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ABSTRACT

In monaural blind audio source separation scenarios, alsigix-
ture is usually separated into more signals than activecesur
Therefore it is necessary to group the separated signdie tinal
source estimations. Traditionally grouping methods apestised
and thus need a learning step on appropriate training datan-
trast, we discuss unsupervised clustering of the sepachtathels
by Mel frequency cepstrum coefficients (MFCC). We show that
replacing the decorrelation step of the MFCC by the non-tiega
matrix factorization improves the separation quality gigantly.
The algorithms have been evaluated on a large test set tingsis
of melodies played with different instruments, vocals eshe and
noise.

1. INTRODUCTION

Monaural blind source separation is a task of great impoedor
many applications. From music transcription to remixin@ny
audio applications require separated sources for furtbeakpro-
cessing. Although in general monaural separation algostshow
lower performance than multichannel separation scenatfiey
are of great interest. They can be applied to all separatienss-
ios, either because only monaural sources are availabkeafiest
processing step for multi-channel source separation.
Separating different sources out of a monaural mixture sl
done in a time-frequency representation, e.g. by non-ivegata-
trix factorization (NMF). NMF approximates a magnitude Gpe
trogram by a sum of entry-wise, non-negative spectrogranus,
modeling the additive mixture of the signals. The basicatiee
NMF algorithm introduced byl]1] is further specialized to ehe
the requirements of audio source separation[by [2] and [8]. |
the algorithm separates the mixture into more channels dlean
tive sources, a clustering is needed. [Ih [2] and [3] the caBEnn
are mapped onto the active sources with knowledge of thesour
signals, thus avoiding the blind clustering. [n [4], thestlring
problem is addressed by manual clustering.

In [5] a separation based on a source-filter model accordifig:
ureld is introduced. Each note is modeled by a source signa-co
sponding to the harmonic structure of the note (pitch). Fhgeal
is filtered by an instrument-specific filter (resonance $tn&) to
form the output signal. Because the source-filter modelderin
porated in the separation algorithm, no clustering is née@Geod
performance is shown for a test set6f mixtures. Motivated by
this, we propose a clustering method based on source-fitiden
ing for a NMF separation method based bh [2]. We will show that
we reach results comparable [fd [5] but on a larger test séaicen
ing noise, pitched instruments, percussion, and speeadivigi.
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Figure 1: Source-Filter model in frequency domain.

The paper is structured as follows: In Secfidn 2, the gervena
cept of the proposed source separation is described. lio8E;t
the new clustering strategy is introduced followed by thpeeik
mental setup and a discussion of the results in SeElion 4cl@on
sive remarks are presented in Secfibn 5.

2. FUNDAMENTALS

We assume a linear instantaneous mixturébtime-discrete in-
put signalss,,(n), 1 < m < M. In this case, the mixing process
can be modeled by a simple addition

i{:

m=1

(n) )

sm(n) .

In the following we will use underlined variables for comple
valued spectrograms. Dropping the underline is equivatetak-
ing the absolute value of the spectrogram. The mixture isstra
formed into the spectrograi by the short-time Fourier transform
(STFT). Because the input signals (n) are real, the spectrogram
is symmetric, and we can drop the part representing the imegat
frequency range. Therefokeis a K-by-T' matrix. T' corresponds
to the number of analysis frames transformed by the STFTFand
is related to the length, of each analysis frame iy = 1., /2+1.
For further details see alsal [6].

2.1. Non-negative matrix factorization

In the following, we will use the notation used Ky [2]. NMF as

introduced byl[lL] approximates a non-negative, real-\ématrix

X of size K-by-T by a product of two matriceB andG
X ~ X =BG. 2

B is of size K-by-I and G is of sizeI-by-T" with I as an user-

defined parameter. The approximation can be done by a migimiz
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Figure 2: Signal flow of the proposed separation algorithm.

A. Thus the linear weighting is set to a higher valuer = 10*. In
our work, we use the multiplicative update rules proposedeB

tion of the squared Euclidean distance

- X3, is updated according to Equati .is updated by
X = X]I3 3) dated d Equatibh@.is updated b
T
or the divergence Vef = B1 (11)
Ve, = B x (12)
Zxk t'°9~ (4) BG
Ve (i) = 4a72TG(g§2, ; (13)
_ i, n
After the matrice® andG are initialized with the absolute values n=t .
of Gaussian noise, the multiplicative update rules Ver(it) = 9 Cllt—1) + Gt +1)
Zn 1 (32(Z TL)
B — B.x XGT and (5) ST (G(i,n) — G(i,n — 1))?
" BGG' +20 =022 s (14)
2/
BTX (anl G (z,n))
G G.X——— 6 _ _
. B'BG ' ©) G — G.XM . (15)
Vet + Ve

minimize Equatiofil3, withr. xy and 2 corresponding to element-

wise multiplication and division. Equati@ 4 is minimizeyl b For numerical stability we normalize thi& andG; after each it-

eration to ensure equal energy

X Gt
B B.x 26— and 7 i
. 0 PR [T (15)
N B
G <« G.x BTB](_;' (8) G; «— Gi/A; (17)
B; «— B;A;. (18)

with 1 corresponding to d-by-T" matrix containing only ones.
As mentioned in[[2], Equatiod 4 is more sensitive to smallueal
in the case of large dynamic range than Equdilon 3.

In case of over-separatiod (>~ M), a clustering inta\/ clusters
has to be performed.

2.2. Separation 2.3. Signal Synthesis

The NMF separates the magnitude spectrogkaof the mixture
into I channels with their corresponding spectrograis1 <

i < I. The motivation for using the NMF for blind source sep-
aration is the structure of pitched music in the spectrogrepa
resentation. A single note of a pitched instrument can bgetyo
approximated by a constant frequency basis veBtaand a time
varying gainG; corresponding to the envelope of the single note
[6]. Thei-th column ofB and thei-th row of G can be multiplied

to form the spectrograr@, of thei-th channel

We define clustering as a vec@rl < a(i) < M with I elements
and the mapping on the clusters by the Kronecker delta:

1 ifm=a),
Oma(i) = 19
mafi) {0 otherwise. (19)
After clustering, we retrieve the complex-valued specmwgssm
corresponding to source: by filtering the mixture spectrogram
with the clustered channel spectrograms:

© >, Cilk, 1)

with the C; being of rank one. 11]2], it is explained that the rows Thus, signal parts that can not be approximated by speetmgof
G, of matrixG should have lowpass characteristics, due to the con- rank one, are still present in the output of the separatigordghm.
tinuous nature of music. Itis shown that an additional castfion We assume no spectral overlapping of the sources so thatmwe ca
¢; considering temporal continuity improves the separaticadity use the phase of the mixture spectrogréras phase information
for NMF algorithms in the case of music separation: for the separated spectrogra@g Due to the modifications in the

) time-frequency representation it is not guaranteed ttesthgle
- 1)) frames of the spectrogra®, have smooth overlapping regions
' in the time domain. This can lead to audible distortionsrétfie
overlap-add procedure. To avoid these distortions, tharequot
of the Hann window is used as analysis and synthesis window fo
the STFT and the inverse STFT (ISTFI) [3].

C, = B,G:, S, (k,t) = X(k, 1) (20)

Gt

Zt 2
Z Zt 1G2(Z t)

The only difference td 2] is the dropped factBiin the cost func-
tion, because we use mixtures of different lengths, seeSdstion

(10)
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2.4. Performance M easurement

Objective quality measures reflect human perception usual
in a good way. But for a large test set, listening tests foheaix-
ture and each combination of parameters are very time-coingu
Therefore we use widely used quality measures for evaluatio
separation quality. For their evaluation the knowledgehefihput
signalss,, and their corresponding magnitude spectrogr&mss
necessary. The first measure we use is the $ER [2]

2 Sk, 1)
Ek,t (Sm(kjv t) - ém(kv t))

SER,, = 10log,, ~[dBl.  (21)

For a more detailed discussion of the effects of the dynarific d
ferences between the active sources we evaluatA8ieR as the
difference between the SER after separation and the SERebefo
separation:

2

(Sl ) - X0

ASER,, = 10log,, =

(22)
Ek,t (Sm(kjv t) - Sm(kjv t))

Additionally, we evaluate the source-to-distortion rg&®DR), the
source-to-interference ratio (SIR) and the source-tifeats ratio
(SAR) as proposed i]7]. If not otherwise mentioned, we use i
the following the mean value over all separated sourcesagav
tion criterion, e.qg.

M
1
SER= - mz::l SER.. . (23)

3. PROPOSED CLUSTERING ALGORITHMS

3.1. Reference Clustering

Reference clustering finds iteratively a clustering veetevhich
is a local optimum for the SER. Firg,is initialized by

, 2kt Sm(k; 1)Ci(k, 1)
a(i) = arg max - - .
\/Ek,t Sm(k7 t)\/Zk,t Cz (k7 t)

After that, the corresponding SER is maximizedHil-climbing
[8]. For each channel we defineM neighboring cluster results
by setting temporallya(i) = m and evaluating the correspond-
ing SER'm, i). This way we evaluaté M adjacent cluster results
SERm, 7). We define the highest adjacent SER as

(24)

SERnax = SERmmax7 imax) y (25)
with the corresponding channéhax and target clustemmax. If
SERnaxis higher than the current SER we set
a(imax) — Mmax , (26)

and the algorithm starts again with evaluating the rié neigh-
boring cluster results SER:, 7). Otherwise the algorithm stops.
Although it is not guaranteed that this algorithm finds thghleist
possible SER, we will use this simple clustering strategyhas
ground truth for clustering.

Amplitude

OHz 22kHz

Frequency

Figure 3: Weighting functions for Mel scale filtering.

3.2. Clusteringby MFCC

In [5], [B] and [10], a source-filter model for sound genesatis
discussed, see Figurk 1. According to this model, each érexyu
basis vectoB, of the mixture is a harmonic source/excitation sig-
nal E; multiplied with an instrument-specific resonance fikgy,
which is mainly responsible for formants. MFCC-based instr
ment classification use this instrument-specific weighfiimgtion.
Although the calculation of MFCC is well-known, we explaiet
details in the following because these details are impoftarun-
derstanding the improvements applied to the general MF&s&db
clustering algorithm.

The evaluation of thé-th Mel Frequency Cepstrum Coefficient
mfcc; (k) corresponding to the channik done in three steps, see
Figure[3. First the element-wise squared input veBfois filtered
by a Mel filterbank withNye filters to form the basis vectofs;

in Mel frequency domain. Each filter of the Mel filterbank igia t
angular shaped weighting function with center frequenbigiag
equidistant in Mel scale, see also Figlite 3. Accordind o 4
filtering can be interpreted as a multiplication with a maRi of
size Nuvei-by-K with each row containing one Mel filter

F; = RB? (27)
~ RI[E].xH}] (28)
RE?. xRH2, . (29)

After that, the logarithm is applied to the outputs of the Mkl
terbankF;(n), 1 < n < Nwme. Therefore, the order of magnitude
between the outputs of the filterbank is reduced and the plick#
tion of the source signal with a spectral filter becomes aiitiadd

log(F: + 1) =~ log(RE}) + log(RH?,) . (30)

The offset+1 for the logarithm in Equatiof_30 leads to strictly
positive logarithms. Therefore a continuous mapping ofvéle
ues is guaranteed. If there is no offset, the logarithm mates-fi
bank outputs with very low amplitudeB{(n) < 1) to large nega-
tive amplitudes. This causes unwanted influences in theviiailg
steps. To reduce the effect of this offset, we normaliz& glh) to

a maximum amplitude afimax before applying the logarithm:

Amax
max{F;(n)}
CFZ' .

F, Fi (31)

(32)

This normalization has two effects on the logarithm. Fiaston-
stant offset is added, second, the non-linearity introdumne the
offset is reduced:

1

log(cF; + 1) = log(c) + log(F:) + log(1 + =

). (33)
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The higher the factoAmax is set, the smaller is the non-linearity
log(1+1/(cF;)). Unfortunately, the higher factotmaxalso intro-
duces a constant signal I@g. For higherAnax this constant signal
overlays the wanted signal 168;) and therefore deteriorates the
results of the following steps.

Finally theDiscrete Cosine TransforDCT) is applied for decor-
relation of the both signals

Niel

mfcci (k) = _ log(cFi(n) + 1)005<W) . (34)

with 0 < k£ < Nwmel — 1. According to the source-filter model, the
H., are assumed to have lowpass characteristics anH thave
wideband characteristics. For this reason the DCT coefiigignat
correspond to high frequencies are dropped. The first caaffic
represents mainly the signal energy and is therefore atsoped
[@l.

The mfcg(k) are then used as features fok-eneans clustering
[B]. First, we normalize each coefficient by subtracting itiean
value and scaling the variance to unity:

mice, (k) — mfccz(k)—%mecci(k:) (35)

1

/X, mice (k)

After that, the vectoa is initialized randomly. Thé&-means clus-
tering then iteratively finds a clustering by evaluating the cluste
centercenter ,,, and the new clustering vectar

mfcc;(k) <« mfcc (k) (36)

center (k) = (37)

1
S o meca(k)émam

a(i) = argminy _(center, (k) - mfec; (k) 438)

The algorithm stops when the vectdoes not change from one
iteration to another.

3.3. Clusteringby NMF

As mentioned in Sectidnd.2, the DCT decorrelates the twady
log(RE?) and logRH2,) of Equatior33D. Unfortunately the DCT
decorrelates the spectral envelope for each channel withitia-
ing knowledge of the other channels. Therefore, we reaeréng
input of the decorrelation step in a mathixof size Nyei-by-1

Y (n,i) = log(cFi(n) + 1) . (39)

Each column ofY consists approximately of an addition corre-
sponding to EquationZB0. Therefore it is generally posdiblex-
tract M basis function$d,,, as constant parts in this matrix by the
NMF algorithm, see also Figuf@ 5. We initialize two matrit#s
of size Nvel-by-M andV of size M-by-I with absolute values of
Gaussian noise. After that, either the cost function in Eiqufd or
the cost function in Equatidd 4 are minimized by the updalesru
introduced in Section 2. 1. The algorithm stops aft# iterations.
Additionally the k-means clustering step is not requireéc&use
of Equatior IV anf18, the clustering can simply be defined by

a(i) = arg mr;abe(m, i) . (40)

MFCC NMF
clustering clustering
B B
Mel Mel
filterbank filterbank
’ Logarithm ‘ ’ Logarithm
DCT
NMF
k-Means
a a

Figure 4: Signal flow of the proposed blind clustering altjoris.

3.4. Hierarchical Clustering

The clustering algorithms as proposed in Sediioh 3. Zand&iRl
directly be applied for any numbe¥/ of target cluster. In the
case of more than two active sourced (> 2), alternatively a
hierarchical clustering strategy could be applied. In & fitep
we cluster alll channels into two cluster®, m € {1, 2} by the
clustering vecton, a(i) € {1, 2}. We define the estimated energy

E of the spectrograms of both clusters as

Eg = Z Zcf(kyt)f;ma(i) .

ikt

(41)

If we assume uncorrelated sources, the energies of thedtiffe
channels sum up to the energy of the mixture siddal [3]. Feurtre
assume that one cluster corresponds to one source, anchtire ot
cluster contains the remaining sources. Therefore we éxpat
the first separated sour@g,, corresponds to the cluster with low-
est energy because the other cluster corresponds to ma@esou
than one: _

my = argmin Ey, . (42)
In the next iteration all remaining channels with ;) = 0 are
clustered again into two clusters. The algorithm stopsefribm-
ber of clusters equals the number of active sources. Higicaic
clustering could be used in combination with both clusggigo-
rithms proposed in Sectidn$.2 andl3.3.

4. EXPERIMENTAL RESULTS

4.1. Test Set and Parameter Setting

The test set consists of all melodious phrases except therfian,
all singers except the quartet, the English and French f&male
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Figure 5: Decorrelation and clustering by NMF for a mixtufe o
castanet and double bass. The matris separated into the matrix

W with the 2 dominant resonance filters and their corresponding
activity matrixV. The dashed lines correspond to the castanet, the
solid lines to the double bass.

speech, and the pink noise from the Sound Quality Assessment

Material of the EBU [[11]. For adding more percussive instru-
ments, the castanet, the roll of the side drum with snarebflan
cymbal roll are included. The instrument classificationesoh of
[12] leads to7 percussive instrumentg, string instruments]2
wind instruments, an8 signals produced by humans. Addition-
ally we add the bass, guitar, drums and keyboard of the BABS-d
[L3]. As a last signal, Gaussian white noise is added to ttesed.
This is a total of40 input signals of roughly to 15 seconds length
with a sampling frequency of4.1 kHz and a resolution of6 bit.

In case of stereo signals, the right channel is dropped. Thieira

is shortened to the length of the shortest input signal.

After clustering and signal synthesis, the separationitytialeval-
uated with knowledge of the input signals, using the measures
SDR, SIR, SARI[IV], and SER]2]Nwme is set t020 for all ex-
periments. In the case of MFCC clusterifigoefficients remain
as input signals for the k-means clustering step. The otheffic
cients are dropped according to Secfiogd 3.2.

The input signals are normalized to a defined dynamic diffeze

0 dB, +3 dB, +6 dB, 10 dB, or 20 dB. After normalization
we add the input signals according to Equatidn 1. The result-
ing mixture is transformed into a time-frequency repreaston

by the STFT. The length of the analysis and synthesis windows
of the STFT is4096 samples with 50% overlap. The NMF al-
gorithm separates the magnitude spectrogram inte 25 chan-
nels with a maximum number @00 iterations. In the following,
the three proposed clustering algorithms are calligetc (cluster-
ing by MFCC), Pumepiv (Clustering by NMF with divergence cost
function), andPuwmreuc (clustering by NMF with Euclidean cost
function). For comparison, two other clustering methodsae-
sented as lower and upper bound for clustering performaRfge:
corresponds to random clustering aRg to reference clustering.

DAFX-
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Table 1: Separation results fol/ = 2 with dynamic differences
from 0 dB to +20 dB. The best clustering algorithm for each dy-
namic difference is marked bold. The results are shown in dB.

0dB +3dB +6dB +10dB +20dB
SER
Prand 2.37 2.25 1.79 0.71 —3.62
Purce 6.02 5.96 5.82 5.06 1.66
PavEpiv 6.89 7.02 7.08 6.75 4.39
PamEEuc 777 7.65 7.17 5.95 0.52
Pret 12.01 12.09 12.27 12.73 14.54
SDR
Prand —-0.82 —-1.21 —-2.04 —3.32 —7.73
Puvrce 3.81 3.21 2.51 1.31 —2.46
PavEpiv 4.56 3.80 3.41 2.52 —-041
PNMF Euc 6.09 5.60 4,79 311 —3.27
Pret 10.98 11.02 11.10 11.31 11.54
SIR
Prand 4.51 4.12 3.54 3.16 2.57
Puvrcc 13.63 12.54 11.87 10.85 9.35
PavEpiv 15.42 13.87 13.40 12.49 11.28
PumF Euc 16.27 15.52 14.70 13.35 9.31
Pret 21.01 21.11 21.28 21.59 22.40
SAR
Prand 3.12 3.11 3.07 3.00 2.84
Puvrcc 6.54 6.37 6.21 5.73 4.53
Pumr piv 7.54 7.50 7.43 7.11 6.19
PNMF Euc 8.07 7.90 7.49 6.65 4.28
Pret 11.82 11.87 12.03 12.48 14.25

4.2. Blind Source Separation with 2 Sources

In a first experiment we set the number of active soufdes- 2.
With 40 input signals, this corresponds to a total78f) mixing
scenarios. All of them are mixed at tBedifferent dynamic dif-
ferences as described in Sectign 4.1. The maximum amplifide
the Mel filter outputs is normalized tdmax = 10*. The perfor-
mance of the proposed clustering algorithms is shown in€@bl
We can make the following observations: The SER, SDR, SIR and
SAR behave very similar so that we concentrate on the SERein th
following. The NMF clustering with divergence outperforiine
clustering with MFCC over the complete dynamic range for-mix
tures. Further, for nearly equal loud mixturesé6... + 6 dB) the
clustering Puvr.euc leads to better results thdfwepiv. The most
probable reason is that the divergence is easier distoytetniall
values than the squared Euclidean distance, see also 188clio

If the expected dynamic difference between two source Edaa
known, the appropriate clustering algorithm can be chosemaix-
imize the expected separation quality.

The dynamic differences have different effects on the gquiahd
the louder source, as shown in Table 2. The quieter source, he
defined ass1, is separated with lower SER. This could be sim-
ply explained by the high energy of the interfering sousgeThe
ASER behaves in the opposite way for the same reason. For the
quieter signal even few separated interfering parts;oeads to
large improvements for thASER because of the low energy of
S1.

In Tablel3 the influence of the normalizatighmax of Equatior 331

is shown for the clusterindnvrewe. Similar results are obtained
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Table 2:SER andASER forM = 2 with dynamic differences from
0 dB to+20 dB. Results are shown in dB at{mepiv IS used as
clustering strategys; is the quieter sources, the louder source.

0dB +3dB +6dB +10dB +20dB

SER
S1 6.89 5.48 4.03 1.70 —5.65
So 6.89 8.56 10.13 11.79 14.42
mean | 6.89 7.02 7.08 6.75 4.39

ASDR

S1 6.55 8.20 9.81 11.54 14.28
So 6.54 5.14 3.62 1.15 —6.63
mean | 6.54 6.67 6.71 6.34 3.83

for the clustering algorithm$vrcc and Pumrpiv. AS mentioned

in Sectiol 3P, the normalization has critical influence loa hit
probability of the clustering and therefore on the final sapan
quality. For large dynamic differences, the instrumengifil{,,, of
the quieter instrument has much lower amplitudes than tirdelio
instrument. In this case, the non-linearity of the offseg(Equa-
tion[33) has to be small for error free detection of both instent
filters. This leads to the requirement of large valuesA@kx. In
the case of nearly equal loudness for both instruments nthe i
ence of the constant signal in Equatiod 33 should be as low as
possible, and therefore low values fdmax are preferable. For
Amae = 102 and0 dB dynamic difference, the separation qual-
ity decreases compared to the case with.., = 10°. This shows
that a certain range of values is necessary for successfiecing.
The authors of [5] reported for their best algorithm a SDRooighly

8 dB, a SIR of roughly22.5 dB, and a SAR of roughlg.1 dB. We
can see in Tab@ 1 that the clusterifigur euc for a dynamic differ-
ence of0 dB results in a worse SIR and an identical SAR. There-
fore the SDR is slightly worse, because it evaluates theadiver
distortion by interferences and artifacts [7]. This coutdartly
confirmed by our significant larger test set. Unfortunately5]
dynamic differences for the input signals are all set to zate
though our results show, that dynamic differences havefgignt
influence on source-filter based source separation. In dppos
[B], our proposed clustering algorithm can be adjusted texan
pected dynamic difference by the parametef.x. Furthermore,
no additional information like lowest pitch of each instremt is
necessary for our clustering algorithms. The additionahgex-

ity by a clustering as proposed in our separation schemerjs ve
low compared to the separation by the NMF. In informal comple
ity tests evaluated on a small number of mixtures, the dlingte
is calculated in less tham2% of the time needed for the NNIF
Therefore the additional complexity is insignificant comgehto
the STFT, the NMF and the signal synthesis step.

4.3. Blind Source Separation with 3 Sources

In a second experiment, we set the number of active souites
3, the dynamic difference t6 dB, and Amax = 10%. With 40 in-
put signals, this leads to a total @880 mixtures. Tablé€l shows
the results. First we discuss the mean value for all sounceésh

1All algorithms are implemented in Matlab. Evaluation is dam a P4
with 3200 MHz.
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Table 3: Influence of the normalization factofmax on the SER
for different dynamic differences. The best normalizat@mreach
dynamic difference is marked bold. Results are shown in dB an
Puvreuc is used as clustering strategy.

Amax | 0dB £3dB  +£6dB  +£10dB +£20dB
102 | 779  7.54 6.69 4.36 —2.44
10° | 788  7.60 6.95 5.41 —1.24
10* | 777 7.65 7.17 5.95 0.52
10° | 7.46  7.44 7.21 6.25 1.92

Table 4: Mean SER in dB fol/ = 3. The mean value over all
3 sources is shown. Additionally the mean values are evaluate
individually for the best source defined@s, to the worst source

Smg-

Smy;  Sms  Sms | Mean
Prand 221 119 0.44 1.28
Purce 6.10 2.66 1.63 | 3.46
PumF,piv 6.38 2.75 1.71 | 3.61
PNvFEuc 6.62 3.23 2.17 4.01
Purcc Hier 6.07 3.01 194 | 3.67
PumepivHier | 6.86  3.20  2.16 | 4.07
PumvrEucHier | 6.92  3.55  2.49 4.32
Pres 983 7.36 6.45 7.88

mixtures. It can be seen that the mean separation qualifytepf
degrades by more thahdB for M = 3, compared with the same
scenario withM = 2 (see also TablEl1). The same degradation
of 2.5 dB t0 3.5 dB can be observed for all blind clustering algo-
rithms, but the ranking of the different clustering alglnits for a
dynamic difference off dB remains the same.

In the following, we define the index of the estimated soufge
with highest SER as1, and the index corresponding g, with
lowest SER asns. The remaining index is defined as,. For

a more detailed analysis, the mean values are individuafijue
ated forsy,,, Sm,, ands,,, over all mixtures. In general, only
one of the three source estimations is separated with adaept
SER values. This motivates us to apply the hierarchicaltetus
ing described in Sectidn_3.4 to the test set. For the clumgdsy
MFCC Purcc Hier, the separation quality fof,,,, ands,,, is im-
proved. For both NMF-based clustering methods, the sdparat
quality for all three sources is increased. Again the ragkifithe
three proposed clustering methods remain the same.

5. CONCLUSIONS

In this paper, we introduced low-complexity clusteringalthms

for monaural blind source separation based on NMF. We have
shown the disadvantages of decorrelating each channed owit

for MFCC and circumvented this drawback by replacing the DCT
by a NMF. We tested the proposed clustering algorithm ongelar
test set, so that we can consider the results reliable. &untbre,

we discuss the influence of dynamic differences betweenrthe i
put signals. Finally, we show, that even in the case of thctigea
sources the algorithm is in general capable of separatitepat
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one source properly out of the mixture. We compare our algo- [13] E. Vincent, R. Gribonval, C. Fevotte, and al.,

rithm with a separation algorithm that implements the sediiter
model in the separation process, and show that our algotgads

to comparable results, although it is evaluated on a lasgrset.
Another important advantage of our algorithm is that it isgible

to adjust the clustering algorithm to an expected dynanfferdi
ence between the sources. The higher separation qualityeof t
reference clustering shows that there is room for improvesee-
garding the clustering strategies.

6. REFERENCES

[1] D.Lee and H. S. Seung, “Algorithms for non-negative rixatr
factorization,” inAdvances in neural information processing
systems2000, pp. 556-562.

[2] T. Virtanen, “Monaural Sound Source Separation by Non-
negative Matrix Factorization With Temporal Continuitydan
Sparseness Criteria]JEEE Transactions on Audio, Speech,
and Language Processingol. 15, no. 3, pp. 1066-1074,
2007.

[3] T.Virtanen, “Monaural sound source separation by petce
ally weighted non-negative matrix factorization,” TeclefR,
Tampere University of Technology, Institute of Signal Pro-
cessing, 2007.

[4] B. Wang and M. D. Plumbley, “Investigating single-chahn
audio source separation methods based on non-negative ma-
trix factorization,” inProceedings of the ICA Research Net-
work International WorkshaR2006, pp. 17-20.

[5] D. FitzGerald, M. Cranitch, and E. Coyle, “Extended
nonnegative tensor factorisation models for musical sound
source separation,Computational Intelligence and Neuro-
science 2008.

[6] P. Smaragdis and J. C. Brown, “Non-negative matrix facto
ization for polyphonic music transcription,” iiEEE Work-
shop on Applications of Signal Processing to Audio and
Acoustics 2003, pp. 177-180.

[7] E.Vincent, R. Gribonval, and C. Fevotte, “Performanceam
surement in blind audio source separatiolEEE Transac-
tions on Audio, Speech, and Language Processiog 14,
no. 4, pp. 1462-1469, 2006.

[8] S. Russell and P. NorvigArtificial Intelligence: A Modern
Approach Prentice Hall, 2 edition, 2003.

[9] A.B. Nielsen, S. Sigurdsson, L.K. Hansen, and J. Arenas-
Garcia, “On the relevance of spectral features for instntme
classification,” inProc. IEEE Int. Conference on Acoustic
Speech and Signal Processing ICASSRgr. 2007, vol. 2,
pp. 485-488.

[10] Z. Duan, Y. Zhang, C. Zhang, and Z. Shi, “Unsupervised
single-channel music source separation by average hacmoni
structure modeling,”IEEE Transactions on Audio, Speech,
and Language Processingol. 16, no. 4, pp. 766—778, May
2008.

[11] EBU, “Sound Quality Assessment Material,” 1988,
http://www.ebu.ch/en/technical/publications/tech30&eries/
tech3253/.

[12] N. H. Fletcher and T. D. RossingThe Physics of Musical
Instruments Springer, 2nd edition, May 2008.

DAFX-7

“Bass-
db: the blind audio source separation evaluation datgbase,
http://www.irisa.fr/metiss/BASS-dB/.



	1  Introduction
	2  Fundamentals
	2.1  Non-negative matrix factorization
	2.2  Separation
	2.3  Signal Synthesis
	2.4  Performance Measurement

	3  Proposed Clustering Algorithms
	3.1  Reference Clustering
	3.2  Clustering by MFCC
	3.3  Clustering by NMF
	3.4  Hierarchical Clustering

	4  Experimental Results
	4.1  Test Set and Parameter Setting
	4.2  Blind Source Separation with 2 Sources
	4.3  Blind Source Separation with 3 Sources

	5  Conclusions
	6  References

