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ABSTRACT

Solitons are special solutions of certain nonlinear partial differen-
tial equations of mathematical physics. They exhibit properties
that are partly similar to the solutions of the linear wave equation
and partly similar to the behaviour of colliding particles.Their
characteristic features are well-known in the mathematical litera-
ture but few closed-form solutions are available. This contribution
derives algorithmic structures for the computation of solitons in a
dimensionless space-time domain which can be scaled to the au-
dio frequency range. The investigations are confined to firstand
second order solutions of the Korteweg-de Vries equation. Sound
examples show that the effects of wave propagation and soliton
interaction can be represented by audible events.

1. INTRODUCTION

Nonlinear methods for sound synthesis have been investigated since
the days of analog modular synthesizers. It is not easy to classify
the numerous approaches since nonlinear systems share no com-
mon property other than that the superposition principle oflinear
systems does not hold. Recent reviews of nonlinear sound synthe-
sis methods can be found in a number of overview articles [1–3]
and books [4, 5]. Nonlinear problems arise often from special ap-
plications. For example, in physical modelling the tensionnonlin-
earities of strings and membranes have received considerable at-
tention [6–8] while in virtual analog modelling, the nonlinearities
of vacuum tube amplifiers are a topic of continuing interest [9–11].
Other approaches are encountered in formant synthesis [12], wind
instruments [13], and in effects modelling [14] to name justa few.

This contribution discusses a class of nonlinear systems which
– to the knowledge of the author – has so far not been subject of
investigation for sound processing and synthesis. Nevertheless, it
might be of interest here since special solutions of these nonlinear
systems share properties with the propagation of waves in linear
regimes, i.e. acoustical waves in air or the d’Alembert solution of
vibrating strings. In contrast to the familiar oscillations of sound
waves and of vibrating bodies, the wave-like behaviour is confined
to solitary pulses. On the other hand, there are further effects with-
out counterpart in linear systems which rather resemble thecolli-
sion of nuclear particles like protons and neutrons. Both prop-
erties, the solitary wave character and the particle collisions, have
contributed to the succint name of these special solutions:solitons.

The existence of solitons is often exaplained as an interaction
of dispersion and nonlinearity. In linear systems, the waveform
of a propagating pulse is only preserved in the absence of disper-
sion. Otherwise, the waveform changes and short peaks typically

turn into broader ones with increasing width. On the other hand,
dispersion-free nonlinear propagation media can have the opposite
effect of sharpening a waveform. In acoustics, this effect leads to
the creation of shock waves, e.g. in the bore of brass instruments
at high pressure [5, 13]. In nonlinear and dispersive media both
effects may balance each other and support stable solitary wave
forms, called solitons.

Solitons are of technical interest in optical fibre communica-
tions [15], but they are not easily observed in acoustics. The for-
mation of acoustic solitons has been reported for sound propaga-
tion in crystals with typical durations in the picosecond range [16],
but there seem to be no physical systems which support solitons in
the audio frequency range. Therefore, solitons are used here as a
theoretical concept for devising synthesis algorithms rather than a
physical model of a real-world sound source.

The problem of interest is here how to derive algorithmic struc-
tures for the computation of soliton-shaped solutions thatare use-
ful as waveforms for audio signals. The question is whether the
properties of solitons (wave-like propagation and collision) have
any auditory qualities that can be perceived by humans.

The benefit of such an attempt is an alternative to the usual
graphical representation of solitons (see e.g. [17]). While images
and movies show single solitons or isolated collisions of multi-
ple solitons, a sound signal can convey the large scale character
of soliton solutions with multiple collisions in a periodicor quasi-
periodic fashion. In return, if soliton sounds turn out to beappeal-
ing then soliton sonification might be used as a sound synthesis
method in its own right.

As a first step in this direction, this contribution reports some
experiments with the Korteweg–de Vries equation which has been
selected because its properties are well covered in the literature on
applied mathematics. The results are presented in the following
structure: Section 2 presents a short overview on solitons starting
with a few historical remarks. The Korteweg–de Vries equation
and its first and second order solutions are discussed in Section 3.
The contributions of this paper start in Section 4 where generating
structures are derived and further issues of soliton sonification are
presented. An examples is shown in Section 5.

2. SOLITONS

2.1. Historical Remarks

The story of the first observation of a soliton is retold in many
publications on this topic. In short, John Scott Russel, a scottish
engineer observed a single non-periodic wave in a canal nearEd-
inburgh in 1834. First he studied this effect in a self-builtwater
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tank and ten years later he reported his observations to the British
Association for the Advance of Science. His experimental findings
were not well received until much later, when Boussinesq (1872)
and Korteweg and de Vries (1895) set up equations for waves in
shallow water.

Further advances were possible through the advent of digital
computers. In the 1950s, Fermi, Past and Ulam performed compu-
tations in solid-state physics and observed also a balance between
dispersive and nonlinear effects. In 1965, Kruskal and Zabusky un-
dertook similar computations for the Korteweg–de Vries equation
and introduced the termsoliton. Stimulated by these numerical
results, several research teams found mathematically rigorous so-
lution strategies for the KdV equation, the nonlinear Schrödinger
equation and a set of other nonlinear partial differential equations
which exhibit solitons. Moreover the existence of solitonshas been
linked to other properties of mathematical physics like thevalidity
of conservation laws and Hamiltonian systems.

A technical application evolved in fibre optics, where light
pulses propagate according to the nonlinear Schrödinger equation.
Here, solitons are used to carry bits of information along the fibre.

Remark: For details on this historical account see e.g. [18–22]
and the literature cited there. Some of these sources contain an
excerpt of Scott’s original report. Applications to fibre optics are
presented e.g. in [15].

2.2. Literature on Solitons

The mathematical properties of solitons are covered not only in the
original research papers but also in overview articles, in numerous
books, and a growing number of web resources. The experiments
with the KdV equation reported here are based on [18–26]. From
these sources, [22, 26] contain nicely structured reference lists for
further reading. Since Section 3 largely relies on these sources,
no more detailed references will be given. Where appropriate, re-
marks with pointers to specific references are appended.

3. THE KORTEWEG–DE VRIES EQUATION

This section introduces one of the important nonlinear partial dif-
ferential equations which exhibit soliton solutions, theKorteweg–
de Vries equationor short theKdV equation. The presentation
is confined to a few properties which are required for sonifica-
tion. For a more complete treatment see the literature citedin Sec-
tion 2.2.

3.1. Definition

The KdV equation describes a quantityu(x, t) which depends on a
one-dimensional space variablex and on timet. From the various
forms available in the literature, the following representation is
adopted here

ut + 6uux + uxxx = 0, −∞ < x < ∞, 0 < t < ∞ . (1)

The subscriptsx andt denote partial differentiation with respect
to these variables andu = u(x, t) is used as a short notation.

It is the productuux which makes this equation nonlinear.
Thus whenu1 andu2 are two different solutions to (1), then in
generalu = a1u1 + a2u2 is not a solution. However, whenu1

andu2 tend to zero forx → ±∞ such that cross terms vanish,

thenu = u1 + u2 is also a solution. This case is important for
solitons.

3.2. Scaling Symmetry

The non-applicability of the superposition principle doesnot mean
lack of mathematical structure. Instead certain symmetries exist,
e.g. the so-calledscaling symmetry. It states that whenu(x, t) is a
solution to (1) then alsoα2u(αx, α3t) is a solution, as can easily
shown by performing the space and time derivatives in (1).

The scaling symmetry allows to write the KdV equation for
all kinds of physical problems in the normalized form of (1) by
proper time, space, and amplitude scaling. Therefore this normal-
ized form is used now for simplicity; the de-normalization to the
audio rate is introduced when required.

3.3. First-Order Solitons

The KdV equation permits a multitude of different solutions. Only
those are considered here which have approximately finite support,
i.e. which vanish forx → ±∞. For the most simple of these
solutions an elementary derivation is given here which leads to
solitons of the first order. Various explicit and tacit assumptions
are made on the way without further justification. For example,
any integration constants are set to zero.

3.3.1. Derivation

The search for a solution to (1) is restricted to travelling wave so-
lutions, i.e. to solutions of the formu(x, t) = û(ξ(x, t)) with
ξ(x, t) = x − vt andu(x, t) > 0. The constantv represents the
speed of a wave travelling in the direction of positive spaceand
time. Performing the partial derivations in (1) leads toût = −vûξ,
ûx = ûξ, andûxxx = ûξξξ such that

ut + 6uux + uxxx = −vûξ + 6ûûξ + ûξξξ = 0 . (2)

For the solution of (2) the following relations are used

1

2

d

dξ
û2 = ûûξ,

1

3

d

dξ
û3 = û2ûξ,

1

2

d

dξ
(ûξ)

2 = ûξûξξ . (3)

Integration of (2) leads to−vû+3û2+ûξξ = 0 and multiplication
by ûξ and a further integration results in− v

2
û2 + û3 + 1

2
û2
ξ = 0 .

Since the functionu(x, t) = û(ξ(x, t)) > 0 is assumed to be
positive, it can be replaced by the squared functionǔ2 = û such
that

− v

2
ǔ4 + ǔ6 + 2ǔǔ2

ξ = −v

2
ǔ2

[

ǔ2 − 2

v
ǔ4 − 4

v
ǔ2
ξ

]

= 0. (4)

Using the standard relations for hyperbolic functions

sech2x+ tanh2 x = 1 and
d

dx
sech x = −sechx tanh x

it can be shown that the expression in brackets in (4) vanishes for

ǔ(ξ) =

√

v

2
sech

(

√
v

2
ξ
)

. (5)

Thus the following hyperbolic function is solution to the KdV
equation

u(x, t) = û(x− vt) =
v

2
sech2

(1

2

√
v (x− vt)

)

(6)
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(b) Second order soliton.

Figure 1: Solitons of first and second order. Solid lines: analytic
solution, circles: values from the generating structures from Sec-
tion 4.2.
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(b) Solid line: first order soliton,
dashed lines: effective duration at
10−n for n = 1, 2, 3.

Figure 2: Nonlinear functionfNL and resulting first order soliton
in logarithmic scale.

or equivalently withv = 4κ2

u(x, t) = 2κ2sech2(κx− 4κ3t). (7)

By derivation with respect tox andt it can be verified thatu(x, t)
actually solves (1) but the calculations are somewhat lengthy.

The general shape ofu(x, t) for a fixed value ofx as a function
of time is shown in Fig. 1a). Obviously this solution is not periodic
and goes to zero exponentially fast fort → ±∞. It is called
a soliton of first order and constitutes not only the most simple
solution to the KdV equation but also a component of higher order
solitons.

3.3.2. Effective Duration

The pulse-like shape of the first oder soliton suggests to assign
an effective duration in a similar fashion as a reverberation time
is assigned to a room impulse response. Since the shape of the
soliton does not change upon translation, the effective duration can
be derived for

u0(t) = u(0, t) = 2κ2sech2(4κ3t), (8)

where the even symmetry of the sech-function has been used.
Now the effective durationtD(n) is defined by normalizing

u0(t) to its maximum value
∣

∣

∣

∣

u0(t)

u0(0)

∣

∣

∣

∣

≤ 10−n for t ≥ 1

2
tD(n). (9)

For larget, u0(t) can be simplified tou0(t) ≈ 8κ2 exp(−8κ3t)
such that the effective durationtD(n) can be determined from

u0(tD(n)/2)

u0(0)
= 4 exp(−4κ3tD(n)) = 10−n (10)

as

tD(n) =
ln 4 + n ln 10

4κ3
. (11)

Fig. 2b) shows the soliton from Fig. 1a) in logarithmic scalewith
the effective durationtD(n) for n = 1, 2, 3.

3.4. Second Order Solitons

The discussion of second-order solitons starts with the case of
higher order solitons and verifies the general case for first order
solitons using the results from Section 3.3.1. Then the second or-
der case is presented in some detail.

3.4.1. General Higher Order Solitons

The solution of the KdV equation which comprises higher order
solitons is given by [18,19]

u(x, t) = 2
∂2

∂x2
ln |M(x, t)|, (12)

where|M| is the determinant of a square matrix. Its size deter-
mines the order of the solitons. A closed form formulation for M
can be found in [25,26] as

M(x, t) = I+

∞
∫

x

exp(−Ax′)bcT exp(−Ax′) dx′ exp(8A3t),

(13)
whereA andc are given in terms of the parametersκi andci as

A = diag{κ1, κ2, . . .}, bT= [1, 1, . . .], cT= [c1, c2, . . .] .
(14)

This concise formulation is attractive as a general solution to a
complex problem, but the occurence of a matrix determinant and
a double differentiation in (12) do not lead to an obvious discrete-
time solution.

Remark: The parametersκi andci are the so-called scattering
data for the reflectionless case, which generates solitons as solu-
tions. The KdV equation has also other solutions which are not
considered here. The term reflectionless has to be understood in
the abstract sense of the inverse scattering theory, see e.g. [18,19].

3.4.2. Verification of the First-Order Case

To gain some confidence in the general solution (12 - 14) it is now
verified that it actually leads to the solution found in Section 3.3.1
when the matrixM is of the size1× 1. In this case

M = |M| = 1 + c1

∞
∫

x

e−2κ1x
′

dx′e8κ
3
1t = 1 + q1(x, t) (15)

whereq1(x, t) results from the integration in (15) as

q1(x, t) =
c1
2κ1

e−2κ1x+8κ3
1t. (16)
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The spatial derivatives of the determinant can be written as

d = |M| = 1 + q1, dx = 2κ1q1, dxx = 4κ2
1q1 (17)

for the evaluation of (12)

u(x, t) = 2
∂

∂x

(

dx
d

)

= 2
ddxx − d2x

d2
=

8κ2
1

(

q
1
2
1 + q

− 1
2

1

)2 . (18)

Now the solution (7) follows by insertingq1 from (16) and choos-
ing c1 = 2κ1.

3.4.3. Second Order Case

The second order case follows from (12) with a matrix of size2×2
with the elements

Mij = δij +
cj

κi + κj

e−(κi+κj)x+8κ3
j t i, j = 1, 2. (19)

The calculation of the determinant leads to

d = 1 + q1 + q2 +K q1q2 with K =
(κ1 − κ2

κ1 + κ2

)2

(20)

whereq1(x, t) andq2(x, t) are defined as in (16). The derivatives
are

dx = −2(κ1q1 + κ2q2) + (κ1 + κ2)Kq1q2), (21)

dxx = 4(κ2
1q1 + κ2

2q2) + (κ1 + κ2)
2Kq1q2). (22)

After a lengthy evaluation similar to (18) the result can be written
as

u(x, t) = 8
a10q2 + a01q1 + a11 + a21q

−1
1 + a12q

−1
2

(

K(q1q2)
1
2 + q

1
2

1 q
−

1
2

2 + q
−

1
2

1 q
1
2

2 + (q1q2)−
1
2

)2

(23)
with the coefficients

a10=κ2
1K, a01=κ2

2K, a11=2(κ1 + κ2)
2K, a21=κ2

2, a12=κ2
1.

(24)
As an example consider the valuesκ1 = 1, κ2 = 2 and

c1 = 6, c2 = 12. Inserting intoq1(x, t) andq2(x, t) and grouping
the exponential terms to hyperbolic functions as suggestedby (23)
leads to

u(x, t) = 12
cosh(4x− 64t) + 4 cosh(2x− 8t) + 3

(cosh(3x− 36t) + 3 cosh(x− 28t))2
. (25)

An example for this second order solution is shown in Fig. 2b).

Remark: The result (23) forci = 2κi has been derived in [19,
chapter 8.1] by Hirota’s method; the special case (25) is also found
in [19, chapter 4.5]. Note the sign change foru in [19] due to a
different definition of the KdV equation.

3.4.4. Interaction of Second Order Solitons

The graphical representation of (25) in Fig. 1b) suggests that the
second order solution is composed of two first order solitonsas
shown in Fig. 1a). A careful analysis shows that this is indeed
the case, however the second order solution is not a simple linear
superposition of two first order solutions.

An inspection of the componentsqi, i = 1, 2 shows that their
space time dependence has the form2κix−8κ3

i t = 2κi(x−vit),
i.e. they travel with the speedvi = 4κ2

i , wherev2 > v1 for
κ2 > κ1. Therefore three different cases can be distinguished,
where the terms slow and fast soliton refer to the speedvi:

• The fast soliton lags behind the slow one, but approaches
the slow one due its higher speed.

• The fast soliton has caught up with the slow one. Their
interaction is also called a collision.

• The fast soliton has emerged from the collision and travels
in front of the slow one.

The time regimes for these three cases can be identified by the
effective duration from Section 3.3.2. Collision occurs when the
difference between the positions of the maxima ofq1 andq2 is less
then the mean of their effective durations.

The effect that two components of a solution interact with each
other and emerge from this interaction in their original shape is not
at all common for nonlinear differential equations. It is a special
feature for some of the nonlinear equations which support solitons.
This feature can be shown for the second order solution of theKdV
equation by a limit process, which is only roughly sketched here.

To this end the solutionu(x, t) is represented in a spatial co-
ordinate system which moves with either the speedv1 or v2. Con-
sidering first onlyv1 thenu(x, t) can be written as

u(x, t) = û1(ξ1, t) with ξ1(x, t) = x− v1t. (26)

This change of variables is implemented in (23) by rewriting(16)

q1(x, t) =
c1
2κ1

e−2κ1(x−v1t) =
c1
2κ1

e−2κ1ξ1= q̂11(ξ1) (27)

q2(x, t) =
c2
2κ2

e−2κ2ξ1e2κ2(v2−v1)t = q̂21(ξ1, t) (28)

with q̂21(ξ1, t) → 0 for t → −∞,

q̂−1
21 (ξ1, t) → 0 for t → ∞ since v2 − v1 > 0.

Then the limit procesŝu±

1 (ξ1) = limt→±∞ û(ξ1, t) is carried out
such thatx varies witht such thatξ1(x, t) = const. After some
calculations follows the result

u±

1 (x, t) = û±

1 (ξ1) = 2κ2
1 sech

2(κ1(x− v1(t+ t±1 ))). (29)

Obviously, the solutionu+
1 (x, t) after the collision has the same

shape asu−

1 (x, t) before the collosion, namely the shape of the
first order soliton. The only remaining effect of the collision is a
difference in time shift as indicated byt±1 . This property is the
typical property of a soliton solution.

The values fort±1 are obtained by carrying out the limit pro-
cess and are not reported here. Only their difference is of interest,
since (29) allows to expressu+

1 (x, t) in terms ofu−

1 (x, t) as

u+
1 (x, t) = u−

1 (x, t−∆t1) with ∆t1 = t−1 − t+1 =
1

8κ3
1

ln
1

K
.

(30)
The same procedure is carried out foru(x, t) = û2(ξ2, t) with
ξ2 = x−v2t and yields a similar result with a sign change for∆t2

u+
2 (x, t) = u−

2 (x, t+∆t2) with ∆t2 =
1

8κ3
2

ln
1

K
. (31)

For κ2 > κ1 > 0, both∆t1 and∆t2 are positive. Therefore the
slow soliton with speedv1 emerges with a delay of∆t1 from the
collision, while the fast soliton with speedv2 emerges advanced
in time by ∆t2. During the collision, the solutionu cannot be
described byu±

1 andu±

2 , instead (23) has to be evaluated.
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Remark: For κ1 = 1, κ2 = 2 andc1 = 6, c2 = 12 follows
∆t1 = 1

4
ln 3 and∆t2 = 1

32
ln 3. This case is presented in [19,

chapter 4.5].

4. SONIFICATION

The section above has reviewed some elements from soliton the-
ory and has shown how to obtain functions which satisfy the KdV
equation. Now the emphasis shifts from functions to signals. This
section considers sonification and derives some generatingstruc-
tures which produces samples of solitons.

4.1. General Approach

The waveforms shown in Fig. 1 are pulse-like and as such not im-
mediately suitable for listening. Also the two-soliton interaction
described in Section 3.4.4 is a non-repetitive effect and does not
lend itself to the generation of audio signals. Therefore some kind
of periodic or quasi-periodic recurrence has to be introduced in
order to link the effects described above to audible events.

The sonification is achieved by letting the solitons travel along
a circle with a large circumference such that the round trip time of
the different components is large compared to the effectivedura-
tion of the single solitons. The realization of this conceptrequires
a detailed trigger mechanism to preserve the time shifts introduced
by the soliton collisions.

4.1.1. Introduction of Recurrent Behaviour

The general approach taken here is explained in Fig. 3. It shows
the concept of a circular arrangement which resembles a particle
collider. Solitons are injected atx = 0 and travel along thex-
axis according to their individual speed. Collisions may occur as
the faster soliton catches up with the slower one. Dependingon
the circumference of the circle and the time delay resp. advance
of the slower and faster soliton, collisions will occur repeatedly
at different points of the circle. These collisions can be predicted
from the delay and advance times calculated in Section 3.4.4. The
signal picked up atx = xp is then suitable for sonification.

Remark: The collider like structure in Fig. 3 has been inspired
by the approach to spectral analysis in [20, Section IV].

x = 0

x = xp
fast soliton

slow soliton

Figure 3: Concept of a circular arrangement for repeated soliton
collisions.

4.1.2. Computability

There are many good visualizations of solitons of low order avail-
able, e.g [17]. Usually they show the interaction of solitons for the

duration of the collision which is roughly given by the sum ofthe
duration of the single solitons. The requirements for sonification
are quite different because soliton-shaped signals have tobe gen-
erated for seconds or possibly hours without a natural limit. The
closed form equations (7) or (25) are of little use since the involved
hyperbolic functions grow beyond all limits as time increases. This
fact constitutes a potential source of trouble in numericalcompu-
tations.

A first measure towards computability is to replace the expo-
nential functionsqi(x, t) with their inverses

pi(x, t) = q−1
i (x, t) =

2κi

ci
e2κix−8κ3

i t, i = 1, 2 (32)

that tend to zero with time. Samples ofpi(x, t) can be easily gen-
erated by stable digital filters of first order as is shown now for first
order solitons.

4.2. Generating Structures

4.2.1. First Order Solitons

To derive a generating structure for the first order soliton,rewrite (18)
as

u(x, t) = 8κ2
1fNL(p1(x, t)) (33)

with the memoryless nonlinear mapping

fNL(p) =
(

p
1
2 + p−

1
2

)−2

=
p

(1 + p)2
. (34)

The shape offNL(p) is shown in Fig. 2a). Since the argumentp
is exponentially decreasing, a logarithmic representation has been
chosen.

To obtain a discrete-time sequence with samples of (18) fix the
space at some positionx = xp and sample the time axis att = kT
with a suitable sampling instantT = f−1

s

u[k] = u(xp, kT ) = 8κ2
1fNL(p1[k]) (35)

Since the nonlinear functionfNL(p) is memoryless, the sampling
process has to be applied only to the exponential termp1(xp, t) as

p1[k] = p1(xp, kT ) =
2κ1

c1
e2κ1xpe−8κ3

1kT = p1[0]z
k
1 , (36)

p1[0] = p10 =
2κ1

c1
e2κ1xp , z1 = e−8κ3

1T . (37)

The resulting algorithmic structure is shown in Fig. 4. The gener-
ation is triggered by a delta impulse, a most simple first order sys-
tem generates sampes ofp1 which drive the nonlinear mapping. A
multiplication with a constant gives the soliton-shaped signal.

The only approximation involved is that the generation does
not start at minus infinity but at some time zero. If the time be-
tween the trigger and the maximum of the soliton is choosen suffiently
large, i.e. larger than the duration of the soliton, then this error can
be made arbitrarily small. Fig. 1a) shows the analytic form accord-
ing to (7) and samples produced by the structure from Fig. 4.

For first order solitons of the form (33) there are no collisions
and their round trip time around the circle can be calculateddi-
rectly from the circumference of the circleX astX = X/v. The
signalũ picked up atx = xp is then

ũ(xp, t) =
∞
∑

µ=−∞

u(xp, t−µtX) = 2v
∞
∑

µ=−∞

fNL

(

p(xp, t−µtX)
)

.

(38)

DAFX-5



Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

δ[k] p10 +
p1[k]

fNL 8κ2
1 u[k]

z1 T

Figure 4: Generating structure for a soliton of first order.

Choosing the circle large enough such that the effective duration
of the soliton is less than the round trip timetD < tX ensures
that there is no overlap between both ends of the soliton pulse, i.e.
there are no cross terms infNL. In this case superposition may
be applied in good approximation and the observed signal canbe
written as

ũ(xp, t) ≈ 2vfNL

(

∞
∑

µ=−∞

p(xp, t− µtX)

)

. (39)

The discrete-time version can be easily generated with the struc-
ture from Fig. 4 when the impulse at the input is replaced by a
periodic impulse train with spacingkX = tX/T .

Note that only the signals at one pointx = xp are generated.
The circular movement is imitated by injecting new pulses atperi-
odic time instances.

4.2.2. Second Order Solitons

The generating structure for second order solitons can be derived
directly from (23) by replacingq−1

i by pi. Different forms are
possible by multiplying denominator and numerator by the same
factor. On possibilty is (40) which corresponds to the structure
shown in Fig. 5

u(x, t) = 8
a10p1 + a01p2 + a11p1p2 + a21p

2
1p2 + a12p1p

2
2

(K + p1 + p2 + p1p2)
2 .

(40)

p1[k]
p1

a10

×
p21p2

a21

×
p1p2

a11 +

×
p1p

2
2

a12 / 1
8
u[k]

p2[k]
p2

a01

K + + ()2

Figure 5: Generating structure for second order solitons.

The sequencesp1[k] andp2[k] are generated from first order
recursive digital filters as shown in Fig. 4. Then only three multi-
plications between these sequences are required for all necessary
combinations ofp1 andp2. The remaining operations are multipli-
cations with the constants in the numerator, computing the squared
numerator and the final divison. In comparison with Fig. 4, the dia-
gram in Fig. 5 represents the two-input counterpart to the nonlinear
functionfNL(p).

Similar to Fig. 4, also the structure from Fig. 5 computes exact
samples of the analytic waveform. Fig. 1b) shows an example of
the collision period as obtained from the closed form equation (40)
and the sequenceu[k] computed according to Fig. 5.

But also first order solitons are generated correctly when only
one input of Fig. 5 is nonzero. As an example setp2 = 0, xp = 0

and generatep1 from the left part of Fig. 4 withp10 = Kz−k0
1 as

p1[k] = Kzk−k0
1 . From Fig. 5 follows then

u[k] = 8
κ2
1K

2zk−k0
1

(K +K zk−k0
1 )2

= 2κ2
1sech

2(4κ3
1(k − k0)T ) . (41)

as in (7) (and similar forp2 with p1 = 0). The delay byk0 is con-
trolled via the multiplierp10. This way, the soliton can be triggered
well before it reaches its maximum atk = k0. The generating
structure from Fig. 5 can therefore be used for the non-collision
and the collision case alike. It generates the correct first and sec-
ond order solitons depending on the presence of the input signals
p1 andp2. Their correct trigger points are now discussed.

4.3. Trigger Timing

Assume for a moment that there are two waves without interaction
that can be treated according to linear superposition. Whenboth
start att = 0 with the respective speedsv2 > v1 > 0 then they
will meet again when the faster one is one full circle ahead ofthe
slower one. This happens at timetlin whenv2tlin = v1tlin + X
holds. The round trip time for the linear case is then

tlin =
X

v2 − v1
. (42)

Now return to the nonlinear case where two solitons collide at
t = 0 andx = 0. Then they emerge from the collisions with the
time shiftsu1(x, t−∆t1) andu2(x, t+∆t2) (see Section 3.4.4).
The timet0 to and the locationx0 of the next collision are then
determined fromv2(t0 +∆t2) = v1(t0 −∆t1) +X as

t0 = tlin − v1∆t1 + v2∆t2
v2 − v1

, (43)

x0 = v1(t0 −∆t1) = v2(t0 +∆t2) modulo X. (44)

In a similar way follows that further collisions occur at multiples
of x0 andt0.

With the time between collisions known, a strategy for the sec-
ond order case can be established. It uses the generating structure
for second order solitons from Fig. 5 and a trigger mechanismfor
generating new solitons at the appropriate times. This strategy can
be described as follows:

• In between two collisions, the slow soliton and the fast soli-
ton are treated as separate pulses. They are generated by
triggering only one input of Fig. 5 according to (41).

• When a collision occurs, but suffiently far away fromxp

then still the first order case can be applied as above. How-
ever when the next repetitions of the slow or the fast soliton
are triggered then the time shifts∆t1 and∆t2 have to be
considered.

• When a collision occurs in the vicinity ofxp then both in-
puts of Fig. 5 have to be triggered for the proper generation
of the interaction during collision.
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The procedure is shown in the top plot of Fig. 6. This plot repre-
sents a graphical timetable for motion of the solitons. The hori-
zontal axis denotes time and the vertical axis denotes the position
around the circle for a circumferenceX = 8m and with a pick
up position atxp = 0. Two collisions can be predicted from (43)
and (44) starting with the first one atx = 0 andt = 0 (denoted
by ©). Between the collisions, the solitons move like waves ac-
cording to (6) (thin black lines). The approximate start andend
as determined by the effective duration (11) is indicated bythick
grey lines. The respective trigger points atxp = 0 can be read
from the left grey line (denoted by�). Note that the trigger points
can be predicted from Eqns. (6,11,43,44) without solving the KdV
equation.

A single soliton event occurs when the next trigger time is
outside of the duration of the current soliton. In this case,a slow
or fast exponential is triggered for which the generating structure
produces a single slow or fast soliton (see center and bottomof
Fig. 6). The rising slope of the slow soliton is generated from
values ofp1[k] > K, the maximum is reached forp1[k] = K and
for p1[k] < K the slope falls again (similar for the fast soliton).
The threshold ofK is indicated by a horizontal line in the center
plot of Fig. 6.

In the case of a collision nearxp, the two trigger points are
so close that the second one falls into the duration of the first one
(see Fig. 6 fort ≈ 0.11s). In this case also the second soliton is
triggered together with the first one, i.e. earlier than in the single
soliton case. The shift of the trigger point to an earlier instant is
considered in a larger value of the multiplier, i.e. an additional
delay. When both exponentials are active at the same time, the
structure from Fig. 5 generates a second order soliton.

5. EXAMPLES

Two examples of soliton signals for the second order case gen-
erated according to the above strategy are shown in Fig. 7. The
sample ratefs has been chosen as 44.1 kHz and the duration of
the resulting time signal is 1s. In both cases the slow component
is the same with a value ofκ1 = 6. The signal on the top shows
a fast component withκ2 = 7.2 while κ2 = 14.4 for the signal
on the bottom. Both travel around the circle with regularly oc-
curing collisions. Choosing different relations between the speeds
v1 = 4κ2

1 andv2 = 4κ2
2 allows to change the characteristic of

the sound. If both speeds are close together (v2 < 1.1v1) then the
sound is quasi-periodic with occasional beating like effects. When
v2 ≈ 2v1, then the sound resembles the hum of a large engine,
with lots of small fluctations. Sound samples are available at the
website of the author [27].

6. CONCLUSIONS

This contribution has shown that first and second order solitons of
the KdV equation can be synthesized by simple algorithmic struc-
tures. They consist mainly of first order digital filters to generate
decaying exponentials and of a nonlinear function which produces
the output signal. These experiments have to be regarded as pre-
liminary and are more a proof of concept which leaves room for
improvements and poses new questions. For example the trigger
mechanism for the second order solitons could be solved moreel-
egantly. Another challenge is the extension to solitons of third
and higher order. The solution process presented here in a cursory
fashion becomes rather tedious with higher orders. Finallyit is of
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Figure 6: Workflow of soliton generation. Top: prediction ofsoli-
ton movement and collisions from (43) and (44) with trigger points
(�) and collisions (©); center: exponential inputsp1(t) andp2(t);
bottom: solitons generated according to Fig. 5.

interest to investigate also other nonlinear partial differential equa-
tions which support solitons. A promising candidate could be the
nonlinear Schrödinger equation since it possesses solitons which
travel in both directions.
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