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ABSTRACT

Many recent approaches to musical source separation rely on model-
based inference methods that take into account the signal’s har-
monic structure. To address the particular case of low-latency bass
separation, we propose a method that combines harmonic decom-
position using a Tikhonov regularization-based algorithm, with the
peak contrast analysis of the pitch likelihood function. Our ex-
periment compares the separation performance of this method to
a naive low-pass filter, a state-of-the-art NMF-based method and
a near-optimal binary mask. The proposed low-latency method
achieves results similar to the NMF-based high-latency approach
at a lower computational cost. Therefore the method is valid for
real-time implementations.

1. INTRODUCTION

In the rhythm section of popular western music, the bass line often
fulfills the role of anchoring the harmonic framework and laying
down the beat. The sound produced by the bass is predominantly
harmonic with a low fundamental frequency and usually has an im-
pulsive excitation. Bass line estimation is a relevant case in musi-
cal source separation, since it can improve the separation of drums
or the predominant melody from the mix.

In comparison to other instruments, bass line separation is
difficult due to the low frequency and the presence of the bass
drum that shares a similar spectrum distribution. [1] demonstrates
the use of Non-negative Tensor Factorization for the isolation of
the bass guitar among other instruments in multichannel synthetic
mixtures. [2] employ their general source separation framework
for the isolation of the bass line in professionally recorded music.

Nowadays, with increasing availability of music in online stream-

ing services, it is often necessary to process audio data as it is re-
ceived by the system. And with the increase of embedded devices
in our everyday lives, limiting memory requirements is often im-
portant. These factors motivate the development of low-latency
methods. We propose an extension to the method presented in
[3]] with modifications to the signal model in order to better repre-
sent bass line components. An evaluation is conducted where the
proposed method is compared to a baseline naive method and to
FASST, a state-of-the-art high latency and computationally expen-
sive method.
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Figure 1: Example of a spectrum of the bass in a mixture and the
bass in isolation (fop). Separated bass using the old signal model
presented in [4)] and with the new proposed signal model (bottom).

2. METHOD

In [3] we introduced a low-latency drum separation method based
on harmonic decomposition using single-frame Non-negative Ma-
trix Factorization (NMF). An alternative to NMF in source sepa-
ration is Tikhonov regularization, where the non-negativity con-
straint and some flexibility are sacrificed in favor of a having a
closed-form non-iterative solution. Applying Tikhonov regular-
ization to the factoring of the spectrogram requires fixing the basis
matrix to constant spectrum templates. In [4] we present a signal
model that contains spectrum patterns to represent both wideband
and narrowband pitched components.

The bass guitar is mainly a pitched instrument, and at first
sight the narrowband components in the signal model would seem
to be sufficient. However bass drums quite often present a nar-
rowband spectrum with a resonance of high magnitude and low
frequency similar to that of the first partial of the bass guitar. Due
to the low pitch of the bass guitar and the limited size analysis
window of the STFT, the partials in its spectrum are often very
close together (see Figure m) This leads to a harmonic comb with
less contrast. These components are similar to certain wideband
components such as drums or sustained background noise. This
causes problems especially in the high frequency range, where the
bass spectrum has very low energy. To solve this issue, the signal
model contains specific basis components for non-harmonic wide-
band spectra and the bass guitar components are constrained to
represent their specific timbre.
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2.1. Bass Specific Signal Model

We employ the same signal model used in [4]], in which pitched
sources are modeled as various components of band-filtered har-
monic oscillators. Non-pitched sources are incorporated into the
model as wideband noise components. The main modification to
the signal model is to account for the usual spectral shape char-
acteristics of the bass guitar and bass line in western music. The
lowest note in a bass guitar is E1 (41.20Hz) and usually the pitch
rarely goes higher than 120Hz. The harmonic envelope of the
bass guitar is mainly restricted to the frequency range from OHz
to 5000Hz.

To achieve this behaviour in our signal model, the pitch com-
ponents that would correspond to the bass are limited in frequency
by setting the magnitude of high frequency partials to zero. Using
the same notation as in [4]] we can redefine the source-filter model
of the pitched components of the basis matrix by adding a function
a[l,w] that serves as an excitation envelope:

iH—Np/2+4n

19[[771} = flowHNL2 ;”\;; (2) —1
Ny,
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with H = (1 — a)Ny. Where « is a coefficient to control the
frequency overlap between the components, N is the frame size,
S, the sample rate, F is the Discrete Fourier Transform (DFT),
Ny, is the number of harmonics of our components, W7 ; is the
spectrum of the component of I*" pitch filtered by i** filter. U; is
the spectrum of the ¢*” filter in our filterbank. U; is constructed
as a sequence of N; Hann windows, linearly distributed in the
Mel scale and with a 50% overlap. f; = ¥[l, N7 /2] is the center
fundamental frequency of the I*” pitch. 9¥[l, n] is the instantaneous
frequency function of the I*" pitch component.

In order to restrict the use of bass pitched components during
the decomposition, we force their excitation envelope to a func-
tion decreasing to zero after a given cutoff frequency fe.:. The
bass pitched components are defined as those having a fundamen-
tal frequency lower than fo,,.:

a[lﬂﬂ] = { ;‘5‘:})/‘0 lefigfel S fobass (2)

where r(w) is a function of ones that ramps down linearly to 0
from fﬁut to chut:

1 ifw < flu
rw) = 1— % if four <w < fowr  (3)
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In our experiments we fix the size of the ramp and only control the
start frequency fo,; = feut and &, = 1.3 feut-

2.2. Bass Source Estimation
Using Tikhonov regularization as in [4] with the modified signal
model, we can derive the pitch likelihood L from the gains vector

~ TR . . .
H . The next step is the selection of the components belonging
to the bass line.

Instead of using a pitch tracking algorithm as in [S]] that would
add complexity and latency to the method, we rely here on a simple
peak detection and picking algorithm. The proposed method is
simple and has a low computational cost. In order to select the
pitch of the bass line, at every frame we select the highest peak
in the pitch likelihood function under a certain frequency value
fopass- We assume that only one pitched source will be present in
this low frequency range, and that this source will be the targeted
bass guitar or bass line.

The peak picking is performed by selecting local maxima in
the pitch likelihood L:

w; € {w| argmax  L(j)and L(w—1) < L(w) > L(w + 1)}
J=w—Wy..w+W,,
(C))

where 2, is the size of the local neighborhood for the peak local
maxima.

However as we previously explained, the basis components of
the bass described in Section [2.1] are similar to those of wideband
components such as the bass drum or other background sources
present in the low frequency range. This leads to pitch likelihood
functions with a high energy distribution in the low pitch compo-
nents that do not necessarily correspond to pitched instruments.

Pitched sources in the spectrum can be modeled as gaussians
in the pitch likelihood function L. The width of the gaussian is
related to the chirp ratio of the fundamental frequency of the pitch.
If the source is wideband and not pitched (e.g. drums), it can be
regarded as a limit case of the partials widening and forming a
smooth spectrum with no harmonic structure. Empirical observa-
tions show that wideband non-pitched sources that are not decom-
posed into the wideband components of our signal model, appear
as wide noisy gaussians in the pitch likelihood function.

To distinguish between pitch likelihood peaks corresponding
to a pitched bass and those related to other wideband sources, for
each pitch likelihood peak p we define a measure of peak contrast
cp. The peak contrast feature is computed using the difference be-
tween the height of the peak and the likelihood of the local minima
around it:

¢p = max (L(wy) - Liw}), Lwp) — L)) (5)

where w, is the position of the p** peak, wé, is the first local min-
ima under w;, and wy, is the first local minima over wp.

The bass component in the pitch likelihood wy, is defined as
the position of the highest peak, with frequency under fo,,,, and
whose contrast is over a given threshold Ly, .

As in [3]] we create a new vector H, containing non-zero val-
ues only at those bins corresponding to the selected bass pitch.

Hofw) = Hw] if|wy —w| < Aw
b= 0 otherwise.

where Aw controls the amount of selected pitch components around
wy. Therefore, we can compute the bass signal estimation as |X | =
WH,. Ina complementary fashion, the reconstruction of the non-
harmonic part takes a gains vector H,, containing non-zero val-
ues for the unselected bass pitch plus the wideband filter banks.
The non-harmonic source estimation is computed as | X 5| =
W H .

With the estimated magnitude spectra | X | and | X 5| we per-
form a Wiener filtering to obtain the mask that isolates the bass
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component:
%12
| Xb[ + [ X |?
Finally the estimated bass spectrum is simply the result of multi-
plying the input complex spectrum with the previously presented
mask X, = my®@V. The output time-domain signal is recovered
by means of the inverse STFT and an overlap-add process.

3. EVALUATION

We employ the evaluation techniques used in community evalu-
ation campaigns such as SiSEC [6] to measure the performance
of the proposed method. We compute the following measures us-
ing the BSSEval toolbox: SDR (Signal to Distortion Ratios), SIR
(Source to Interference Ratios) and SAR (Sources to Artifacts Ra-
tios). Evaluation material consists of a dataset of 12 multi-track
recordings containing bass guitar or a bass line compiled from
publicly available resources (MASﬂ SiSECﬂ and two in-house
professional recordings. The audios were downmixed to mono to
avoid using pan information in the separation, since that is out of
the scope of this work. The sampling rate of the audio examples is
44.1 kHz, and the spectral analysis uses a frame size of 4096 and
a hop-size of 512 samples.

The proposed method, Tikhonov Regularization Bass Separa-
tion (TRBS), is compared to several existing techniques. A low
frequency filter (LOWP) is used as a baseline trivial method. The
publicly available implementation of FASS [2]] serves as a state-
of-the-art high-latency option. Finally an oracle separation [7] us-
ing a binary mask is tested as a glass ceiling for spectral bin classi-
fication techniques [5]. We compared each method to a reference
obtained with the soft mask oracle separation. All values presented
are error measures: the difference between the soft mask oracle
estimation measure and the measure of each algorithm. Thus, the
lower the value the closer it is to the oracle estimator meaning bet-
ter quality.

In a first experiment we perform a parameter exploration for
the LOWP and TRBS methods. For the low pass filter we studied
the effect of the cutoff frequency. For the TRBS method we stud-
ied the effect of varying parameter fy,, that controls the thresh-
old under which a pitch may be considered as belonging to the
bass. A second experiment consisted of a comparative study of
all the selected methods, where the best parameters for the LOWP
and TRBS methods were used.

4. RESULTS

In Figure[d we observe that the artifacts error (SAR) of the LOWP
method is very low. This is expected because the low pass filter
does not add new components such as musical noise. The fre-
quency response of the LOWP method is very smooth compared
to all other methods, including the oracle soft mask that is used as
reference, which explains the negative value of this error measure.
We also see that the interference error (SIR) of the LOWP method
is high. This method is used as a trivial baseline, and in fact it does
not target the bass guitar source, it simply separates low frequency
components without making any discrimination. Another observa-
tion to be made is that the cutoff frequency parameter controls the

Ihttp://www.mtg.upf.edu/static/mass
Zhttp://sisec.wiki.irisa.fr/
3http://bass-db.gforge.inria.fr/fasst/
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Figure 2: Average error measures for various values of the cutoff
frequency parameter (in Hz) of the LOWP method.

tradeoff between artifacts and interferences. A local minimum of
distortion error (SDR) is found at 250Hz, even though the average
error continues to descend to 75Hz. The results of the individual
excerpts, not presented here, show that the SDRs of some songs
increase significantly between 250Hz and 120Hz. For that reason
250Hz was chosen as the optimal parameter value.

Table[T]and Figure 3] show best performance for both artifacts
errors (SAR) and interference errors (SIR) when the fo,,,, pa-
rameter is around 100Hz. Therefore 100Hz was selected as the
best parameter value for fo,, ., for the comparative study. We see
a significant difference in the errors (= 3 dB) depending on the
parameter value. This leads us to think that a more evolved pitch
selection method could further reduce separation error.

SAR SDR SIR

60 12.89 13.14 14.03
70 1041 13.08 13.54
80 843 1287 1237
90 6.85 13.01 1241
100  6.13 1295 1240
110 643 1296 12.34
120 6.63 13.05 12.50
130 722 1337 13.18
140 773 1346 13.65
160 8.15 1383 14.13
180 854 1398 14.60

Table 1: Average error measures for various values of fo,,,, pa-
rameter (in Hz) of the TRBS method.

Several conclusions can be drawn from the results of the com-
parative study. Table[]and Figure[d]show that the proposed method
performs similarly to state-of-the-art techniques such as FASST.
While FASST achieves a lower artifact error (SAR) separation,
TRBS has less interference error (SIR). Another observation is that
the oracle binary mask scores a slightly negative SIR error mea-
sure. This means that on average the binary mask produces less
interference than the soft mask oracle. However, this improve-
ment is balanced by the artifacts error (SAR), where the oracle
binary mask reveals the highest error level of all methods.

In Figure [5| we can see that this behavior is consistent on all
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SDR error relative to Oracle
for different parameters of propsed method
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Figure 3: Average error measures for various values of fo,,, pa-
rameter (in Hz) of the TRBS method.

SAR SIR  SDR

LOWP-250 -32.14 1577 17.17
FASST 4.35 15.02 14.33
TRBS-100 6.13 1240 12.95

ORACLEBIN  9.26 -1.98  6.53

Table 2: Average error measures for the evaluated algorithms.

the individual excerpts. In listening to the separated sources, we
found that these quantitative results seem to correctly reflect the
perceived differences between the methods. A web pageﬂ with
audio examples illustrate the results obtained with our method.

5. CONCLUSION

We have shown that the Tikhonov regularization spectrum decom-
position method can be successfully used to perform low latency
bass guitar/base line separation of western music signals. Further-
more the use of pitch likelihood peak contrast and specific bass
timbre models allows us to produce separation results comparable
to state of the art high latency methods, such as FASST. Quan-
titative results show the accuracy of the separation in contrast to
baseline trivial methods such as low pass filters. The proposed
method was also compared to approximations of the best possible
performance of binary masks by using BSS oracle techniques.
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