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ABSTRACT

In monaural blind audio source separation scenarios, a signal mix-
ture is usually separated into more signals than active sources.
Therefore it is necessary to group the separated signals to the final
source estimations. Traditionally grouping methods are supervised
and thus need a learning step on appropriate training data. In con-
trast, we discuss unsupervised clustering of the separatedchannels
by Mel frequency cepstrum coefficients (MFCC). We show that
replacing the decorrelation step of the MFCC by the non-negative
matrix factorization improves the separation quality significantly.
The algorithms have been evaluated on a large test set consisting
of melodies played with different instruments, vocals, speech, and
noise.

1. INTRODUCTION

Monaural blind source separation is a task of great importance for
many applications. From music transcription to remixing, many
audio applications require separated sources for further signal pro-
cessing. Although in general monaural separation algorithms show
lower performance than multichannel separation scenarios, they
are of great interest. They can be applied to all separation scenar-
ios, either because only monaural sources are available or as a first
processing step for multi-channel source separation.
Separating different sources out of a monaural mixture is usually
done in a time-frequency representation, e.g. by non-negative ma-
trix factorization (NMF). NMF approximates a magnitude spec-
trogram by a sum of entry-wise, non-negative spectrograms,thus
modeling the additive mixture of the signals. The basic iterative
NMF algorithm introduced by [1] is further specialized to meet
the requirements of audio source separation by [2] and [3]. If
the algorithm separates the mixture into more channels thanac-
tive sources, a clustering is needed. In [2] and [3] the channels
are mapped onto the active sources with knowledge of the source
signals, thus avoiding the blind clustering. In [4], the clustering
problem is addressed by manual clustering.
In [5] a separation based on a source-filter model according to Fig-
ure 1 is introduced. Each note is modeled by a source signal corre-
sponding to the harmonic structure of the note (pitch). Thissignal
is filtered by an instrument-specific filter (resonance structure) to
form the output signal. Because the source-filter model is incor-
porated in the separation algorithm, no clustering is needed. Good
performance is shown for a test set of40 mixtures. Motivated by
this, we propose a clustering method based on source-filter model-
ing for a NMF separation method based on [2]. We will show that
we reach results comparable to [5] but on a larger test set contain-
ing noise, pitched instruments, percussion, and speech/singing.

×

source signal

=

resonance filter output

Figure 1: Source-Filter model in frequency domain.

The paper is structured as follows: In Section 2, the generalcon-
cept of the proposed source separation is described. In Section 3,
the new clustering strategy is introduced followed by the experi-
mental setup and a discussion of the results in Section 4. Conclu-
sive remarks are presented in Section 5.

2. FUNDAMENTALS

We assume a linear instantaneous mixture ofM time-discrete in-
put signalssm(n), 1 ≤ m ≤ M . In this case, the mixing process
can be modeled by a simple addition

x(n) =
MX

m=1

sm(n) . (1)

In the following we will use underlined variables for complex-
valued spectrograms. Dropping the underline is equivalentto tak-
ing the absolute value of the spectrogram. The mixture is trans-
formed into the spectrogramX by the short-time Fourier transform
(STFT). Because the input signalssm(n) are real, the spectrogram
is symmetric, and we can drop the part representing the negative
frequency range. ThereforeX is aK-by-T matrix. T corresponds
to the number of analysis frames transformed by the STFT andK
is related to the lengthlw of each analysis frame byK = lw/2+1.
For further details see also [6].

2.1. Non-negative matrix factorization

In the following, we will use the notation used by [2]. NMF as
introduced by [1] approximates a non-negative, real-valued matrix
X of sizeK-by-T by a product of two matricesB andG

X ≈ eX = BG . (2)

B is of sizeK-by-I and G is of sizeI-by-T with I as an user-
defined parameter. The approximation can be done by a minimiza-
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Figure 2: Signal flow of the proposed separation algorithm.

tion of the squared Euclidean distance

‖X− eX‖22 , (3)

or the divergence

X

k,t

Xk,tlog
Xk,t

eXk,t

− Xk,t + eXk,t . (4)

After the matricesB andG are initialized with the absolute values
of Gaussian noise, the multiplicative update rules

B ← B.×
XGT

BGGT and (5)

G ← G.×
BTX

BTBG
, (6)

minimize Equation 3, withx.×y and x

y
corresponding to element-

wise multiplication and division. Equation 4 is minimized by

B ← B.×
X

BG GT

1GT and (7)

G ← G.×
BT X

BG

BT1
, (8)

with 1 corresponding to aK-by-T matrix containing only ones.
As mentioned in [2], Equation 4 is more sensitive to small values
in the case of large dynamic range than Equation 3.

2.2. Separation

The NMF separates the magnitude spectrogramX of the mixture
into I channels with their corresponding spectrogramsCi, 1 ≤
i ≤ I . The motivation for using the NMF for blind source sep-
aration is the structure of pitched music in the spectrogramrep-
resentation. A single note of a pitched instrument can be closely
approximated by a constant frequency basis vectorBi and a time
varying gainGi corresponding to the envelope of the single note
[6]. The i-th column ofB and thei-th row of G can be multiplied
to form the spectrogramCi of thei-th channel

Ci = BiGi , (9)

with theCi being of rank one. In [2], it is explained that the rows
Gi of matrixG should have lowpass characteristics, due to the con-
tinuous nature of music. It is shown that an additional cost function
ct considering temporal continuity improves the separation quality
for NMF algorithms in the case of music separation:

ct = a
X

i

PT

t=2

`
G(i, t)−G(i, t− 1)

´2

PT

t=1 G2(i, t)
. (10)

The only difference to [2] is the dropped factorT in the cost func-
tion, because we use mixtures of different lengths, see alsoSection

4. Thus the linear weightinga is set to a higher value:a = 104. In
our work, we use the multiplicative update rules proposed there.B
is updated according to Equation 7.G is updated by

∇c+
r = BT1 (11)

∇c−r = BT.×
X

BG
(12)

∇c+
t (i, t) = 4a

G(i, t)
PT

n=1 G2(i, n)
(13)

∇c−t (i, t) = 2a
G(i, t− 1) + G(i, t + 1)PT

n=1 G2(i, n)

+2a

PT

n=2(G(i, n)−G(i, n− 1))2
`PT

n=1 G2(i, n)
´2

(14)

G ← G.×
∇c−r +∇c−t
∇c+

r +∇c+
t

. (15)

For numerical stability we normalize theBi andGi after each it-
eration to ensure equal energy

Ai =

s
‖Gi‖2
‖Bi‖2

(16)

Gi ← Gi/Ai (17)

Bi ← BiAi . (18)

In case of over-separation (I > M ), a clustering intoM clusters
has to be performed.

2.3. Signal Synthesis

We define clustering as a vectora, 1 ≤ a(i) ≤M with I elements
and the mapping on the clusters by the Kronecker delta:

δma(i) =

(
1 if m = a(i) ,
0 otherwise.

(19)

After clustering, we retrieve the complex-valued spectrogramseSm

corresponding to sourcem by filtering the mixture spectrogram
with the clustered channel spectrograms:

eSm(k, t) = X(k, t)

P
i Ci(k, t)δma(i)P

i
Ci(k, t)

. (20)

Thus, signal parts that can not be approximated by spectrograms of
rank one, are still present in the output of the separation algorithm.
We assume no spectral overlapping of the sources so that we can
use the phase of the mixture spectrogramX as phase information
for the separated spectrogramseSm. Due to the modifications in the
time-frequency representation it is not guaranteed that the single
frames of the spectrogrameSm have smooth overlapping regions
in the time domain. This can lead to audible distortions after the
overlap-add procedure. To avoid these distortions, the square root
of the Hann window is used as analysis and synthesis window for
the STFT and the inverse STFT (ISTFT) [3].
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2.4. Performance Measurement

Objective quality measures reflect human perception usually not
in a good way. But for a large test set, listening tests for each mix-
ture and each combination of parameters are very time-consuming.
Therefore we use widely used quality measures for evaluation of
separation quality. For their evaluation the knowledge of the input
signalssm and their corresponding magnitude spectrogramsSm is
necessary. The first measure we use is the SER [2]

SERm = 10log10

P
k,t

S2
m(k, t)

P
k,t

`
Sm(k, t)− eSm(k, t)

´2
[dB]. (21)

For a more detailed discussion of the effects of the dynamic dif-
ferences between the active sources we evaluate the∆SER as the
difference between the SER after separation and the SER before
separation:

∆SERm = 10log10

P
k,t

`
Sm(k, t)− X(k, t)

´2

P
k,t

`
Sm(k, t)− eSm(k, t)

´2
[dB]. (22)

Additionally, we evaluate the source-to-distortion ratio(SDR), the
source-to-interference ratio (SIR) and the source-to-artifacts ratio
(SAR) as proposed in [7]. If not otherwise mentioned, we use in
the following the mean value over all separated sources as evalua-
tion criterion, e.g.

SER=
1

M

MX

m=1

SERm . (23)

3. PROPOSED CLUSTERING ALGORITHMS

3.1. Reference Clustering

Reference clustering finds iteratively a clustering vectora which
is a local optimum for the SER. First,a is initialized by

a(i) = arg max
m

P
k,t Sm(k, t)Ci(k, t)

qP
k,t

S2
m(k, t)

qP
k,t

C2
i (k, t)

. (24)

After that, the corresponding SER is maximized byhill-climbing
[8]. For each channeli, we defineM neighboring cluster results
by setting temporallya(i) = m and evaluating the correspond-
ing SER(m, i). This way we evaluateIM adjacent cluster results
SER(m, i). We define the highest adjacent SER as

SERmax = SER(mmax, imax) , (25)

with the corresponding channelimax and target clustermmax. If
SERmax is higher than the current SER we set

a(imax)← mmax , (26)

and the algorithm starts again with evaluating the newIM neigh-
boring cluster results SER(m, i). Otherwise the algorithm stops.
Although it is not guaranteed that this algorithm finds the highest
possible SER, we will use this simple clustering strategy asthe
ground truth for clustering.

0Hz 22kHz

Frequency

A
m
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Figure 3: Weighting functions for Mel scale filtering.

3.2. Clustering by MFCC

In [5], [9] and [10], a source-filter model for sound generation is
discussed, see Figure 1. According to this model, each frequency
basis vectorBi of the mixture is a harmonic source/excitation sig-
nal Ei multiplied with an instrument-specific resonance filterHm

which is mainly responsible for formants. MFCC-based instru-
ment classification use this instrument-specific weightingfunction.
Although the calculation of MFCC is well-known, we explain the
details in the following because these details are important for un-
derstanding the improvements applied to the general MFCC-based
clustering algorithm.
The evaluation of thek-th Mel Frequency Cepstrum Coefficient
mfcci(k) corresponding to the channeli is done in three steps, see
Figure 4. First the element-wise squared input vectorB2

i is filtered
by a Mel filterbank withNMel filters to form the basis vectorsFi

in Mel frequency domain. Each filter of the Mel filterbank is a tri-
angular shaped weighting function with center frequenciesbeing
equidistant in Mel scale, see also Figure 3. According to [5], the
filtering can be interpreted as a multiplication with a matrix R of
sizeNMel-by-K with each row containing one Mel filter

Fi = RB2
i (27)

≈ R
ˆ
E2

i .×H2
m

˜
(28)

= RE2
i .×RH2

m . (29)

After that, the logarithm is applied to the outputs of the Melfil-
terbankFi(n), 1 ≤ n ≤ NMel. Therefore, the order of magnitude
between the outputs of the filterbank is reduced and the multiplica-
tion of the source signal with a spectral filter becomes an addition:

log
`
Fi + 1

´
≈ log

`
RE2

i

´
+ log

`
RH2

m

´
. (30)

The offset+1 for the logarithm in Equation 30 leads to strictly
positive logarithms. Therefore a continuous mapping of theval-
ues is guaranteed. If there is no offset, the logarithm maps filter-
bank outputs with very low amplitudes (Fi(n)≪ 1) to large nega-
tive amplitudes. This causes unwanted influences in the following
steps. To reduce the effect of this offset, we normalize allFi(n) to
a maximum amplitude ofAmax before applying the logarithm:

Fi ←
Amax

max{Fi(n)}
Fi (31)

= cFi . (32)

This normalization has two effects on the logarithm. First,a con-
stant offset is added, second, the non-linearity introduced by the
offset is reduced:

log(cFi + 1) = log(c) + log(Fi) + log
`
1 +

1

cFi

´
. (33)
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The higher the factorAmax is set, the smaller is the non-linearity
log

`
1+1/(cFi)

´
. Unfortunately, the higher factorAmax also intro-

duces a constant signal log(c). For higherAmax this constant signal
overlays the wanted signal log(Fi) and therefore deteriorates the
results of the following steps.
Finally theDiscrete Cosine Transform(DCT) is applied for decor-
relation of the both signals

mfcci(k) =

NMelX

n=1

log
`
cFi(n) + 1

´
cos

„
π(n− 1/2)k

NMel

«
, (34)

with 0 ≤ k ≤ NMel − 1. According to the source-filter model, the
Hm are assumed to have lowpass characteristics and theEi have
wideband characteristics. For this reason the DCT coefficients that
correspond to high frequencies are dropped. The first coefficient
represents mainly the signal energy and is therefore also dropped
[9].
The mfcci(k) are then used as features for ak-means clustering
[8]. First, we normalize each coefficient by subtracting themean
value and scaling the variance to unity:

mfcci(k) ← mfcci(k)−
1

I

X

i

mfcci(k) (35)

mfcci(k) ← mfcci(k)
1qP

i mfcc2i (k)
. (36)

After that, the vectora is initialized randomly. Thek-means clus-
tering then iteratively finds a clustering by evaluating the cluster
centercenterm and the new clustering vectora:

centerm(k) =
1P

i δma(i)

X

i

mfcci(k)δma(i) (37)

a(i) = arg min
m

X

k

`
centerm(k)−mfcci(k)

´2
.(38)

The algorithm stops when the vectora does not change from one
iteration to another.

3.3. Clustering by NMF

As mentioned in Section 3.2, the DCT decorrelates the two signals
log(RE2

i ) and log(RH2
m) of Equation 30. Unfortunately the DCT

decorrelates the spectral envelope for each channel without utiliz-
ing knowledge of the other channels. Therefore, we rearrange the
input of the decorrelation step in a matrixY of sizeNMel-by-I

Y(n, i) = log
`
cFi(n) + 1

´
. (39)

Each column ofY consists approximately of an addition corre-
sponding to Equation 30. Therefore it is generally possibleto ex-
tractM basis functionsHm as constant parts in this matrix by the
NMF algorithm, see also Figure 5. We initialize two matricesW
of sizeNMel-by-M andV of sizeM -by-I with absolute values of
Gaussian noise. After that, either the cost function in Equation 3 or
the cost function in Equation 4 are minimized by the update rules
introduced in Section 2.1. The algorithm stops after100 iterations.
Additionally the k-means clustering step is not required. Because
of Equation 17 and 18, the clustering can simply be defined by

a(i) = arg max
m

V(m, i) . (40)

Mel
filterbank

Logarithm

DCT

k-Means

Mel
filterbank

Logarithm

NMF

B B

MFCC
clustering

NMF
clustering

a a

Figure 4: Signal flow of the proposed blind clustering algorithms.

3.4. Hierarchical Clustering

The clustering algorithms as proposed in Section 3.2 and 3.3could
directly be applied for any numberM of target cluster. In the
case of more than two active sources (M > 2), alternatively a
hierarchical clustering strategy could be applied. In a first step
we cluster allI channels into two clustersem, em ∈ {1, 2} by the
clustering vectorea, ea(i) ∈ {1, 2}. We define the estimated energy
eE em of the spectrograms of both clusters as

eE em =
X

i

X

k,t

C2
i (k, t)δ emea(i) . (41)

If we assume uncorrelated sources, the energies of the different
channels sum up to the energy of the mixture signal [3]. Further we
assume that one cluster corresponds to one source, and the other
cluster contains the remaining sources. Therefore we expect that
the first separated sourceesm1

corresponds to the cluster with low-
est energy because the other cluster corresponds to more sources
than one:

m1 = arg min
em

eE em . (42)

In the next iteration all remaining channels withδm1ea(i) = 0 are
clustered again into two clusters. The algorithm stops if the num-
ber of clusters equals the number of active sources. Hierarchical
clustering could be used in combination with both clustering algo-
rithms proposed in Section 3.2 and 3.3.

4. EXPERIMENTAL RESULTS

4.1. Test Set and Parameter Setting

The test set consists of all melodious phrases except the full organ,
all singers except the quartet, the English and French female/male
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Figure 5: Decorrelation and clustering by NMF for a mixture of
castanet and double bass. The matrixY is separated into the matrix
W with the2 dominant resonance filters and their corresponding
activity matrixV. The dashed lines correspond to the castanet, the
solid lines to the double bass.

speech, and the pink noise from the Sound Quality Assessment
Material of the EBU [11]. For adding more percussive instru-
ments, the castanet, the roll of the side drum with snares, and the
cymbal roll are included. The instrument classification scheme of
[12] leads to7 percussive instruments,7 string instruments,12
wind instruments, and8 signals produced by humans. Addition-
ally we add the bass, guitar, drums and keyboard of the BASS-dB
[13]. As a last signal, Gaussian white noise is added to the test set.
This is a total of40 input signals of roughly5 to 15 seconds length
with a sampling frequency of44.1 kHz and a resolution of16 bit.
In case of stereo signals, the right channel is dropped. The mixture
is shortened to the length of the shortest input signal.
After clustering and signal synthesis, the separation quality is eval-
uated with knowledge of the input signalssm using the measures
SDR, SIR, SAR [7], and SER [2].NMel is set to20 for all ex-
periments. In the case of MFCC clustering9 coefficients remain
as input signals for the k-means clustering step. The other coeffi-
cients are dropped according to Section 3.2.
The input signals are normalized to a defined dynamic difference:
0 dB, ±3 dB, ±6 dB, ±10 dB, or±20 dB. After normalization
we add the input signals according to Equation 1. The result-
ing mixture is transformed into a time-frequency representation
by the STFT. The length of the analysis and synthesis windows
of the STFT is4096 samples with 50% overlap. The NMF al-
gorithm separates the magnitude spectrogram intoI = 25 chan-
nels with a maximum number of300 iterations. In the following,
the three proposed clustering algorithms are calledPMFCC (cluster-
ing by MFCC),PNMF,Div (clustering by NMF with divergence cost
function), andPNMF,Euc (clustering by NMF with Euclidean cost
function). For comparison, two other clustering methods are pre-
sented as lower and upper bound for clustering performance.Prand

corresponds to random clustering andPref to reference clustering.

Table 1: Separation results forM = 2 with dynamic differences
from 0 dB to±20 dB. The best clustering algorithm for each dy-
namic difference is marked bold. The results are shown in dB.

0 dB ±3 dB ±6 dB ±10 dB ±20 dB
SER
Prand 2.37 2.25 1.79 0.71 −3.62

PMFCC 6.02 5.96 5.82 5.06 1.66
PNMF,Div 6.89 7.02 7.08 6.75 4.39
PNMF,Euc 7.77 7.65 7.17 5.95 0.52

Pref 12.01 12.09 12.27 12.73 14.54
SDR
Prand −0.82 −1.21 −2.04 −3.32 −7.73

PMFCC 3.81 3.21 2.51 1.31 −2.46
PNMF,Div 4.56 3.80 3.41 2.52 −0.41
PNMF,Euc 6.09 5.60 4.79 3.11 −3.27

Pref 10.98 11.02 11.10 11.31 11.54
SIR
Prand 4.51 4.12 3.54 3.16 2.57

PMFCC 13.63 12.54 11.87 10.85 9.35
PNMF,Div 15.42 13.87 13.40 12.49 11.28
PNMF,Euc 16.27 15.52 14.70 13.35 9.31

Pref 21.01 21.11 21.28 21.59 22.40
SAR
Prand 3.12 3.11 3.07 3.00 2.84

PMFCC 6.54 6.37 6.21 5.73 4.53
PNMF,Div 7.54 7.50 7.43 7.11 6.19
PNMF,Euc 8.07 7.90 7.49 6.65 4.28

Pref 11.82 11.87 12.03 12.48 14.25

4.2. Blind Source Separation with 2 Sources

In a first experiment we set the number of active sourcesM = 2.
With 40 input signals, this corresponds to a total of780 mixing
scenarios. All of them are mixed at the9 different dynamic dif-
ferences as described in Section 4.1. The maximum amplitudeof
the Mel filter outputs is normalized toAmax = 104. The perfor-
mance of the proposed clustering algorithms is shown in Table 1.
We can make the following observations: The SER, SDR, SIR and
SAR behave very similar so that we concentrate on the SER in the
following. The NMF clustering with divergence outperformsthe
clustering with MFCC over the complete dynamic range for mix-
tures. Further, for nearly equal loud mixtures(−6... + 6 dB) the
clusteringPNMF,Euc leads to better results thanPNMF,Div. The most
probable reason is that the divergence is easier distorted by small
values than the squared Euclidean distance, see also Section 2.1.
If the expected dynamic difference between two source signals is
known, the appropriate clustering algorithm can be chosen to max-
imize the expected separation quality.
The dynamic differences have different effects on the quieter and
the louder source, as shown in Table 2. The quieter source, here
defined ases1, is separated with lower SER. This could be sim-
ply explained by the high energy of the interfering sourcees2. The
∆SER behaves in the opposite way for the same reason. For the
quieter signal even few separated interfering parts ofes2 leads to
large improvements for the∆SER because of the low energy of
es1.
In Table 3 the influence of the normalizationAmax of Equation 31
is shown for the clusteringPNMF,Euc. Similar results are obtained
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Table 2:SER and∆SER forM = 2 with dynamic differences from
0 dB to±20 dB. Results are shown in dB andPNMF,Div is used as
clustering strategy.es1 is the quieter source,es2 the louder source.

0 dB ±3 dB ±6 dB ±10 dB ±20 dB
SER

es1 6.89 5.48 4.03 1.70 −5.65
es2 6.89 8.56 10.13 11.79 14.42

mean 6.89 7.02 7.08 6.75 4.39
∆SDR

es1 6.55 8.20 9.81 11.54 14.28
es2 6.54 5.14 3.62 1.15 −6.63

mean 6.54 6.67 6.71 6.34 3.83

for the clustering algorithmsPMFCC andPNMF,Div. As mentioned
in Section 3.2, the normalization has critical influence on the hit
probability of the clustering and therefore on the final separation
quality. For large dynamic differences, the instrument filterHm of
the quieter instrument has much lower amplitudes than the louder
instrument. In this case, the non-linearity of the offset (see Equa-
tion 33) has to be small for error free detection of both instrument
filters. This leads to the requirement of large values forAmax. In
the case of nearly equal loudness for both instruments, the influ-
ence of the constant signal in Equation 33 should be as low as
possible, and therefore low values forAmax are preferable. For
Amax = 102 and0 dB dynamic difference, the separation qual-
ity decreases compared to the case withAmax = 103. This shows
that a certain range of values is necessary for successful clustering.
The authors of [5] reported for their best algorithm a SDR of roughly
8 dB, a SIR of roughly22.5 dB, and a SAR of roughly8.1 dB. We
can see in Table 1 that the clusteringPNMF,Euc for a dynamic differ-
ence of0 dB results in a worse SIR and an identical SAR. There-
fore the SDR is slightly worse, because it evaluates the overall
distortion by interferences and artifacts [7]. This could be partly
confirmed by our significant larger test set. Unfortunately in [5]
dynamic differences for the input signals are all set to zero, al-
though our results show, that dynamic differences have significant
influence on source-filter based source separation. In opposite to
[5], our proposed clustering algorithm can be adjusted to anex-
pected dynamic difference by the parameterAmax. Furthermore,
no additional information like lowest pitch of each instrument is
necessary for our clustering algorithms. The additional complex-
ity by a clustering as proposed in our separation scheme is very
low compared to the separation by the NMF. In informal complex-
ity tests evaluated on a small number of mixtures, the clustering
is calculated in less than0.2% of the time needed for the NMF1.
Therefore the additional complexity is insignificant compared to
the STFT, the NMF and the signal synthesis step.

4.3. Blind Source Separation with 3 Sources

In a second experiment, we set the number of active sourcesM =
3, the dynamic difference to0 dB, andAmax = 103. With 40 in-
put signals, this leads to a total of9880 mixtures. Table 4 shows
the results. First we discuss the mean value for all sources and all

1All algorithms are implemented in Matlab. Evaluation is done on a P4
with 3200 MHz.

Table 3: Influence of the normalization factorAmax on the SER
for different dynamic differences. The best normalizationfor each
dynamic difference is marked bold. Results are shown in dB and
PNMF,Euc is used as clustering strategy.

Amax 0 dB ±3 dB ±6 dB ±10 dB ±20 dB
102 7.79 7.54 6.69 4.36 −2.44
103 7.88 7.60 6.95 5.41 −1.24
104 7.77 7.65 7.17 5.95 0.52
105 7.46 7.44 7.21 6.25 1.92

Table 4: Mean SER in dB forM = 3. The mean value over all
3 sources is shown. Additionally the mean values are evaluated
individually for the best source defined asesm1

to the worst source
esm3

.

esm1
esm2

esm3
mean

Prand 2.21 1.19 0.44 1.28
PMFCC 6.10 2.66 1.63 3.46

PNMF,Div 6.38 2.75 1.71 3.61
PNMF,Euc 6.62 3.23 2.17 4.01
PMFCC,Hier 6.07 3.01 1.94 3.67
PNMF,Div,Hier 6.86 3.20 2.16 4.07
PNMF,Euc,Hier 6.92 3.55 2.49 4.32

Pref 9.83 7.36 6.45 7.88

mixtures. It can be seen that the mean separation quality ofPref

degrades by more than4 dB for M = 3, compared with the same
scenario withM = 2 (see also Table 1). The same degradation
of 2.5 dB to 3.5 dB can be observed for all blind clustering algo-
rithms, but the ranking of the different clustering algorithms for a
dynamic difference of0 dB remains the same.
In the following, we define the index of the estimated sourceesm

with highest SER asm1, and the index corresponding toesm with
lowest SER asm3. The remaining index is defined asm2. For
a more detailed analysis, the mean values are individually evalu-
ated foresm1

, esm2
, andesm3

over all mixtures. In general, only
one of the three source estimations is separated with acceptable
SER values. This motivates us to apply the hierarchical cluster-
ing described in Section 3.4 to the test set. For the clustering by
MFCC PMFCC,Hier, the separation quality foresm2

andesm3
is im-

proved. For both NMF-based clustering methods, the separation
quality for all three sources is increased. Again the ranking of the
three proposed clustering methods remain the same.

5. CONCLUSIONS

In this paper, we introduced low-complexity clustering algorithms
for monaural blind source separation based on NMF. We have
shown the disadvantages of decorrelating each channel on its own
for MFCC and circumvented this drawback by replacing the DCT
by a NMF. We tested the proposed clustering algorithm on a large
test set, so that we can consider the results reliable. Furthermore,
we discuss the influence of dynamic differences between the in-
put signals. Finally, we show, that even in the case of three active
sources the algorithm is in general capable of separating atleast
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one source properly out of the mixture. We compare our algo-
rithm with a separation algorithm that implements the source-filter
model in the separation process, and show that our algorithmleads
to comparable results, although it is evaluated on a larger test set.
Another important advantage of our algorithm is that it is possible
to adjust the clustering algorithm to an expected dynamic differ-
ence between the sources. The higher separation quality of the
reference clustering shows that there is room for improvements re-
garding the clustering strategies.
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