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ABSTRACT

This contribution combines techniques for sound synthesisand
spatial reproduction for a joint synthesis of the sound production
and sound propagation properties of virtual string instruments. The
generated sound field is reproduced on a massive multichannel
loudspeaker system using wave field synthesis techniques. From
physical descriptions of string vibrations and sound wavesby par-
tial differential equations follows an algorithmic procedure for syn-
thesis-driven wave field reproduction. Its processing steps are de-
rived by mathematical analysis and signal processing principles.
Three different building blocks are addressed: The simulation of
string vibrations, a model for the radiation pattern of the generated
acoustical waves, and the determination of the driving signals for
the multichannel loudspeaker array. The proposed method allows
the spatial reproduction of synthetic spatial sound without the need
for pre-recorded or pre-synthesized source tracks.

1. INTRODUCTION

Sound synthesis and sound reproduction are usually seen as sepa-
rate processes to be performed independently of each other.This
point of view originates from the usual workflow in music produc-
tion. Typically different voices are recorded as separate tracks and
then a mix for reproduction for two-channel stereo or surround
sound is created. Recent advances in spatial reproduction have
increased the number of loudspeaker channels from a few to sev-
eral tens and even several hundreds. Besides Ambisonics, wave
field synthesis has been established as a physically well-founded
method for determining the loudspeaker driving signals of such
massive multichannel systems [1, 2]. The mixing process forwave
field synthesis is much more involved than e.g. stereo amplitude
panning. Some authoring tools exist which follow the same work-
flow of generating loudspeaker signals from recorded tracksfor
locally distributed moving sound sources [3, 4, 5].

This contribution goes one step further and combines physi-
cal modeling sound synthesis with spatial sound reproduction. It
extends the physical model for sound synthesis by a model for
sound radiation. In this way, not only the wave form of a mu-
sical sound but also its spatial characteristics are generated from
physical models. They provide the information to calculatethe
loudspeaker signals for a multichannel reproduction system.

This process is shown here for a specific combination of physi-
cal models for sound synthesis, propagation, and reproduction. For
physical modeling sound synthesis, a string model with the func-
tional transformation method [6, 7] has been chosen. A simple
model for sound propagation is the piston model frequently used
as radiation model for loudspeakers [8, 9]. Finally, wave field syn-
thesis is used for spatial sound reproduction.

2. SYSTEM OVERVIEW

A generic model for the sound propagation from a virtual source
to a loudspeaker array is shown in Fig. 1. Its basic components are
the sound source, its characteristic sound radiation pattern, and a
loudspeaker array for reproduction within the listening area. These
components are mapped to different building blocks of the joint
synthesis and reproduction system as shown in Fig. 2.

virtual source

radiation pattern

listening area

loudspeaker array

Figure 1: Generic sound propagation model from a virtual source
to a loudspeaker array.

The virtual source is realized here by physical modeling sound
synthesis for a vibrating string according to the functional transfor-
mation method. The user input may consist of a stream of MIDI
events which trigger the synthesis algorithm by a short sequence
of digital samples as excitation signal. Also the physical properties
of the string can be varied by the user at any time.

When the string is attached to a sound board, a part of its en-
ergy is radiated into the environment. A piston model is chosen
as a simple model for a sound board. This model is closer to the
properties of a real sound board than the point source or plane
wave models usually employed in wave field synthesis. Further-
more, the piston model is well established in acoustics as a simple
loudspeaker model. The position of the piston and its orientation
in space may be controlled by the user.

For reproduction of the sound board radiation with an array
of loudspeakers, the particle velocity at the location of each loud-
speaker has to be known. It can be obtained from the known ra-
diation properties of the piston model. Then the usual techniques
for wavefield synthesis reproduction are applied to computethe
driving signal for each loudspeaker [2, 10, 11].
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Figure 2: System overview of the combined sound synthesis and wavefield synthesis system.

3. SOUND SYNTHESIS

Physical modeling sound synthesis methods are known to faith-
fully reproduce the sounds of a variety of timbral classes, like
string, drum, bell, pipe sounds and alike. Unlike wavetablesyn-
thesis physical modeling offers parametric control of the synthe-
sized sound within its timbral class. Physical modeling methods
include digital waveguides [12, 13, 14], mass-spring models [15],
component-based models [16] and the functional transformation
method [6, 7].

The sound synthesis method in the first block of Fig. 2 is based
on a physical model of a vibrating string in the form of a partial
differential equation (see e.g. [17, 18])

ρA
∂2y(x, t)

∂t2
+EI

∂4y(x, t)

∂x4
− Ts

∂2y(x, t)

∂x2
+

+d1
∂y(x, t)

∂t
+ d3

∂3y(x, t)

∂t∂x2
= fe(x, t).

(1)

The independent variablex is the space coordinate along the string
with lengthl (0 < x < l) andt is the time coordinate. The depen-
dent variabley denotes the deflection of the string. The excitation
is given by the functionfe(x, t). Table 1 lists the physical param-
eters.

ρ density
A cross section area
E Young’s modulus
I moment of inertia
Ts tension of the string
d1 frequency independent damping
d3 frequency dependent damping

Table 1: Physical parameters of the string model from (1)

The continuous variable model (1) is turned into a sound syn-
thesis algorithm for the string velocity by the functional transfor-
mation method. It has been described in detail e.g. in [6, 7] so
that only the block diagram of the resulting algorithm is shown in
Fig. 3.

The coefficientsb(ν), c0(ν), c1(ν), andaν for ν = 1, . . . , n
are calculated directly from the parameters in Table 1. Thisdigital
filter structure is excited by a pulse of digital samplesf(k) which
is triggered e.g. from each MIDI event “note on“. The output
v(k) closely represents the velocity of the string. The numbern
of second order sections should be chosen such that all relevant
harmonics throughout the audio frequency range are synthesized.
In principle, the same algorithm is also suitable for the synthesis
of other timbral classes [19].

f(k)

�� b(1)
��

// z−1 // /.-,()*++ // z−1 • // a1 // /.-,()*++ // v(k)
OO c0(1)

•

OO c1(1)

OO OO

f(k)

�� b(n)
��

// aν // /.-,()*++

// z−1 // /.-,()*++ // z−1 • // an

OO

OO c0(n)
•

OO c1(n)

OO

Figure 3: Synthesis algorithm as parallel arrangement of second
order digital filters. The blocks labeledz−1 are delays by one
sample.

4. PISTON MODEL

Strings by themselves do not radiate enough sound energy forthe
performance of musical sounds. In all acoustical instruments the
strings are attached to some kind of sound board. To model this
effect, the output of the synthesis algorithms, i.e. the velocity v(k)
in Fig. 3, is connected to a piston model.

The piston is a classical model for a loudspeaker with a stiff
membrane. Here, it is used as a first approximation to the sound
radiation by the sound board of an acoustical instrument. The di-
rect connection between string and sound board is only the most
simple model which could be improved by a suitable impedance.
More exact models of the radiation of guitars, violines, etc. may
require more elaborate models. For example a sound board model
consisting of a few discrete piston-oscillators covering the most
important resonance peaks has been presented in [20].

The following simple piston model describes the block labeled
sound propagation in Fig. 2. Sec. 4.1 presents an analysis ofthe
piston model. Since the resulting integral expression is not easy to
evaluate, a classical approximation with a Bessel functionis shown
in Sec. 4.2. For more details on the piston model, see e.g. [8,9].

4.1. Analysis of the Piston Model

Fig. 4 shows the coupling between the vibrating string and the
piston in all three views of a Cartesian coordinate system with
x = [x, y, z]T. The velocity of the string is picked up at an arbi-
trary positionxa and transfered to the piston (top left forxa = 0).
This kind of coupling may resemble a mechanical connection be-
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Figure 4: Coupling between the string and the piston,
Top left: view on thex-y-plane,
Top right: Front view of the piston (x-z-plane) with polar
coordinates(ρ, ϕ),
Bottom: view on they-z-plane; also the pointx0 is here restricted
to this plane (x0 = 0).

tween string and soundboard via a bridge or an electrical connec-
tion via a magnetic pick-up, an amplifier and a loudspeaker.

The piston can be regarded as a circular disk with radiusR
located in thex-z-plane which vibrates in the direction of they-
coordinate. The disk is stiff such that all points on the diskhave
the same phase. Each of these points is modelled as a point source.
The sound pressure at an arbitrary pointx0 in the half space with
y > 0 results from the superposition of the effect of all point
sources on the disk. The value of the sound pressure is obtained by
integrating over the surface of the disk. The resulting integral re-
lation is most easily expressed in the temporal frequency domain
of the continuous time variablet. The velocityv(t) is thus rep-
resented by its Fourier transformV (ω) = F{v(t)}. Note that
the output of the discrete-time synthesis algorithm from Fig. 3
at a suitable audio sampling rate closely resembles the correct
continuous-time velocityv(t).

Now consider the sound pressurep(t, R,x0) at the arbitrary
locationx0 and its Fourier transformP (ω, R,x0). It can be ex-
pressed by the velocityV (ω) of the piston with radiusR through

integration over all point sources on its surfaceA0

P (ω,x0) = jωρLV (ω)

∫

A0

G(ω, |x0 − x
′|) dA . (2)

HereG(ω, |x0 − x
′|) is the free-field Green’s function of a point

source on the piston atx′ which radiates to a pointx0

G(ω, r) =
e−jωr/c

2πr
, r = |x0 − x

′| (3)

The lengthr denotes the distance between the locationx0 and the
variable locationx′ on the piston. The corresponding differential
surface element on the piston is given by dA. The density of the
air isρL and the speed of sound isc.

The evaluation of the integral (2) can be found e.g. in [9] and
is only briefly presented here. The sound pressureP (ω,x0) is
obtained by expressing the coordinates of each point sourceon the
disc by polar coordinates(ρ, ϕ) as shown on the right of Fig. 4.
The components of the Cartesian coordinates ofx

′ become

x′ = −ρ sin ϕ, z′ = ρ cosϕ, y′ = 0, ρ =
√

x′2 + z′2. (4)

The distance

r = |x0 − x
′| =

√

(x0 − x′)2 + y2
0 + (z0 − z′)2

can be expressed in polar coordinates as

r = r(ρ, ϕ) =
√

ρ2 + 2ρ(x0 sin ϕ − z0 cos ϕ) + r2
0 (5)

with

r2
0 = |x0|

2 = x2
0 + y2

0 + z2
0 . (6)

The integral expression in (2) turns with dA = ρ dϕ dρ into

P (ω, R,x0) =
jωρLV (ω)

2π

R
∫

ρ=0

2π
∫

ϕ=0

e−jωr(ρ,ϕ)/c

r(ρ, ϕ)
ρ dϕ dρ. (7)

Since there is no closed form solution of this integral it has
to be evaluated numerically. A simpler representation can only be
obtained through certain approximations as is shown next.

4.2. Simplified Piston Model

For an easier evaluation and manipulation of the radiation model,
a simplified piston model is preferable. To this end a classical
approximation from e.g. [8, 9] is used. It is briefly presented here.

The simplified model is obtained by two different approxima-
tions for the termr(ρ, ϕ) in the magnitude and the phase of the
Greens’s function (3). In the magnitude,r from (3) is approxi-
mated byr0 from (6). This means that the distance of the point
atx0 from the origin replaces the true distance ofx0 to each point
source on the piston. This approximation is justified for pointsx0

far away from the piston, i.e.r0 ≫ R ≥ ρ > 0.
Applying the same approximation also to the phase would

simply replace the piston by a point source. A better approxima-
tion can be obtained for pointsx0 that lie in they-z-plane i.e.
x0 = [0, y0, z0]

T. Alternatively,x0 can now also be described
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Figure 5: Magnitude response of the piston model for a frequency of 200 Hz.Left: Numerical evaluation of the exact integral relation (7)).
Right: Bessel approximation (12).
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Figure 6: Magnitude response of the piston model for a frequency of 2 kHz.Left: Numerical evaluation of the exact integral relation (7)).
Right: Bessel approximation (12).

by the polar coordinate pair(r0, θ), where the angleθ is defined
on the bottom of Fig. 4.

Considering the radiation of the piston to points in they-z-
plane only is sufficent for modeling the case where sound sources
and the reproduction array lie in the same plane.

With x0 = 0, r0 ≫ ρ, and a truncated series expansion of the
square root, (5) turns into

r(ρ, ϕ) =
√

r2
0 − 2ρz0 cos ϕ = r0 − ρ

z0

r0
cosϕ , (8)

or with z0 = r0 sin θ (see Fig. 4, bottom)

r(ρ, ϕ) = r0 − ρ sin θ cos ϕ . (9)

This relation constitutes the approximation forr in the exponential
term in (7).

Inserting the magnitude approximationr(ρ, ϕ) ≈ r0 and the
phase approximation (9) into the inner integral in (7) gives

2π
∫

0

e−jωr(ρ,ϕ)/c

r(ρ, ϕ)
ρ dϕ =

ρ

r0
e−jωτ0

2π
∫

0

e−jωρ sin θ cos ϕ /c dϕ

=
ρ

r0
e−jωτ0 2πJ0(ωρ sin θ /c)

(10)

whereJ0 is the Bessel function of the first kind and order zero and

τ0 =
r0

c
=

1

c

√

y2
0 + z2

0 . (11)

Performing the outer integration in (7) results finally in (see [9])

P̃ (ω, R,x0) = jωρLR2 J1(ωτθ)

ωτθ

1

r0
e−jωτ0 V (ω), (12)

where the notatioñP distinguishes this approximation from the
exact relation in (7) and

τθ =
R

c
sin θ =

R

c

z0
√

y2
0 + z2

0

. (13)

The fractional term in (12) involving the Bessel function ofthe
first kind and order zeroJ1 behaves similarly to the sinc-function.
It is continuous aroundω = 0 with

lim
ω→0

J1(ωτθ)

ωτθ
=

1

2
. (14)

Equations (11–13) consitute an approximation of the piston’s
sound pressure field in they-z-plane. For any point(y0, z0), the
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relation (12) can be evaluated directly when numerical routines for
exponential and Bessel functions are available.

The exact integral relation (7) and the approximation from (11–
13) are compared in Figs. 5 and 6. Fig. 5 shows the magnitude of
P (ω, R,x0) andP̃ (ω, R,x0) for a selected range of they-z-plane
and a frequency of 200 Hz. Obviously the approximation is quite
good. This is also the case for a frequency of 2 kHz (Fig. 6) and
for locations normal to the piston, i.e. small values ofθ. For larger
values ofθ, differences in the approximation are visible.

4.3. Sound Pressure Gradient

For loudspeaker reproduction not only the sound pressure but also
its gradient are required. It is considered here for the spatially two-
dimensional simplified model from Sec. 4.2.

Derivation ofP̃ (ω, R,x0) from (12) with respect to the Carte-
sian coordinatesy0 andz0 gives

∇P̃ (ω, R,x0) = ρLcR e−jωτ0 V (ω)

[

AR + jAI

BR + jBI

]

(15)

with

AR =
y0

cr0z0
ωJ1(ωτθ) (16)

AI = −
Ry0

cr3
0

ωJ ′

1(ωτθ) (17)

BR =
1

cr0
ωJ1(ωτθ) (18)

BI = −
1

z2
0

J1(ωτθ) −
R(z2

0 − r2
0)

cz0r3
0

ωJ ′

1(ωτθ). (19)

Equations (15–19) allow to calculate the gradient of the sound
pressure at any point in they-z-plane. They provide a reasonable
approximation for all locationsx0 with a sufficiently large distance
from the piston within the limits shown in Figs. 5 and 6.

5. WAVE FIELD SYNTHESIS

This section presents the combination of the source model intro-
duced above with a wave field synthesis system. At first the geo-
metrical arrangement of source and loudspeaker array is presented.
Then the required coordinate transformations are discussed and fi-
nally it is shown how to obtain the driving functions for eachloud-
speaker in the array.

5.1. Geometrical Arrangement

Fig. 7 shows the geometrical arrangement of the virtual sound
source – represented by the piston model – and the loudspeaker
array for reproduction. The loudspeakers are arranged as a planar
array in the plane which contains the vector normal to the piston.
Fig. 7 shows a circular array, but also other planar array configu-
rations are possible.

So far, the center of the piston has been considered as the ori-
gin of the coordinate system. Now the focus is shifted to the loud-
speaker array. Therefore an additional coordinate system is intro-
duced with its origin in the center of the array. For convenience,
this new coordinate system is designated withx, y, andz. The
coordinates of the piston are now calledη andζ (y andz in the
previous section).

In this new coordinate system, thex-y-plane of the array co-
ordinates coincides with theη-ζ-plane of the piston. The origin
of the piston coordinate system(η, ζ) = (0, 0) is denoted by
(x, y) = (xS, yS). Since piston and array lie in the same plane,
the third coordinate can be omitted and only a two-dimensional
geometrical arrangement is considered from now on.

piston

loudspeaker array

x

y
z

η

ζ

α

(xS, yS, zS)

loudspeakerm

Figure 7: Relation between the coordinate systems of the piston
and of the loudspeaker array.

5.2. Coordinate Transformations

For an exact representation of the gradient from (15) in the coor-
dinates of the array, a precise formulation of the transformation
between both coordinate systems is required.

The transformation from the piston coordinates(η, ζ) to the
array coordinates(x, y) is given by (20) and (21). It includes a
rotation by an angleα to align the coordinates and a translation to
match the centers of both coordinate systems

[

x
y

]

= R(α)

[

η
ζ

]

+

[

xS

yS

]

, (20)

R(α) =

[

cosα − sin α
sin α cosα

]

. (21)

The inverse transformation from the array coordinates to the piston
coordinates is described by (22), where the inverse of the rotation
is a rotation by the negative angle

[

η
ζ

]

= R(−α)

[

x − xS

y − yS

]

. (22)

These coordinate transformations are now used to determine
the gradient of the sound pressure at the position of the loudspeak-
ers of the reproduction array. To this end, a certain louspeaker
with numberm and array coordinates(xm, ym) is considered, as
shown in Fig. 7. The numerical procedure to obtain the gradient
of the piston’s sound pressure at the location(xm, ym) is shown
in Fig. 8.

It consists of the following steps:

• transform the array coordinates(xm, ym) of loudspeaker
m into the piston coordinates(ηm, ζm) using (22),
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loudspeakerm
in array coordinates

xm, ym

coord. transformation

array→piston
//

loudspeakerm
in piston coordinates

ηm, ζm

��

∇P̃a(ω, R, xm, ym) ∇P̃p(ω, R, ηm, ζm)
coord. transformation

piston→array
oo

Figure 8: Coordinate transformations to obtain the gradient of the
sound pressure for loudspeaker numberm from the piston model.

• compute the gradient of the sound pressure from (15). The
location of the loudspeaker(ηm, ζm) in piston coordinates
is used here for the arbitrary locationx0 in (15). The sub-
scriptp indicates that the gradient is represented in piston
coordinates.

• use (20) to transform the gradient̃Pp from piston coordi-
nates into the corresponding expressionP̃a for the gradient
of the sound pressure in array coordinates(xm, ym).

This numerical procedure provides the gradient of the piston’s sound
pressure at all positions of the loudspeaker array.

5.3. Loudspeaker Driving Functions

In a last step the driving functions for each loudspeaker of the re-
production array have to be determined. According to [11], these
driving functions are obtained from the gradient of the sound pres-
sure at the loudspeaker position by application of

• a spatial windoww(xm,xS) which selects the active loud-
speakers for a certain source direction,

• an amplitude factorA(xm) which depends on the position
xm of the loudspeaker with numberm,

• a frequency selective filterHwfs(ω) which is independent
of the loudspeaker position

D(ω,xm) = w(xm,xS)A(xm)Hwfs(ω)
∂

∂n
P (ω,xm). (23)

The vectorxm denotes the location(xm, ym) of loudspeakerm in
thex-y-plane. Similarly,xS is the position(xS, yS) of the piston.

The spatial window functionw(xm,xS) selects those loud-
speakers that are active for the reproduction of a certain virtual
source. It depends on the direction of two vectors: The vector in-
dicating the direction from the source atxS to the loudspeaker at
xm and the normal vectornm on the surface of the loudspeaker
array. For the loudspeaker arrangement of Fig. 7 this vectorpoints
inwards from the loudspeakerm towards the center of the circular
array, i.e. the origin of the array coordinate system. The window
function is positive if the scalar product of these vectors is positive
and zero otherwise.

The amplitude factorA(xm) and the transfer functionHwfs(ω)
result from the fact that a three-dimensional wave field is repro-
duced with a planar array (see [11, chapter 13.2]).

The normal derivative ofPa(ω,xm) at the louspeaker position
xm in (23) can be expressed by the transpose of the above normal
vectornm and the gradient of the sound pressure from (15) as

∂

∂n
P (ω,xm) = n

T
m ∇P̃a(ω, R,x0). (24)

Combining (15), (23) and (24) gives

D(ω,xm) = Hrad(ω,xm)A(xm)Hwfs(ω)V (ω) (25)

with

Hrad(ω,xm) = w(xm,xS)ρLcR e−jωτ0
n

T
m

[

AR + jAI

BR + jBI

]

.

(26)

The time constantτ0 from (11) and the vector components from (16-
19) have to be computed with the coordinate transformationsfrom
Sec. 5.2.

Eq. (25) gives the (Fourier transform of the) loudspeaker driv-
ing signal for loudspeakerm. It uses the string velocityV (ω) from
the physical modeling sound synthesis algorithm from Sec. 3as
input and computes the driving signal by filtering operations. The
transfer functionHrad(ω,xm) results from the radiation model
presented in Sec. 4.2 applied to each active loudspeaker. The gain
factorA(xm) and the transfer functionHwfs have been introduced
above.

6. SIGNAL PROCESSING STRUCTURE

This section presents a signal processing structure which realizes
the simplified piston model from Sec. 4.2. Further approximations
for more efficient processing are shortly discussed.

6.1. Signal Processing Structure for the Piston Model

The determination of the loudspeaker driving functions according
to (25) closely resembles the block diagram from Fig. 2:

1. The string velocity is the result of the sound synthesis inthe
first block. The structure of the corresponding synthesis al-
gorithm through the functional transformation method has
been shown in Fig. 3 from Sec. 3.

2. The sound propagation model in the second block is given
by the transfer functionsHrad(ω,xm) for each loudspeaker
m. They are based on the simplified piston model according
to Sec. 4.2.

3. The third block is realized by the gain factorA(xm) and
the transfer functionHwfs(ω) as described in Sec. 5.

Fig. 9 shows a more detailed version of Fig. 2 with the transfer
functions and factors listed above. It represents the signal pro-
cessing structure for computing the driving functions of a wave
field synthesis system as triggered by musical events from a MIDI
source or other kind of human input.

The structure of Fig. 9 follows closely the decomposition into
functional blocks from Fig. 2 and even Fig. 1. However, it ap-
pears that the realization of the blocks from Fig. 2 according to
Fig. 9 is not the most efficient one. Each branch for the individ-
ual loudspeakers contains the transfer functionHwfs(ω) which is
independent of the loudspeaker position and thus the same for all
branches. A first attempt would be to shiftHwfs(ω) to the output
of the sound synthesis model such that this filtering operation has
to be performed only once. A more efficient processing structure
can be obtained with further approximations.
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Figure 9: Signal processing structure from MIDI input to loudspeaker outputs.
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Figure 10: Efficient implementation of the discrete-time signal processing structure by combination of transfer functions and amplitude
factors across the block boundaries.

6.2. Simplified Signal Processing Structure

A more efficient structure for the determination of the driving sig-
nals can be obtained by further approximations. Rather thanonly
using geometrical approximations as in Sec. 4.2, techniques from
the design of digital filters may be applied to approximate the
transfer functionHrad(ω,xm) from (26) by a simpler transfer
function of the general form

Hrad(ω,xm) ≈ H̃rad(ω)B(xm)e−jωτm . (27)

Here the transfer functioñHrad(ω) is the same for all loudspeak-
ers, while the gain factorB(xm) and the phase terme−jωτm vary
for each loudspeaker positionm. The methods to choosẽHrad(ω),
B(xm), andτm for a good approximation ofHrad(ω,xm) in a
certain sense are not discussed here.

Instead the signal processing structure which results fromthis
simplification is shown in Fig. 10. Due the simple form of (27),
all filtering operations are independent of the loudspeakerposi-
tion. Therefore the transfer functionsHwfs(ω) from Fig. 9 and
H̃rad(ω) from (27) can be combined into one discrete-time trans-
fer functionH(z) shown in Fig. 10. A Fourier-type approximation

of the continuous-time transfer functions has been applied, which
results in a realization ofH(z) by an FIR filter of order up to 256.

Since the sound synthesis algorithm by the functional transfor-
mation method (FTM) is a linear system, the filtering operation by
H(z) and the synthesis algorithm may be interchanged. As shown
in Fig. 10, the output ofH(z) is the input signal for the sound syn-
thesis block. It is thus not required to perform a filtering operation
with H(z). Instead each MIDI note event triggers the pre-stored
impulse response ofH(z) to feed the sound synthesis algorithm.
The same principle has been used for a so-called commuted piano
synthesis in [21].

The simple radiation model from (27) and the driving func-
tions contain also amplitude factors for each loudspeaker position
which can be combined into one factor each (C(xm) in Fig. 10).
Finally there remain only the delays from the simple radiation
model which are specific for each loudspeaker. The delaysdm

in samples result from the time constantsτm in seconds via the
sample rate.

Comparing the structures in Fig. 9 and Fig. 10 shows that now
the branches for each loudspeaker are free from any filteringoper-
ations. Since the number of loudspeakers is in the order of tens
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or hundreds, the resulting signal processing structure shown in
Fig. 10 allows for a more efficient realization. The quality of the
spatial reproduction depends on the quality of the approximation
in (27). The trade-off between numerical expense and reproduc-
tion quality can only be established by listening tests. In any case,
the structure in Fig. 9 provides a physically well found model with
a moderate geometrical approximation at the expense of filtering
each single loudspeaker channel.

These signal processing structures have been implemented for
reproduction with a 48-channel wave field synthesis system at the
Telecommunications Laboratory of the University Erlangen-Nürn-
berg. Musical examples with multiple strings at different locations
and with the movement of sources along their individual trajecto-
ries demonstrate the feasibility of this joint synthesis and repro-
duction method. Listening tests with the simplified piston model
in various distances show that this model allows for a gradual vari-
ation of the sound between its two extremes, a distant point source
and a plane wave.

7. CONCLUSIONS

Physical modeling sound synthesis has been confined so far tothe
production of monophonic or two-channel stereo sound. Its capa-
bility for spatial reproduction is greatly enhanced by the combi-
nation with wave field synthesis. Both physical modeling sound
synthesis and wave field synthesis rely on physical models inthe
form of partial differential equations. The missing link between a
synthesized sound source and its reproduction by wave field syn-
thesis is the spatial radiation pattern of the virtual instrument. The
well-known and proven piston model has been used here as a proof
of concept. It can be implemented directly by a suitable signal pro-
cessing structure or it can serve as starting point for further sim-
plifications of the multichannel algorithm. It has been verified by
listening tests that the promises of physical modelling hold, i.e. not
only the timbre of the sound but also the location, orientation, and
motion of the source are subject to parametric control by theuser.
The appropriateness of the piston model and its simplifications for
specific families of instruments like violins, brass instruments, or
pianos have still to be established by more detailed modelling and
testing.
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