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ABSTRACT

This paper deals with the automatic and robust analysis, and the
realistic and low-cost synthesis of percussive drilling like sounds.
The two contributions are: a non-supervised removal of quasi-
stationary background noise based on the Non-negative Matrix
Factorization, and a granular method for analysis/synthesis of this
drilling sounds. These two points are appropriate to the acoustical
properties of percussive drilling sounds, and can be extended to
other sounds with similar characteristics. The context of this work
is the training of operators of working machines using simulators.
Additionally, an implementation is explained.

1. INTRODUCTION

This work is a part of a project1 which aimed at improving the
sound synthesis of working machines, in term of realism and com-
puter resource consumption. The context is the safety at work, by
the improvement of the operator training using realistic machine
simulators. Among the numerous kinds of sounds, one focused
our attention, the percussive drilling sounds of rig machines, and
is the subject of this paper.

Two complementary algorithms are described here: a quasi-
stationary noise removal using a method based on the Non-negative
Matrix Factorization, and a granular analysis/synthesis method for
an efficient extraction of individual clicks (shock sounds). This
work is not especially dedicated to percussive drilling sounds, and
it can be extended to all other sounds which have the same acous-
tical properties. But, because it took part in a given project, all the
tests and results have been done with drilling sounds only.

The synthesis process used in this paper has similarities to
other physically insprired percussive sound synthesis methods based
on individual event generation [1, 2, 3, 4], but the way we create
the event sounds is novel.

The drilling of the machines under interest, roughly consists in
the repetitive percussions of a hammer against the rock to perfo-
rate. This hammer is at the extremity of a drill string composed by
several connected rods, allowing to dig deep into the ground. The
movement of this assembly of bars is fed by a hydraulic system.
See Fig. 1 for an illustration of a drilling machine under interest.

Because different drilling situations may occur, different kinds
of sounds can be heard. Here is a list of possible situations:
• Normal drilling: the typical drilling sound which should be

heard when drilling.

1REMES project, funded by the Finnish Work Environment Fund TSR:
project no. 113252.

• Underfeed: feeding is the method of pushing the drilling tool
against the rock. In an underfeed situation, the drill is not
pushed hard enough against the rock and the sound is altered
compared to a normal drilling situation.

• Overfeed: overfeeding is caused by pushing the drill too hard
against the rock, and this causes a slight variation in sound
compared to normal drilling.

• Closed Rattling: rattling is the sound of the rods being re-
moved from the rod string. The rods are shook heavily to
open the threads holding the rods together. In this situation the
threads are still closed causing a clearly distinguishable sound.

• Open Rattling: this situation occurs when the threads finally
open is a very short but extremely loud and high frequency
sound event, which is clearly different compared to rattling
with the threads still closed.

Moreover, the heard sound may also depend on the length of the
rod string, and the nature of the drilled rock.

Therefore, since the sounds vary with the situation, the opera-
tor may use this additional information to improve the perception
of what is happening. Consequently, in the context of training and
safety, the realism of the drilling sound synthesis of the rig simu-
lator is significant. For example, the overfeeding which may cause
a break of the rods, should be recognizable by the operator, never-
theless we know this situation is not easy to detect, cf. [5].

In this work, because of the numerous different possible sounds,
and the numerous recorded sounds (almost one thousand), we have
chosen to develop an automatic method, as robust as possible for
all possible situations.

This paper is organized as follows: in sec. 2 the background
noise removal is detailed. The different steps of the analysis/synthe-
sis method are explained in sec. 3. Then, section 4 gives a brief
overview of the software developed during the project. Finally,
this paper is concluded in sec 5.

Figure 1: Drilling machine of Sandvik. Picture retrieved from the
web site: http://construction.sandvik.com
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2. BACKGROUND NOISE REMOVAL

All the available recordings of drilling sounds were corrupted by
an inherent background noise coming from the diesel engine or the
hydraulic system. Because of the different natures of this back-
ground noise and the drilling sound of interest, it is not possible to
simultaneously analyze and synthesize them as a unique entity.

To analyze a noisy recorded sound and to resynthesize the
noiseless sound, a first approach may be possible when the sound
of interest can be relevantly modeled, and if the analysis is robust
to noise, cf. e.g. [6]. But in our case, it seems really difficult
to define a fine modeling of drilling sounds. Otherwise, an adap-
tive spectral subtraction may be possible to remove the background
noise, cf. e.g. [7]. Nevertheless, it requires the knowledge of the
noise spectrum which should be constant in time, stationary. Un-
fortunately, in our case it slowly changes because for instance of
the moving engine speed, RPM (Revolutions Per Minutes).

Here, we propose an approach based on the Non-negative Ma-
trix Factorization, which only assumes a quasi-stationary back-
ground noise, which may slowly change in time, and an approxi-
matively known Signal-to-Noise Ratio (SNR).

2.1. Non-negative Matrix Factorization

For audio applications, the Non-negative Matrix Factorization (NMF)
is usually used for polophonic music transcription, cf. e.g. [8, 9],
denoising and source separation, cf. e.g. [10, 11]. It allows to
approximate the matrix of the magnitude spectrogram, cf. e.g.
[12, 8]. Using a Short-Time Fourier Transform (STFT), cf. e.g.
[13, p.35], the (M ×N ) spectrogram matrix V = |X| represents
the N successive “instantaneous” magnitude spectra of the sound,
which are given by its columns with M frequencies. Using this
time-frequency representation, we know the variation in time of
the frequency components.

In this case, the Non-negative Matrix Factorization consists
in the approximation of the (M × N) matrix V , which has only
non-negative elements, into the product WH as follows:

V ≈WH ⇐⇒ Vm,n ≈
K∑
k=1

Wm,kHk,n, (1)

where W is a (M ×K) matrix and H is a (K ×N ) matrix. The
dimension K of the factorization is chosen much smaller than M
and N , i.e. K �M and N .

Consequently, the Non-negative Matrix Factorization models
the columns of V as a weighted sum of the columns of W . As
a first conclusion, W is considered as the frequency dictionary
giving the basis with size K on which the spectrogram V is de-
composed. And since the kth row of the matrix H gives the time-
varying weight of the kth word of W , column k, the matrix H is
considered as the time-activation matrix.

Basically, the algorithm of this factorization consists in the
minimization of a “distance” between the original spectrogram
V and its approximation Ṽ = WH . Two standard choices are
the well-known Euclidean distance, and the generalized Kullbach-
Leibler divergence more common in NMF, cf. e.g. [14].

The solving of this minimization problem is usually based on
the iterative Newton algorithm, cf. e.g. [15, ch.4.3]. Starting from
initial non-negative matrices W and H , usually randomly chosen,
the matrices W and H are successively and iteratively updated.
This algorithm proves to converge to the closest local minimum

of the initial values. Note that we have used for this work the
generalized Kullbach-Leibler divergence.

Note that additionally, the columns ofW are normalized, with-
out affecting the modeling. With λk =

∑
mW

2
m,k, the norms of

the columns of W , and Λ = diag([λ1, λ2, . . . λK ]), we apply the
assignments: W ←WΛ and H ← Λ−1H , at every iteration.

2.2. Quasi-stationary noise removal using NMF

As said previously, the value Hk,n of the activation matrix gives
the contribution of the kth column ofW at the time index n. Then,
if the kth row of H slowly varies in time, the contribution of the
kth word ofW also varies slowly. To remove the background noise
assuming that it is quasi-stationary, the basic idea of our approach
is to constrain some rows ofH to vary slowly. Note that, this time
smoothing is a common used constraint with NMF, cf. e.g. [10, 9,
16]. The proposed method of this paper is noticeably simpler, but
proves to be satisfying in our case.

Let’s define Kn the size of the noise basis, the modified NMF
algorithm for the background noise removal consists in adding a
“smoothing” operation of the Kn first rows of H after its updates.
As a result, this new iterative algorithm will implicitly learn the
noise basis, which is stored in the corresponding Kn first columns
of W . At the same time, since the properties of the drilling sound
are opposite, this process also learns the sound basis, which is
stored in the remaining K −Kn other columns of W .

The smoothing operation of the first rows ofH only consists in
a linear filtering with a very low cutoff frequency fc. For example,
if fc = 2 Hz, the obtained noise is authorized to vary only twice a
second. In the same time, if Kn = 2, in principle this method tries
to extract a slowly time-varying noise, by modeling it as a moving
mix of two different noises.

Nevertheless, as such, this approach does not succeed to re-
move the background noise, because at convergence, the gain of
the corresponding rows of H are too low, and the whole spec-
trogram V is actually modeled by the other K − Kn words. To
solve this problem we add a second constraint: choosing the value
σ of the Signal-to-Noise Ratio (SNR), which is the ratio between
the energy of the drilling sound and the energy of the background
noise, we artificially modify the gains such that this ratio is checked,
and without modifying the total energy.

Let’s defineE{X} =
∑
m,nX

2
m,n the energy operator for all

(M ×N) matrices, Vn and Vs the spectrogram of the noise and the
signal respectively, and the decomposition HT = [HT

n , H
T
s ] with

.T the matrix transpose. The additional constraints are then:

E{Vs}+ E{Vn} = E{V }, (2)
E{Vs} / E{Vn} = σ. (3)

With αn = E{V }/(E{Vn}(σ+1)) and αs = αnσE{Vn}/E{Vs},
these constraints are verified by assigning after every normaliza-
tion Hn ← αnHn and Hs ← αsHs.

Because it may be difficult to know the “real” SNR of the input
noisy sound, it seems to be interesting to release the SNR adjust-
ment. For that, first the iterative algorithm is computed with Q1

iterations where both constraints are applied, smoothing and gain
adjustment, then Q2 additional iterations are computed with only
the smoothing. Consequently, during the Q1 first iterations, the
noise dictionary is learned by forcing the SNR, then the algorithm
continues from this solution and converges to a close solution, with
a possible different SNR.
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V (noisy drilling sound )     V    s (denoised drilling sound ) Vn (estimated noise)

Figure 2: Illustration of the NMF based denoising. Spectrograms of the input noisy sound, denoised drilling sound, and reconstructed
noise.

2.3. Noiseless drilling sound reconstruction

With the obtained approximation Ṽ = WH , and with the original
phase matrix Φ = ∠X , the time signal is reconstructed with the
inverse Short-Term Fourier Transform of X̃ = Ṽ ⊗ ejΦ, with ⊗
the element-wize product. Then, the derivation of the estimated
noiseless drilling sound y, follows the same principle: the inverse
Short-Term Fourier Transform of Y = Vn ⊗ ejΦ = (WnHn) ⊗
ejΦ is computed. This corresponds to a non-supervised source
separation where the drilling sound of interest and the background
noise are considered as two distinct sources.

For the project we used the following parameters: first the
sampling rate Fs is forced by the available recordings, around 48
kHz. The Short-Term Fourier Transform is computed using a Hann
sliding window with size 1024 samples and a fine hop size of 128
samples. The bilateral spectra with size 2048 are reduced to only
consider the frequency range [0, Fs/2], then M = 1025 bins. The
NMF dimension is K = 82, and the noise dimension is Kn = 2,
using the cutoff frequency fc = 2 Hz. During the Q1 = 100 first
iterations, the SNR has been constrained to 1 (0dB), and the algo-
rithm continues with Q2 = 100 other iterations. See for example
the illustration of Fig. 2.

3. DRILLING SOUND ANALYSIS/SYNTHESIS

Having the denoised drilling sounds, the new challenging task is
to analyze them in order to synthesize them using a realistic and
very low-cost method, but also with the possibility to change the
mean frequency and other parameters.

Remark that the sound is physically produced by the shock
of the hammer against the rock, with possible resonances along
the rod. Because of the irregular repetition of the shocks, in term
of time position, amplitude, and spectrum, we choose a granular
approach, which seems well suited for this case, cf. e.g. [17]. In
the following, single strike sounds from a rock drill will henceforth
be referred to as clicks.

To summarize the analysis process, the shocks instant and the
amplitude envelope of the clicks in time are alternatively estimated
twice. The first stage uses a robust but inaccurate technique, and
the second one is based on a refined optimization procedure which
requires a relatively good initialization. Then, some clicks are indi-
vidually extracted from the input denoised sound, and the synthe-
sis only consists in repetitively playing these extracted clicks. To
get a natural synthesis, the irregularity is reproduced by randomly
choosing the clicks among the stored click collection, for the spec-
tral irregularity, and by randomly choosing the time positions and
the amplitudes. These two last random processes are done accord-
ing to simple rules which are learned with the input drilling sound,
mean and variance of the frequency and the amplitude.

In this section, we first give some tools for the time-envelope
estimation of the drilling sounds, and then all stages of the analysis
are successively described.

3.1. Time-envelope estimation

Integrated energy: To detect the click positions in time and their
amplitudes, we define here a smooth time function based on energy
integration. With xn the denoised drilling sound at sample n, wn
a finite weighting window with size 2N + 1, we define the smooth
energy function en as follow:

en =

N∑
j=−N

x2
n+jw

2
j (4)

This energy function has the property to efficiently smooth the
signal and to raise the clicks as obvious maxima. Then it will be
easier to detect the click occurrences by analyzing the peaks of en
than analyzing the peaks of xn. Remark that as seen below, the
window shape wn is an important feature in the click detection,
and it will be refined later.
Whitening: At first look, as such the energy function en has obvi-
ous peaks which directly correspond to the click occurrences, but
has also many local maxima which do not correspond to a click.

For this reason, the original denoised drilling sound is first
whitened by filtering it by the inverse filter obtained by a linear
prediction, cf. [18]. This operation provides a deconvoluted signal
yn which has a flat spectral envelope.

Instead of computing the energy function en with the signal
xn, we analyze its white version yn. This inverse filtering has the
property to remove the minimal phase part, and in some cases, it
concentrates the energy of a single click at its beginning. More-
over, when the high frequency components are low, it raises them,
then the contours are enhanced for a better precision.

Here the chosen LPC order is 1024, which is quite high and
provides an expensive filter, but this process is computed off-line
during the analysis only.
Modeling the time-envelope of clicks: We assume here that all
single clicks are the product of an unknown flat signal, possibly
stochastic and different for every click, and of an envelope, iden-
tical for all clicks. This envelope is now modeled using an At-
tack/Decay model, separated into two parts:
• The increasing attack with length Na and parameter αa. Its

formula ∀n ∈ [0, Na] is

an =

{
n/Na, if αa = 0,

1−exp (−αan)
1−exp (−αaNa)

, otherwise. (5)

Note that this envelope increases from 0 at n = 0 to 1 at n =
Na. An example of this behavior is shown in Fig. 3.
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• The decreasing decay part has an exponential behavior with
αd the positive damping factor. Its formula ∀n > Na is

an = exp (−(n−Na)αd). (6)
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Attack part with αa = 0

Figure 3: Illustration of an individual click envelope with different
values of αa. Here the attack time is Na = 200 samples.

In the following sections, the full procedure for the click de-
tection and the envelope estimation are described.

3.2. First estimation

First click detection: Based on the estimated energy function
computed with the white signal yn, and with a Hann weighting
window with length 1023 samples, a first click detection is done
by picking up the local maxima of en. Also, in order to know the
limits of the clicks, the estimated click position are associated to
the pair of local minima on the left and on the right. Then, for all
detected clicks, we have: the positions Pp of the peak, Pl and Pr
of the closest minimum on the left and on the right respectively.

First estimation of the envelope parameters: The previous win-
dow size is chosen to eliminate enough false alarms, but the ob-
tained energy function is too smooth. Then, a new energy function
e′n is computed with a smaller window with size 511 samples and
the envelope parameters αa,Na and αd are estimated by matching
the modeled envelope an to the square root of e′n: ν(n) =

√
e′n,

on all time ranges [Pl, Pr], for all detected clicks, cf. Fig. 4.

• Na: the attack time is computed as the median value of all
Pp − Pl, for all detected clicks.

• αd: the estimation of the decay factor is straightforward. Us-
ing all the values ν(Pp) and ν(Pr), for all clicks, all αa are
obtained solving

ν(Pr) = e−αd(Pr−Pp) ν(Pp)

⇔ αd =
−1

(Pr − Pp)
log

ν(Pr)

ν(Pp)
,

and the used value is the mean of all computed values.
• αa: the estimation of the attack factor is not easy because it

is not possible to isolate it from eq. (5); we use an iterative
procedure to solve the problem. With Pm = (Pp + Pl)/2
the middle point between Pp and Pl, the obtained attack must
join the minimum point in Pl and the maximum point in Pp
passing through the middle point in Pm, which means that the
following equation must be solved:

ν(Pm) = a(Pm − Pl) ν(Pp).

This solving iterative procedure is based on the simplex method,
cf. [19].
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x 10
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√
e′n)
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Pp (peak position)
Pm (middle of the attack)

Pr (right limit)
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Pm

Pp

Pr

an (estimated envelope

Figure 4: Illustration of the first envelope estimation. HereNa, αa
and αd are estimated such that the envelope of all individual clicks
passes close to the 4 drawn points.

3.3. Second click detection

In the previous section, the click detection and the envelope mod-
eling were based on the calculus of the energy functions en and
e′n. Unfortunately, this click detection is highly biased, because of
the used window wn which is a Hann window.

But, having a coherent estimation of the click envelope an we
can significantly reduce this bias by replacing the Hann window
by the click envelope itself. Then a new refined energy function
en is computed using wn = an, and again, the click positions in
time are detected using the local maxima of en.

Indeed, if the (denoised) white signal yn is the product of a
stationary signal un with variance σ2, and an envelope signal gn
which consists in a succession of click envelopes an, i.e. gn =∑
i βian−Pi with Pi the time position of the ith click and βi its

amplitude, the energy function is written

en =

N∑
j=−N

y2
n+ja

2
n =

N∑
j=−N

u2
n+j

(∑
i

βiajan+j−Pi

)2
.

Since an ≥ 0, the function
(∑

i βiajan+j−Pi

)2 has local max-
ima at n = Pi, the true click positions, and also en because here
un is assumed to be stationary.

Nevertheless, as such, this operation does not provide a good
solution because of some reasons, and we need to add some lim-
itations. First, as explained below, the first parameter estimation
of the previous section is also biased, and usually the decay fac-
tor is over-estimated, then wn is defined using the envelope an
with a decay factor αd half than the estimated value. Second, the
size of the window wn = an is chosen to be half of the mean
distance of the detected clicks in the previous section. This limi-
tation reduces the influence of neighbor clicks, and improves the
resolution. Third, the new energy function en has some “false” lo-
cal minima. Then the search of the “true” local maxima is done by
searching the absolute maxima of the new en over the time ranges:
[Pl − Na, Pp − Na], where Pl, Pr and Na are the minima posi-
tions and the attack time estimated previously. Here the ranges are
delayed by Na, because now the maxima does not give the center
of the click, but its beginning.

If no maximum is found in a selected range, then we assume
there is no corresponding click, and the range is deleted. Among
the obtained maxima, which are the estimated click positions Pc,
beginning, we also delete some of them such that the minimal dis-
tance between two neighboring detected clicks is smaller than half
of the median. The choice of the detections to delete depends on
the positions themselves and also on the amplitudes ePc .
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3.4. Second estimation of the envelope parameters

The estimation of section 3.2, based on a fitting of some points of
the energy function e′n, was also biased. Then, having the refined
click positions Pc, with less false detections, now we can also re-
fine the estimation of the envelope parameters Na, αa, and αd.

We here propose a more accurate approach, based on an itera-
tive algorithm for the solving of a non-linear optimization problem
and with few parameters, three in our case. The chosen algorithm
is based on the simplex method, cf. [19] and is implemented in
Matlab as the standard function fminseach().

To define the criterion to minimize, let’s remark that: with a
good estimation of the envelope an, dividing the signal yn by the
combined envelope gn =

∑
i βian−Pi , with Pi the new refined

position and βi =
√
e(Pi) its amplitude, the obtained signal zn

should have an envelope as flat as possible. Then the criterion C
is based on the flatness of the energy function fn computed with
zn. It is computed as follow:
• The envelope an of an individual click is computed using eqs. (5)

and (6), for all an ≥ 0.
• The “combined” envelope is given by: gn =

∑
i βian−Pi .

• The signal zn is computed as follows: zn = yn/gn.
• The energy function fn is computed with zn and a Hann win-

dow wn with size 1024: fn =
∑N
j=−N z

2
n+jw

2
j .

• The flatness is now tested by computing the square sum of the
difference of fn and its mean. If zn is flat, fn is close to a
constant function and the following criterion is small:

C =

N∑
n=0

(
fn −

1

N

N−1∑
i=0

fi

)2

With this definition, the simplex algorithm [19] provides the
parameter values (Na, αa, and αd) of the closest local minimal of
C, from the initial values.

3.5. Last click detection

Again, with the refined envelope parameters we can obtain a re-
fined detection of click positions, and their corresponding ampli-
tudes as in sec. 3.3. But now, because the estimation of αd is not
biased, its value is not divided by 2.

Remark that, since the new click position Pc are refined, we
could imagine to make an iterative process to refine again the en-
velope parameters, and so on. But in the most favorable cases, the
improvements are insignificant, and in the worst cases, the process
may be unstable, and may provide worse results. Then, the esti-
mation of the click position Pc, their corresponding amplitude βc,
and the envelope parameters Na, αa and αd stops here.

3.6. Click extraction

With all detected values Pc and βc for all clicks, and the envelope
parameters Na, αa and αd, this section explains how a collection
of some click is extracted from the denoised signal xn. The total
number of detected clicks is denoted Cd, and the number of ex-
tracted clicks is denoted Ce. Basically, Cd ≈ 70 for 2 seconds of
signals with a frequency of 35 clicks per second, and the chosen
number of extracted clicks is Ce = 10.

The chosen extracted clicks must check the following con-
straints: first, to reduce the overlap of the next neighbor clicks,
the distance between Pc and Pc+1 must be as high as possible.

Second, to reduce the contribution of neighbor clicks, on the left
and on the right, its amplitude βc must be higher than βc−1 and
βc+1. Then, all theCd clicks are sorted according to these criteria,
and the Ce preferred clicks are selected for extraction.

In a first step, the signal yn is flattened, as in sec. 3.4. The flat
signal zn is obtained by the division of yn by the new “combined”
envelope

g′n = max
i∈[1,Cd]

(
βian−Pi

)
.

Note that here we use the “max” operator instead of the sum op-
erator. The use of the max avoids the “cumulation” of the tails of
the envelopes, whereas the use of the sum favors this cumulation.
In section 3.4, this effect is used to limit the value of αd during the
optimization, and now it is preferable to limit this effect.

As a result, the signal zn is flat, which means that the effect of
the click envelope is canceled, as shown in the middle sub-figure
of Fig. 5. Now to extract an individual click with a damping tail
which overlaps with the following clicks, we just have to multiply
the flat signal zn by the envelope an of an individual click, cf. the
bottom sub-figure of Fig. 5.

In this way, neither the tail of the previous click is totally re-
moved, and nor the signal of the following one, in a strict sense.
But the contribution of neighbor clicks is efficiently removed for
the following reasons: first, thanks to the simultaneous masking,
the extracted click of interest efficiently masks the tail of the previ-
ous one because its envelope is smaller. Second, the amplitude of
the following one is efficiently reduced and thanks to the temporal
masking, its contribution is not audible in most of the cases.

Finally, since the clicks are associated with the white signal
yn, then we cancel this whitening by filtering the extracted click
samples by the LPC filter H(z) = 1/A(z), cf. sec. 3.1. More-
over, since the extracted clicks have different amplitudes, they are
normalized to a unique norm.

3.7. Statistical parameters

The real-time granular synthesis only consists in successively play-
ing the Ce extracted clicks with a random selection at each time
and with a quasi-constant frequency. However, to provide a realis-
tic synthesis, it is needed to add a fluctuation in frequency and in
amplitude, as it is the case in real drilling sounds.

First the mean period T0, in samples, of the click occurrences
is computed as the mean of the distances of detected clicks:

T0 =
1

Cd − 1

∑Cd−1
i=1 Pi+1 − Pi,

and the mean frequency is then F0 = Fs/T0. Also, to take ac-
count of the variance of the click position, the fluctuation in term
of frequencies, the standard deviation is computed as follows:

σT =
( 1

Cd − 1

∑Cd−1
i=1

(
Pi+1 − Pi − T0

)2) 1
2

Second, in the same way the mean amplitude B and its standard
deviation are computed:

B =
1

Cd − 1

∑Cd−1
i=1 βi

σB =
( 1

Cd − 1

∑Cd−1
i=1

(
βi −B

)2) 1
2
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Figure 5: Illustration of the click extraction, based on the flattening
of the termporal envelope of a drilling sound recording.

3.8. Real-time synthesis

Then, when a new individual click has just started to be played
back, in real-time, the synthesizer chooses the instant of the next
played click with a delay time randomly chosen according to a dis-
tribution with mean T0 = 1/F0 and variance σ2

T . Also its ampli-
tude is randomly chosen according to a distribution with mean B
and variance σ2

B . This procedure provides some fluctuations in the
amplitudes and the positions which makes the synthesis more re-
alistic. Moreover, the new played click is randomly chosen among
the collection of the Ce extracted clicks. Figure 6 summarizes the
global sound analysis/synthesis process.

In this work, the background noise of the engine is not resyn-
thesized from the NMF analysis. The reasons are that its resyn-
thesis based on the NMF does not yield a satisfying sound quality
and that another good technique for background noise synthesis
was already available in the project.

sn
Denoising

(offline)

x̃n Click extraction
+

Stat. param.
(offline)

{cn}Ce

T0, σT

B, σb

Drilling sound
synthesis
(real-time)

x̂n

cf. sec. 2 cf. secs. 3.2-3.7 cf. sec. 3.8

Figure 6: Summary of the global sound synthesis process: first the
drilling sound of interest xn is extracted from the noisy recorded
sound sn, cf. sec. 2, then the analysis extractsCe clicks noted here
cn, cf. 3.2-3.6, and the statistical parameters (T0, σT , B and σB)
are estimated, cf. sec. 3.7. Finally the sound x̂n is synthesized, cf.
3.8.

3.9. Informal listening test

No formal and rigorous listening test has been done to evaluate
the denoising and the synthesis. Nevertheless, the simple compar-
ison of a former drilling sound synthesis, made by Creanex, and
this new synthesis reveals an outstanding improvement. More-
over, an informal listening test has been made with four experts
who have an excellent experience in drilling machines. As a result,
they judged the denoised sounds as sufficiently correct, and they
found the drilling synthesis realistic and accurate. Consequently,
it proves the ability of this method to accurately synthesize drilling
sounds. More details of this test are given in [20].

4. SOFTWARE IMPLEMENTATION

This section summarizes the software developed during the REMES
project. The main goal is to provide some tools and examples for:
the manual annotation of drilling sounds, the automatic analysis,
the test of results, and the efficient real-time synthesis.

These applications have been used with the drilling sounds
provided by Sandvik, but they have been designed to work with
other sounds having similar signal properties. For more details
about this software package, we refer the reader to [20].

4.1. Annotation

Because most of the recordings contain some different successive
drilling situations (normal drilling, overfeed, rattling, ...), it is nec-
essary to annotate the limits of each part for each file. The auto-
matic annotation is difficult, and it was not the subject of this work.
Moreover, a bad annotation may provide a worse analysis. Then a
simple Graphical User Interface has been developed in Matlab to
annotate easily and quickly all the sounds, cf. Fig. 7.

Figure 7: Screenshot of the annotator software. In this example, 4
parts are annotated with different colors.

4.2. Analyzer

The analyzer is a piece of software which automatically computes
the analysis of all annotated parts, without manual intervention.

At the moment of the end of the project, 1296 parts are anno-
tated, and the complete analysis lasts approximately 7 hours, using
a 4 core CPU at 3.20 GHz. All steps of sec. 3 are computed suc-
cessively for all annotated parts. Note that to make this process
faster, the length of the parts are limited by 2 seconds. Finally,
all analyzed parameters, such as the extracted clicks, the envelope
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parameters Na, αa and αd, and the statistical parameters, F0, σT ,
B and σB , are stored into some data files.

4.3. Test and parameter refinement

To check and eventually modify the analyzed parameters, another
GUI has been developed using Matlab, cf. Fig. 8.

This software loads the analyzed drilling data, computed by
the analyzer, and proposes to compare the original noisy sound,
the denoised drilling sound and the synthesis. Also, some sliders
and editor controls allow to modify the synthesis parameters, and
eventually to save the results in the data file.

Figure 8: Screenshot of the Graphical User Interface for testing
and for the parameter modification.

4.4. Real-time synthesis library

For the efficient real-time synthesis, a C++ library and a demon-
stration application have been developed. The main benefit of this
drilling sound synthesis tool, compared to a simple playback of the
denoised sound, is the ability to modify in real-time some param-
eters and to reproduce a continuous modification of the sound.

The available parameters are: the mean frequency, the mean
amplitude, the deviation in time, the deviation in amplitude, a
modified attack factor and a modified decay factor. Fig. 9 shows
a screenshot of this demonstration application, with six sliders for
the parameter control.

5. CONCLUSION

These paper presents two complementary methods useful for the
purpose of the mentioned project: first, a non-supervised removal
of quasi-stationary noise has been proposed, which is based on
the Non-negative Matrix Factorization. This algorithm is relevant
because of the opposite natures of the background noise and the
drilling sound of interest. Second, a granular analysis/synthesis
approach has been presented. It roughly consists in: the estimation
of the click positions in time and of the time envelope modeling
of the single clicks; the extraction of some individual clicks; and
finally a successive play of the stored clicks, with some random
rules learned on the original sound. Not only the synthesis method
used a small amount of memory, less than 500 kBytes per sound,
but also the CPU consumption is negligible on current personal
computers.

Note that, at the end of this work, 1296 annotated drilling
sounds have been analyzed for tests. These recorded sounds have

Figure 9: Screenshot of the Graphical User Interface. Example of
implementation of the C++ real-time library.

been produced by rig machines of Sandvik during previous projects,
cf. e.g. [5]. The developed methods and software package can be
used for synthesizing realistic drilling sounds in a working ma-
chine simulator. As demonstration, the companion webpage [21]
proposes the listening of some excerpts of sounds: original, de-
noised and synthesized.
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