3 assumes that the instrument will be copied 5 times (’max-
poly’ is equal to 5). In order to handle our polyphonic case we
need to add to the ’name’ arguments of the event methods correct

synth-plug

D

:env intval

1

envelope-trigger

S

envelope <<trig>>

value-box
(0 0 0 0 0 0)

synth-plug

T

:trigenv

streaming-player

S

sample fscaler
amp <<trig>>

synth-plug

D

:sample 0

synth-plug

D

:frsc 1

synth-plug

T

:trig

vbap2d-dist

S

sig azim
dist 0.25

synth-plug

D

:pan 0
synth-plug

D

:dist 1

copy-synth-patch

S

count patch

accum-vector

S

vector 3

1
count

Figure 3: A polyphonic sampler instrument definition.

index values so that they can refer to the individual plug instances
of the instrument definition. This is done by using the optional
:ID keyword argument. At each iteration step in the ’iter’ loop we
ask for a new ID value by calling the function ’get-next-synth-id’.
This will return one by one numbers in a circular fashion starting
from 1 up to ’max-poly’ until the upper limit (here equal to 5) is
reached. After this we start with ID number 1 again, and so on.
Internally the name argument of the events will be modified in a
similar fashion than was done during the copying scheme in the
instrument definition.

Our code example is otherwise very similar to the one in Sec-
tion 4. The code-box code analyzer will find this time the fol-
lowing free variables: ’low-high’, ’dur’, ’dtime’, and ’instrument’,
where ’low-high’ gives the sample ID limits that will be used to ac-
cess samples from the current repertoire of sound samples known
by the system (each sound sample has a unique ID number), ’dur’
gives the global duration of the result, ’dtime’ gives the delta-time
between individual events, and ’instrument’ is the instrument def-
inition. In the actual code we use again the ’iter’ loop construct to
generate the events.

(with-synth instrument 5
(let ((low (first low-high)) (high (second low-high))

id sample)
(iter (for time from 0 to dur by dtime)

(setq id (get-next-synth-id))
(setq sample (random2 low high))
(synth-event time

:env (mk-envelope
(list 0 0.01 dtime) (list 0 0.2 0))

:id id)
(synth-event time :sample sample :id id)
(synth-trigger time :trig :id id)
(synth-trigger time :trigenv :id id))))

DAFX-3

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

6. A CASE STUDY: MACRO-NOTE INTERFACE

In the final section we utilize our system in a more complex con-
text. In the following example we sketch briefly how the user can
interface existing compositional tools found in PWGL with our
new event scheme. Our starting point is the ’macro-note’ concept
that has been used to simulate various idiomatic playing styles for
our physics-based instrument models [7] (sound examples can be
found at: www.siba.fi/pwgl/pwglsynth.html).

The instrument behind this example is close to the one in Fig-
ure 1, except we are using the ’copy-synth-patch’ box to turn the
resonator instrument into a polyphonic one (in this specific case
’max-poly’ is equal to 10).

The code has four inputs (’midis’, ’dur’, ’indices’, ’instru-
ment’) and it can be split into two major parts. First, it produces
two lists of notes (’notes1’ and ’notes2’) by calling twice the ’macro-
note’ function. After appending these results, the final part of the
code (’send events’) loops through this note list, extracts from each
note the relevant information needed for the synthesis, and finally
sends the events to the instrument. The resulting two textures can
be seen in piano roll notation in Figure 4.

(with-synth instrument 10
(let* ((midis1(first midis)) (midis2 (second midis))

(notes1 (macro-note ;; notes1
:dur dur
:ornaments ’(n g-1) :dtimes ’(0.1 0.15)
:midis (mapcar ’list midis1 midis2)
:indices ’(3 2 1 1 2)
:amp (mk-bpf ’(0 0.5 1.0) ’(60 120 30))
:time-modif

(mk-bpf ’(0 0.5 1.0) ’(100 300 100))
:len-function ’(= 0 (mod (1- len) 3))
:extra-params (list

(list :pan (mk-circ-list ’(-45 0 45)))
(list :dist (mk-bpf ’(0 1.0) ’(1 9))))))

(notes2 (macro-note ;; notes2
:dur dur :ornaments ’(n g-1)
:offsets ’(0 0.2 0.29) :dtimes ’(0.1 0.1)
:midis (g+ 12 (mapcar ’list midis2 midis1))
:indices indices
:amp (mk-bpf ’(0 0.5 1.0) ’(60 120 30))
:time-modif

(mk-bpf ’(0 0.5 1.0) ’(100 90 100))
:len-function ’(= 0 (mod (1- len) 3))
:extra-params (list

(list :pan (mk-circ-list ’(-45 45)))
(list :dist (mk-bpf ’(0 1.0) ’(15 9)))))))

;; send events
(iter (for note in (append notes1 notes2))

(let* ((time (read-key note :enp-startt))
(id (get-next-synth-id)))

(synth-event time :amp
(/ (vel note) 127 4) :id id)

(synth-event time :freq
(m->f (midi note)) :id id)

(synth-event time :pan
(read-extra-param note :pan time) :id id)

(synth-event time :dist
(read-extra-param note :dist time) :id id)

(synth-trigger time :trig :id id)))))

7. CONCLUSIONS

This paper presents an approach where the user can combine vi-
sual instrument definitions with textual code fragments situated
in code-boxes in order to generate musical textures. The code-
boxes can be triggered by the user resulting at the end in low-level

Figure 4: One possible ten second realization of two overlapping
macro-note textures. The pitch material of the lower texture pro-
gresses gradually from closed to open, whereas in the higher tex-
ture this process is reversed. The upper texture is more dense and
contains very fast canon-like overlapping gestures.

events that control the associated instrument definitions. Further-
more, the code-box inputs can be interfaced with the visual part of
our system. This, in turn, provides an interesting bridge between
sound synthesis and our extensive set of tools related to computer-
assisted composition, music notation, and constraint-based pro-
gramming. Future plans include investigations of different caching
strategies that would allow the system to run strictly in real-time.
Furthermore, we will invest in the forthcoming PWGLSynth2 new
strategies that would allow the the system to allocate new voices
on the fly by the underlying synthesis engine. In the current system
the user has to adjust the number of voices by trial and error, which
may result in audible glitches if the given max-poly is exceeded by
a process.

This work has been supported by the Academy of Finland (SA
105557 and SA 114116).

8. REFERENCES

[1] Mikael Laurson, Vesa Norilo, and Mika Kuuskankare,
“PWGLSynth: A Visual Synthesis Language for Virtual In-
strument Design and Control,” Computer Music Journal, vol.
29, no. 3, pp. 29–41, Fall 2005.

[2] Mikael Laurson, Mika Kuuskankare, and Vesa Norilo, “An
Overview of PWGL, a Visual Programming Environment for
Music,” Computer Music Journal, vol. 33, no. 1, 2009.

[3] Gerard Assayag, Camillo Rueda, Mikael Laurson, Carlos
Agon, and Olivier Delerue, “Computer Assisted Composi-
tion at IRCAM: From PatchWork to OpenMusic,” Computer
Music Journal, vol. 23, no. 3, pp. 59–72, Fall 1999.

[4] Heinrich Taube, “Common Music: A music composition lan-
guage in Common Lisp and CLOS,” Computer Music Journal,
vol. 15, no. 2, pp. 21–32, Summer 1991.

[5] James McCartney, “Continued Evolution of the SuperCollider
Real Time Environment,” in Proceedings of ICMC’98 Confer-
ence, 1998, pp. 133–136.

[6] Torsten Anders and Eduardo R. Miranda, “Constraint-based
composition in realtime,” in Proceedings International Com-
puter Music Conference, 2008.

[7] Mikael Laurson and Mika Kuuskankare, “Towards Idiomatic
and Flexible Score-based Gestural Control with a Scripting
Language,” in Proceedings of NIME’08 Conference, Genova,
Italy, 2008, pp. 34–37.

DAFX-4

http://www2.siba.fi/pwgl/pwglsynth.html

	1 Introduction
	2 Code-box interface
	3 Instrument definitions and event Syntax
	4 A Simple Resonator Example
	5 A Polyphonic Sampler Example
	6 A case study: Macro-note interface
	7 Conclusions
	8 References

