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ABSTRACT 

We propose a system which separates saxophone melodies from 

composite recordings of saxophone, piano, and/or orchestra. The 

system is intended to produce an accompaniment sans saxophone 

suitable for rehearsal and practice purposes. A Melody Line De-

tection (MLD) algorithm is proposed as the starting point for a 

source separation implementation which incorporates known in-

formation about typical saxophone melody lines, acoustic charac-

teristics and range of the saxophone in order to prevent and cor-

rect detection errors. By extracting reliable information about the 

soloist melody line, the system separates piano or orchestra ac-

companiments from the solo part. The system was tested with 

commercial recordings and a performance of 79.7% of accurate 

detections was achieved. The accompaniment tracks obtained after 

source separation successfully remove most of the saxophone 

sound while preserving the original nature of the accompaniment 

track. 

1. INTRODUCTION 

1.1. Melody Line Detection 

Melody Line Detection is a problem that has received considerable 

amount of attention due to the large number of applications that 

could benefit from a solid and reliable algorithm for this purpose. 

For example, systems for audio classification often use melody 

lines to classify or identify tunes from a database, and query by 

humming systems also use melody lines amongst other attributes 

to identify a song. Music transcription systems can also benefit, as 

detecting melody lines allows for music transcription of single 

lines in polyphonic signals. Audio coding and segmentation can 

also use melody lines and common musical structures to avoid 

redundancy in coding schemes. 

One of the earliest works in Melody Line Detection is the 

system for predominant F0 estimation presented by Goto [1]. He 

proposes a probabilistic method for melody and bass line detec-

tion where no assumption is made regarding the number of con-

secutive sources. The missing fundamental phenomenon is ac-

counted for and the use of tone models in MLD is introduced. The 

system uses a MAP estimation to obtain the model parameters and 

the final F0 trajectory is obtained by a salience detector and a mul-

ti agent architecture. 

Paiva, Mendes and Cardoso [2] propose a melody line detec-

tion system which uses a model of the human auditory system as a 

frequency analysis front end and MIDI-level note tracking. Peri-

odicities within frequency channels are obtained by means of the 

auto-correlation function and salience curves are used to segment 

tone trajectories. Candidate fundamentals are eliminated based on 

their salience, duration and octave relation. 

Eggink and Brown [3] propose a system which detects melo-

dy lines played by a solo instrument in an accompanied sonata or 

concerto. The key features of this implementation are the use of 

knowledge sources and an instrument classification system. Our 

proposed system is similar to this work in these respects. 

 

1.2. Source Separation 

The process of isolating the signals associated with different 

sources when only the mixture of all the signals is available is 

called source separation. The complexity of source separation is 

well known as in most cases no information about the mixing con-

ditions of the signals is available. Furthermore, partial collisions 

are frequent and inharmonicities present in most musical signals – 

even in pitched musical instruments- make predictions even hard-

er. The underlying assumption in this implementation is that given 

the complexity of a blind source separation task, a well-detected 

melody line along with saxophone instrument specific information 

will permit a more successful source separation implementation.  

 

Virtanen and Klapuri [4] propose a system for blind source 

separation in monophonic recordings that represents signals as 

sinusoids with time varying frequencies, amplitudes and phases 

which are assumed to be constant in single frame analysis. Perfect 

harmonicity is not assumed and the system builds upon the fact 

that frequency ratios remain constant even when the fundamental 

frequency varies. A linear model is used to force the spectral 
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envelope of each sound to be smooth. The system incorporates an 

iterative search for the parameters that best fit the observed spec-

tra. 

Woodruff, Pardo and Dannenberg [5] propose a method for 

informed source separation that uses knowledge of the written 

score and spatial information from an anechoic, stereo mixture to 

isolate individual sound sources. The key feature of this model is 

that it introduces a score alignment algorithm to further enhance 

separation accuracy. The idea with the alignment algorithm is to 

recover information about expressive timing and tempo from the 

audio track that is not available in the score’s MIDI file.  

Bay and Beauchamp [6] propose a source separation method 

that represents each instrument as a time varying harmonic series 

and uses information from the instruments’ spectra to enhance 

detection and improve separation results. An instrument spectra 

library is created using instrument samples from the University of 

Iowa Database [7] and a nearest neighbor approach is imple-

mented to find the spectrum in the library that best matches the F0 

combination obtained with a Gaussian mixture. 

 

2. PROPOSED MODEL 

We propose a system which consists of two main stages: a melody 

line detection stage where the soloist line is detected and a source 

separation stage where the soloist line is removed from the track. 

For the purposes of this paper, melody line detection refers to the 

process of determining the sequence of notes played by a soloist 

alto saxophone in a classical recording when the number of simul-

taneous instruments or sources in the accompaniment is not 

known and no information about the mixing conditions of the 

track is available. Fig. 1 shows a block diagram of the proposed 

model. 

 

 

                         
   

Figure 1: Block diagram of the proposed model. 

2.1.  Melody Line Detection 

A detailed block diagram of the melody line detection algorithm is 

shown in Fig 2. Audio clips from commercial classical saxophone 

recordings with either orchestra or piano accompaniments are 

used. A monophonic track is obtained from the stereo recordings 

and the sampling frequency of 44.1 kHz is kept. In the frequency 

analysis stage, audio is framed using a 3072 samples long Han-

ning window with a 50% overlap between consecutive frames. 

The Discrete Fourier Transform (DFT) is obtained for every audio 

frame and a spectral compression approach as proposed in [8] is 

used. The spectral compression stage raises the magnitude spec-

trum to the power of 0.67 as shown in Eq. 1. Previous results 

show that the peak picking procedure is facilitated and octave er-

rors decrease with the inclusion of this particular value at this 

stage. 

 

 

                      
 

Figure 2: Block diagram of the melody line detection al-

gorithm. 
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2.1.1 Peak Detection 

 

The magnitude spectrum is analyzed in the Peak Detection stage 

and local maxima are found. The number of spectral peaks or tone 

candidates is decimated in order to reduce complexity and remove 

spurious peaks. Three approaches are taken: (1) a frequency de-

pendant threshold is used and all peaks whose amplitude is below 

the threshold are eliminated. (2) Information from the saxo-

phone’s register is incorporated so any spectral peak lying outside 

the range is eliminated. Both the regular register and the altissimo 

register of the saxophone are incorporated. (3) A Perceptual Prun-

ing stage is also incorporated, which keeps only the spectral peaks 

that are perceived the most amongst all candidates. Specifically, 

using the critical band boundaries presented in [9], spectral peaks 

within a distance of 0.5 Bark are replaced by the strongest peak. 

The spectrum is normalized and scaled to the equal loudness con-

tours as defined in [10], and only the 5 peaks with the highest 

loudness levels are kept for each frequency frame. 
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Figure 3: Binary image representation of the tone candidates in an audio clip. 

 
2.1.2. Tone Formation 

 

The purpose of the tone formation stage is to build longer tones 

from spectral peaks in different frames. In this stage the tone can-

didates of the entire clip are represented as a two dimensional ar-

ray. The spectral peaks are represented as MIDI notes in a binary 

image where the columns are time-frequency frames and the rows 

represent saxophone notes. Fig. 3 shows a representation of an 

audio clip as a binary image. It can be seen that for every time 

frame – column – there are a maximum of 5 tone candidates. An 

Image Processing stage uses morphological operations on the bi-

nary image to remove isolated pixels that represent tones that are 

only one tone long and that are here assumed to be detection er-

rors. The binary image is converted into a grayscale image whose 

intensity values represent the peak’s amplitude normalized to a [0, 

1] range. An Error Correction stage is then introduced where tones 

that seem to be continuous in time but have one pixel gaps are 

filled with the mean amplitude from adjacent pixels. Fig. 4 shows 

the grayscale image obtained after the Image Processing and Error 

Correction stages. It can be seen that all the isolated pixels have 

been removed and the one pixel gaps have been filled. The intensi-

ty values of the image represent spectral amplitudes.  

 

At this point, information about the usage of the different notes 

within the saxophone’s repertoire is used to weigh the tone candi-

dates. We use note likelihoods to bias the tone candidates towards 

those notes which are more likely to be found in classical saxo-

phone music. The use of note likelihoods in MLD applications 

was introduced in [3] and here we take this approach one step fur-

ther by also using saxophone instrument specific information. By 

analyzing 4 pieces from the classical saxophone’s repertoire, Note 

Likelihoods were obtained. The pieces analyzed were carefully 

selected as to have the most general sample space possible, both 

in terms of register and note usage and in terms of the different 

periods of the instrument’s history. As was to be expected, the 

middle register is more frequently used that the lower and altissi-

mo register. 

 

 

 

Figure 4: Grayscale image obtained after the Image Processing, and Error Correction stages. The intensity values represent the 

amplitudes of the spectral peaks. 
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A deep analysis of the saxophone’s repertoire shows that due to 

the saxophone’s transposing nature there is marked tendency to 

use keys with sharps in the key signature. To account for this fact, 

the choice not to smooth the results across frequencies was made. 

Details of this likelihood data is forthcoming and interested read-

ers are welcome to contact the authors in the meantime. Fig. 4 

shows a much cleaner representation of the tone candidates where 

the continuity of the tones becomes more apparent after these var-

ious data have been applied. After the Tone Formation stage, the 

two dimensional array of tones has been weighted with informa-

tion from the spectral peaks’ amplitude and the Note Likelihoods.  

 

2.1.3. Linking Tones 

The final stage in the MLD algorithm is the Linking Tones stage 

as shown in Fig. 2. The purpose of this stage is to identify and 

create longer tones and to select the final sequence of tones that 

corresponds to the melody path of the soloist saxophone. By using 

simple logical operations in the pixels of individual rows – saxo-

phone notes - the exact frames where every tone begins and ends 

are detected. Now the likelihood of each formed tone, as a whole, 

is incorporated into the process by using their spectral amplitudes 

and Note Likelihoods. The tone likelihoods are normalized over 

tone length to avoid bias towards longer tones.  

 

To create the final melody path, a Starters Detection algo-

rithm was implemented with the purpose of determining the first 

tone within the melody path. Although we assume that the saxo-

phone is playing at all times, we give the algorithm some flexibili-

ty within the assumption by searching for a starter note within the 

first three frames of the audio clip. A maximum of 3 starter tones 

are kept after an initial detection and starters are eliminated based 

on their Tone Likelihoods so that only the ones with the highest 

Tone Likelihoods are kept.  

After the starter tones are detected the sequence of tones is 

defined by means of a local search. Tones completely overlapping 

with the starter tones were eliminated as tone candidates. As this 

algorithm is meant to deal with audio clips from commercial re-

cordings, reverberant conditions had to be accounted for. We use a 

simple approach allowing successive melody tones to have up to 

50% of overlap, and this proves to considerably increase the algo-

rithm’s performance. We also incorporate more saxophone-

specific information at this stage. As in the Note Likelihood anal-

ysis, the 4 selected pieces from the saxophone’s repertoire were 

analyzed for the frequency interval occurrence. The goal once 

again is to obtain numerical values for instrument specific Interval 

Likelihoods. The Interval Likelihoods are used to weigh transi-

tions between tones. To avoid broken melody lines, tones shorter 

than 4 frames are under-weighted to reduce their likelihoods. 

While this approach prevents some detection errors, it also allows 

for the algorithm to deal with faster melody lines. The local search 

continues until no tones are left and are either included in the me-

lody line or are eliminated as possible tone candidates. As a max-

imum of 3 starter tones are allowed, a maximum of 3 melody 

paths are obtained after the local search. At this point, the melody 

path that exhibits the maximum likelihood is selected as the final 

melody line. 

 

2.2. Source Separation 

After the melody path has been detected, the source separation 

implementation uses the information to remove the soloist from 

the audio track. For the source separation implementation an 

Overlap and Add system is used where the audio track is seg-

mented using a Sine window 3072 samples long with a 50% over-

lap between consecutive frames. The magnitude spectrum and the 

melody path are used to modify the spectrum in such a way that 

the best representation of the accompaniment spectrum is ob-

tained. The Inverse Fourier Transform (IFFT) produces a time 

domain signal from the modified spectrum. 

 

  At first, the algorithm determines the number of tones 

present in every time-frequency frame. This stage is necessary be-

cause some time-frequency frames have two simultaneous tones, 

one corresponding to the actual tone in the melody line and the 

other one corresponding to a reverberant tail from the previous 

tone. A TONE/TAIL flag is used to classify each tone either as a 

current saxophone tone or as a reverberant tail. The next stage in 

the algorithm consists of building a saxophone spectrum that best 

represents the saxophone in every tone. Three things needed to be 

considered before a representation of the saxophone spectrum 

could be obtained: (1) total number of harmonics considered, (2) 

location of each harmonic component and (3) amplitude of every 

partial. As far as the number of harmonics included, results sug-

gest a minimum of seven harmonics are necessary to accurately 

represent the saxophone’s spectrum. Building a spectrum with 

fewer harmonics results in audible artifacts and some tonal com-

ponents left after the source separation process.  

The location of the harmonic components was obtained as-

suming perfect harmonicity as a starting point and refining their 

location by searching the spectrum for local maxima. A well 

known characteristic of conical bore instruments is the flattening 

of upper resonances in relation to the fundamental component due 

to open end corrections in the tone hole lattice. For this reason 

refinement of the locations of the harmonic components was per-

formed searching in lower frequency bins than the calculated for 

perfect harmonicity.  

 The amplitude of the harmonics was determined based on the 

assumption that 80% of the peak’s spectral amplitude is produced 

by the soloist and the remaining 20% belongs to the accompani-

ment. This percentage showed to provide good separation results 

for most signals. To represent and capture the variations of the 

saxophone’s spectral envelope, the amplitude of the first three 

partials was kept to be 80% of the spectral peak’s amplitude and 

the remaining components were weighted with a  frequency de-

pendant decay as described in [11]. 

 The saxophone spectrum representing each tone is built and 

by means of a spectral subtraction implementation, the accompa-

niment spectrum is obtained. For tones classified as reverberant 

tails, only 70% of the tone’s amplitude is removed. 

 

3. RESULTS 

For the purpose of testing the algorithm, six different audio clips 

were taken from commercial recordings. Three of them were piano 

and saxophone recordings and the other three were orchestra and 
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saxophone. Each clip was processed manually and the notes being 

played by the saxophone were transcribed and used to compare the 

results delivered by the algorithm. The performance of the algo-

rithm was tested on a frame by frame basis and results are shown 

in percentages of correct frames detected. To assess the contribu-

tion of each module to the overall performance of the algorithm, 

the different processing stages were temporarily removed from the 

system and the same clips were used to test performance. The 

modules were removed one at a time and performance was tested 

for following stages: Perceptual Pruning, Error Correction, Note 

likelihood, Interval Likelihood and Reverberant Conditions. Re-

sults are shown in Fig. 5 and exhibit that each one of the modules 

contributes to improving the performance of the system. In all 

cases the performance of the system decreases when removing 

modules. It is particularly important the contribution of the Error 

Correction module where performance decreases 18.79% when 

removing the stage. Similarly removal of the Reverberant Condi-

tions module brings a 14.45% decrease of the system’s perfor-

mance. 

 

 
 

Figure 5: Performance of the MLD algorithm. 
 

 

For the MLD tests described the six clips used were in average 2.0 

seconds long. Some preliminary tests were performed using longer 

clips up to 8 seconds long. The performance of the algorithm con-

siderably decreased and results suggest that a segmentation algo-

rithm might be needed to obtain shorter clips from the original 

tracks. These results also suggest a strong dependence of the algo-

rithm on the assumption that the saxophone is continuously play-

ing. The Linking Tones module benefits from melodic continuity, 

but in longer clips where silent frames are frequent, performance 

considerably decreases.   

A common cause of error in the Melody Detection algorithm 

was octave confusion. Due to the usual harmonic relation between 

the accompaniment and the soloist line, it was a common mistake 

for the algorithm to detect the melody line an octave below the 

actual F0 played by the soloist. The algorithm was tested using the 

magnitude spectrum raised to the second power instead of using 

the spectral compression stage. The number of frames where the 

algorithm detects the melody in the wrong octave was compared 

and results show that the octave error percentage decreased 30% 

with spectral compression. 

It is important to mention that after thorough evaluation of 

the results obtained with each of the six clips tested, in most of the 

frames where the algorithm had detected the wrong note the cor-

rect note had been also selected as a tone candidate but was not 

included in the final melody path. This result shows that Frequen-

cy Analysis, Error Correction and both pruning stages provide 

solid and reliable information of the most relevant tones within the 

track. 

The MLD algorithm decreases in performance in audio clips 

with faster tempos and faster rhythmic structures; however, the 

analysis of the tone candidates in each frame shows once again a 

tendency to include the right note as a tone candidate but not to 

incorporate it in the final melody path. Further work needs to be 

done to guarantee a melody path that while avoiding spurious de-

tections and “jumpy” melody lines, achieves a better performance 

in faster tempos. 

In most of the obtained accompaniment tracks hints of the 

saxophone could still be perceived. The biggest difficulty in the 

Source Separation stage is to accurately determine how much of 

the spectral content belongs to the soloist and how much is part of 

the accompaniment. The number of simultaneous sources is not 

known and harmonic collisions of the different instruments are 

hard to predict but too frequent in nature as to be neglected. The 

percentage used represented a good tradeoff between the amount 

of soloist removed and accompaniment information left, but this 

tradeoff could be improved as well.  

Obtaining piano tracks showed to be a more complicated task 

than obtaining orchestra tracks. This was to be expected as with 

more instruments playing in the orchestra, imperfections caused 

by spectral subtraction are not so evident. The saxophone sound 

left in the accompaniment tracks is much more noticeable for pi-

ano tracks too. Results show that it might be convenient for future 

work to use different parameters in the source separation algo-

rithm when piano tracks are used. Slightly wider bands surround-

ing the spectral peaks proved to deliver better results in piano 

tracks. 

 

4. CONCLUSIONS 

This project has shown that the extraction of solid information 

from the melody line allows for a successful blind source separa-

tion task. The use of frequency analysis techniques and the inclu-

sion of specific information about the saxophone, musical lines 

and intervals is critical to the algorithm’s performance. Further-

more, the treatment of reverberant conditions and the implementa-

tion of an error correction stage considerably increase the system’s 

performance. In the Source Separation stage, accompaniment 

tracks that preserve the nature of the accompaniment sound with 

limited saxophone sound remaining and reduced amount of audi-

ble artifacts were obtained. Determining the amplitude of the sax-

ophone spectral content within the track is still a challenge as col-

lisions between partials are expected to happen but are not easily 

predicted. The approach taken delivers acceptable separation re-

sults and represents a good tradeoff between saxophone sound 

removed and accompaniment sound left. 
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