
Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

DRUMKIT TRANSCRIPTION VIA CONVOLUTIVE NMF

Henry Lindsay-Smith, ∗

FXpansion Audio UK
London, UK

henry@fxpansion.com

Skot McDonald

FXpansion Audio UK
London, UK

skot@fxpansion.com

Mark Sandler

Centre for Digital Music
Queen Mary University of London

London, UK
mark.sandler@eecs.qmul.ac.uk

ABSTRACT

Audio to midi software exists for transcribing the output of a multi-
mic’ed drumkit. Such software requires that the drummer uses
multiple microphones to capture a single stream of audio for each
kit piece. This paper explores the first steps towards a system for
transcribing a drum score based upon the input of a single mono
microphone. Non-negative Matrix Factorisation is a widely re-
searched source separation technique. We describe a system for
transcribing drums using this technique presenting an improved
gains update method. A good level of accuracy is achieved on on
complex loops and there are indications the mis-transcriptions are
for perceptually less important parts of the score.

1. INTRODUCTION

Recording a full drum kit requires a large number of microphones
and an acoustically treated studio room. A multi-sampled drum
workstation (MDW) approximates the sound of a realistic drum kit
by using a library of samples for each drum kit piece. These are
recorded in a studio with a range of velocities for each kit piece and
with multiple microphones. The use of an MDW such as FXpan-
sion’s BFD2 1 allows composers to generate realistic drum parts
[1]. For a competent drummer, an electronic drum kit (e-drum kit)
can be used to transcribe a score into an MDW. In situations where
a drummer does not have an e-drum kit, or prefers the feel of their
acoustic kit, there is a use-case for a technique for transcribing
drums based upon the input of a single microphone, figure 1

Non-negative Matrix Factorisation (NMF) is a source separa-
tion technique which has received much research attention in re-
cent years. Simply described NMF is an unsupervised algorithm
which factorises an unknown signal into sources and a set of time
varying gains for the sources. Applying NMF to the context of a
drummer and recorded drum kit audio we can assign each kit piece
to be a source and the drum score (groove) is the set of time vary-
ing gains. We will seed the algorithm with sample audio from each
kit piece of the drum kit as the sources. The room, microphone and

∗ This work was funded by the EPSRC as part of the ImpactQM project
EP/H500162/1.

1http://www.fxpansion.com/bfd2

sources will not change and the consistency of this setup should al-
low us to extract an accurate transcription from the time varying
gains.

2. BACKGROUND

2.1. NMF

NMF has been covered in widely in the literature. We refer the
reader to [2] for an explanation of NMF and its extension, con-
volutive NMF (cNMF). To summarise briefly; we transform our
test audio into a M x N time frequency matrix V ∈ R≥0,M×N .
Our goal is then to approximate it using the product of two non-
negative matrices W ∈ R≥0,M×R and H ∈ R≥0,R×N . R is the
number of sources present, the number of drums in our unknown
audio. W is a matrix of spectral bases and H is a matrix of time
varying gains. We define a model Λ = W ·H. The success of
the reconstruction is measured using a cost function, such as the
KL divergence, between V and Λ. W and H are updated using
multiplicative updates.

2.2. Convolutive NMF

cNMF, introduced in [2], extends NMF to the convolutive case by
using time-frequency sources so W is extended to a tensor Wt

with each of the R frequency bases having T frames as well. Thus

Λ =

T−1∑
t=0

Wt ·
t→
H (1)

where
t→
(·) is a column shift operator, not defined here for brevity’s

sake. Wt and H are updated as follows. The 〈〉 operator is defined
as the mean for all t, preventing a biased estimate.

hijk ←

〈
hijt

∑M
i=1 wijt(vik/

←t

[Λ]ik)∑M
i=1 wijt

〉
, ∀t (2)

wijk ← wijt

∑T
k=1(vik/[Λ]ik)

t→
hjk∑T

k=1

t→
hjk

(3)
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Figure 1: Drum kit mono recording setup. A single overhead mi-
crophone captures the signal from all kit pieces

2.3. Sparsity Constraints

Various researchers have postulated that enforcing a sparsity [3]
on the gains improves the factorisation by ensuring more relevant
information is captured in Wt and H stays sparse and impulse
like. One of the side effects of this is the creation of over-complete
time-frequency bases, this will prove to be a problem for us. In [4]
O’Grady presents an extended algorithm, sparse convolutive NMF
(scNMF) by introducing an additional term, λ

∑
jk hjk, to the cost

function. This enforces sparsity by minimising the L1 norm of the
elements of the time varying gains. From this new versions of the
multiplicative update rules are derived, which we reproduce in 4
and 5. We set have the beta parameter from [4] to 1 and simplified
the update rules correspondingly.

hijk ←

〈
hijt

∑M
i=1 w̄ijt(vik/

←t

[Λ]ik)∑M
i=1 w̄ijt + λ

〉
,∀t (4)

wijt ← wijt

∑T
k=1

t→
hjk[(vik/Λik) + w̄ijt(w̄ijt)]∑T

k=1

t→
hjk[w̄ijt(w̄ijt(vik/Λik))]

(5)

W̄j =
Wj

‖Wj‖ is the normalised version of Wj, calculated af-

ter each update.

2.4. Percussion transcription using NMF

Previous work by Paulus [5] used NMF to factorise simple drum
loops with kick, snare and closed hi-hat and a wide onset tolerance
of 30ms either side of the onset. Good results of 96% hit accuracy
were reported. Other work in the field has tended to focus percus-
sion transcription systems upon extracting drums from polyphonic
music [6], [7], [8].

2.5. Drummer transcription

As described in section 1, and illustrated in figure 1, a mono mic
transcription system would be of use to home studio musicians
with rudimentary equipment. The drummer can easily sample au-
dio for each kit piece and articulation they wish to use as sources

and also perform the drum tracks they wish to transcribe. Articula-
tions are defined as different sounds by the same kit piece, for ex-
ample open and closed hi-hat or snare rim shot and center hit. The
room, microphone and microhone positioning are constant and by
working with a constrained setup in this way we hope to be able to
achieve the high levels of accuracy we desire.

(a) MDW experimental framework part 1

(b) MDW experimental framework part 2

Figure 2: MDW experimental framework

3. TRANSCRIPTION OF A MDW GENERATED DRUM
LOOP

MDWs allow us to generate realistic drum parts and simulate a
drummer with a single microphone. Because the groove is pro-
grammed within the software we have access to the ground truth
and the individual audio samples used to generate it. This removes
the need for annotation of the drum loops. This paper extends the
work done by Paulus [5]. For a percussion transcription system
to be useful, we are adding three further requirements; the onset
accuracy must be 10x more accurate (3ms), the system should be
able to deal with simple articulations and we should attempt to
recover the velocities of the hits.

In addition it is desired that the system be able to run in near
real-time. cNMF and scNMF and our own optimisation, cdNMF,
were evaluated. Convolutive NMF variants are good candidate al-
gorithms because percussion events should be well modeled by
fixed length time-frequency bases. This contrasts with pitched in-
sturments which have varying note lengths.
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4. EXPERIMENTAL FRAMEWORK

4.1. The test drum loop

BFD2 was used to render a drum loop from a groove using just
the left overhead mic channel. The rendered audio, which was at
a sample rate of 44.1kHz, was transformed into a time-frequency
representation V as described in 2.2 and 2.3. The short time fourier
transform (STFT) and mel frequency representations were used, in
both cases based upon a window length of 2048 and with a 75%
overlap. To compress the STFT to a mel frequency representation a
range of equally spaced, overlapping, triangular critical band filters
were created on the mel scale defined by 6.

Zmel(fkHz) = log(1 + f/0.7) ∗ 1127.01048 (6)

A modified spectral difference onset detector, based upon [9],
was used to extract all the onset times from the rendered loop. The
modification was made in order to achieve an improved accuracy
in the onset positioning. The explanation of the modification is
beyond the scope of this paper. The amplitude envelope was also
extracted from the loop using a simple envelope detector [10]. The
BFD2 preset also provided the kit piece (source) audio files and the
groove file from which we extracted the ground truth onset times
and classifications. The grooves contained hits at multiple veloci-
ties and consequently BFD2 uses multiple source files of different
amplitudes when rendering the drum loop.

4.2. The decomposition sources

For each source we chose four files extracted from the BFD2 sam-
ple library from .7 to 1.0 of the maximum amplitude. The files
were selected from the same kit that was used to render the drum
loop. The source audio files were subject to the same time-frequency
transformation as the rendered loop and the mean of the trans-
formations of the different amplitudes was used. We found this
yielded better results than using a single file per source. The com-
bination of the mean of the transformations for all sources was
Wt. This part of the framework is illustrated in figure 2a.

4.3. The optimisation

In order to seed the optimisation with an initial low cost H was
initialized with 1 at every expected onset point and 0.1 at all other
points. H was normalised for each of the R sources after the mul-
tiplicative updates were finished. Rather than try to detect the on-
set positions from these gains, we simply attempted to detect if
there was a valid onset by the use of an empirically determined
threshold. The threshold was kit piece and time-frequency trans-
form specific. The onset position was then mapped to the closest
onset previously detected. With our onset times and classes estab-
lished we calculated a precision, recall and F-measure score for
the transcription. A reconstructed groove file was generated from
the gains with the dynamics provided by taking the mean of the
gain strength at each onset and the previously extracted amplitude
envelope. This groove file enabled us to play the transcription in
BFD2. This part of the framework is illustrated in figure 2b.

Our experiments uncovered an improvement which lead to a
very impulse like gain structure by modifying equation 2 to 7.

hijk ←

〈
hijt

∑M
i=1 wijt(vik/

←t

[Λ]ik)∑M
i=1

∑T
i=1 wijt

〉
,∀ (7)

(a) Mel spectrogram of kick drum (b) Same kick drum updated by
cNMF, showing existence of more
than one hit

Figure 3: Kick drum before and after updating demonstrating the
change to an overcomplete basis

The simple conversion of the denominator into a constant value
across the t’s weights the gain update towards the frames of Wt

which have the largest magnitude. We call this update constant
denominator NMF (cdNMF). An example of the improvement is
shown in figure 4.

5. RESULTS

Three sets of data were used; dataset A - simple loops with only
kick, snare and hi-hat, dataset B - more complex loops with kick,
snare, hi-hat, tom-toms and a cymbal, dataset C - complex loops
with kick, snare, hi-hat, tom-toms and 2 articulations on the snare
and hi-hat. Each dataset consisted of 5 loops. The datasets were
evaluated against cNMF, scNMF and cdNMF. An STFT and mel
frequency spectrums with 80 and 160 critical bands were used. For
both cNMF, scNMF and cdNMF the algorithms were run with the
updates to Wt turned on and off. It was found that the updates to
Wt did not help the transcription. The ground truth solution con-
tains overlapping basis functions, as the tail of one drum hit sus-
tains into the onset of the next. Unfortunately this is not optimal
solution when minimising our cost function. As highlighted in fig-
ures 3a & 3b, the updates to Wt move towards an over-complete
basis with the optimisation trying to capture more than one hit per
source. We used a wide onset threshold of 30ms for the cdNMF
method. Experiments using a more musically useful window of
3ms were run against all methods. The results are presented in
table 1 with all tests running for 30 iterations.

6. DISCUSSIONS

Our scenario would benefit from a larger dataset and a more de-
tailed exploration of all the available parameters, however we can
make some preliminary observations. Decreasing the onset detec-
tion window from 30ms to 3ms had a detrimental effect on our F
measure. Unfortunately, to produce a drum score which captures
the rhythm and feel of a drummer we need this level of accuracy.
Increasing the complexity of the datasets results in a significant
drop in accuracy, however in informal listening of the recovered
grooves the similarity seemed higher than the F-measure results
suggested. This can be attributed to the loss of accuracy taking
place where there are simultaneous hits or low velocity hits, which
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(a) gains with standard cNMF update

(b) gains with cdNMF update

Figure 4: Gains with cNMF and cdNMF demonstrating improved
sparsity for cdNMF

are perceptually less important. No formal evaluation of the dy-
namics were conducted but an informal evaluation by the authors
revealed that the rendered grooves with dynamics were preferable
to grooves without dynamics. In general the division of the source
data into datasets A, B and C was arbitrary with the number of
closely positioned onsets and number of simultaneous hits having
a large effect on the transcription accuracy. Our feelings are that
the algorithm works well enough on all but the most complicated
loops and that a drummer could learn the limits of the system.

The STFT was the most successful transform but at a consid-
erable time penalty. The mel 80 transform offered good transcrip-
tion accuracy and approximately 12 times faster performance, tak-
ing roughly 15 seconds to set up the scenario and a further 10 to
optimise on a desktop workstation in our python implementation.
An alternative time-frequency transform, tailored for drums, might
improve the transcription.
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