
Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

IMPLEMENTING A LOW-LATENCY PARALLEL GRAPHIC EQUALIZER WITH
HETEROGENEOUS COMPUTING

Vesa Norilo, ∗

Centre for Music & Technology
University of Arts
Helsinki, Finland

vesa-petri.norilo@uniarts.fi

Math Verstraelen

Computer Architecture for Embedded Systems
University of Twente

The Netherlands
m.j.w.verstraelen@utwente.nl

Vesa Välimäki

Department of Signal Processing and Acoustics
Aalto University
Espoo, Finland

vesa.valimaki@aalto.fi

ABSTRACT

This paper describes the implementation of a recently introduced
parallel graphic equalizer (PGE) in a heterogeneous way. The con-
trol and audio signal processing parts of the PGE are distributed to
a PC and to a signal processor, of WaveCore architecture, respec-
tively. This arrangement is particularly suited to the algorithm in
question, benefiting from the low-latency characteristics of the au-
dio signal processor as well as general purpose computing power
for the more demanding filter coefficient computation. The design
is achieved cleanly in a high-level language called Kronos, which
we have adapted for the purposes of heterogeneous code genera-
tion from a uniform program source.

1. INTRODUCTION

The graphic equalizer is a signal processor with a variety of pur-
poses, ranging from tonal correction of rooms and transducers to
sound design and mastering [1]. One of the key benefits of the
design is the immediate correspondence of user interface and fre-
quency response. The quality and precision of this correspondence
is key to a successful graphic equalizer design. In addition, many
of its applications require low-latency processing—such as tonal
correction of a loudspeaker system in a live situation.

In the subsequent sections, we present a recent parallel graphic
equalizer design and show how to adapt it to a heterogeneous sys-
tem of a PC and a WaveCore signal processor, utilizing a high-level
programming language called Kronos. Kronos and WaveCore share
a declarative programming methodology, greatly facilitating code
generation. In addition, the signal rate factorization capabilities
of Kronos are directly applicable to the problem of heterogeneous
code generation.

This paper is organized as follows. In Section 2, Background,
we discuss the history and state of art of the three central themes
of this research: graphic equalization, dedicated signal proces-
sors, and musical programming languages. Section 3, Method-
ology, presents our equalization algorithm as well as describes the

∗ This work was supported by the Emil Aaltonen Foundation.

dedicated signal processor hardware, WaveCore, this research is
founded on. The high-level programming method, Kronos, is also
presented. Section 4 details the results of this work, discussing the
aspects specific to heterogeneous computing and the adaptation of
the equalizer algorithm to WaveCore, as well as avenues for future
research. Section 5 concludes the article.

2. BACKGROUND

2.1. Graphic Equalization

There are two types of equalizers, parametric and graphic ones
[1]. In a parametric equalizer the user has access to the gain, cen-
ter frequency, and bandwidth of the filter. A graphic equalizer can
be composed of several parametric equalizers or other similar fil-
ters, but their center frequencies and bandwidths are fixed. In the
graphic equalizer, the user only controls each band gain by using
a set of sliders, which form approximately the desired magnitude
response [1, 2, 3, 4]. The band gains are usually called ’command
gains’. The main challenge in designing a graphic equalizer is the
interaction of neighboring band filters. Problems arise when to
adjacent command gains have a large difference.

In this work we implement one of the recent graphic equaliz-
ers, which solves the interaction problem by optimizing the param-
eters with a least-squares technique [4]. For processing the input
signal, this graphic equalizer uses the parallel IIR filter structure,
which is well suited to parallel computing [5].

2.2. Musical DSP Chips

Digital Signal Processing for music applications is usually based
on a sound production model. In general, the nature and complex-
ity of the application of such a model is directly related to the
available computational capacity within the constrained bound-
aries of cost and technological state of the art. The nature of a
sound production model can roughly be divided into three areas
[6][7]. (1) Digitized analog models. The origin of these models
are usually analog electronics which are mimicked by discrete-
time models, e.g. discrete time models of analog stomp-box gui-

DAFX-1

http://mute.siba.fi
http://www.uniarts.fi
mailto:vesa-petri.norilo@uniarts.fi
mailto:m.j.w.verstraelen@utwente.nl
http://spa.tkk.fi/en/
http://www.aalto.fi/en/
mailto:vesa.valimaki@aalto.fi

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

tar effects [8]. The required computational capacity for this class
of production models is usually modest. The sampling rates are
usually relatively low, and depend on the amount of non-linearity
in the applied models (e.g. amp models) (2) Digital WaveGuide
(DWG). DWG models are often abstract representations of physi-
cal/acoustical phenomena. An examples is DWG based reverbera-
tion [9].(3) Physical Modeling. This class of modeling is based
on detailed aspects (e.g. geometry, material, etc.) of physical
sound production devices [6]. The associated modeling is often
based on multi-dimensional wave equations and often requires a
vast amount of computational capacity.

2.2.1. Relevant processor technologies

DSP in embedded musical applications is predominantly imple-
mented with dedicated DSP processor chips. These chips are op-
timized to cost and energy effectiveness. These DSP chips are
usually programmed within a C-based development methodology.
However, the inherent parallelism within these processors can of-
ten only be addressed with processor dependent compiler ”intrin-
sics” which makes it often difficult to port existing application
code to different chips. Likewise, the learning curve to program
these devices is often steep. DSP processor chips are widely ap-
plied for digitized analog modeling and/or digital waveguide. Un-
like the often data-flow oriented nature of the application, the pro-
gramming methodology is merely imperatively, which conceptu-
ally adds an extra complexity dimension. Digital Audio Work-
station (DAW) are software applications, mostly running on PC
platforms. A wide variety of sound production models are im-
plemented with this technology. Development environments for
DAW are merely C-based. However, also declarative program-
ming methodologies, like Faust [10], are applied within this do-
main. Typically, keeping the processing latency within acceptable
limits is challenging within PC based real-time audio processing
systems.

We mentioned that detailed physical modeling (i.e. based on
finite difference modeling) requires a vast amount of computa-
tional capacity. Both General Purpose Processors (GPP) and DSP
chips cannot deliver the required computational capacity neces-
sary for detailed real-time physical modeling. Moreover, a large
physical model may need to be partitioned over several GPP cores
when the application is required to be mapped on a PC based com-
puter platform. Given these problems, different processor tech-
nologies such as GPGPU (General-Purpose computing on Graph-
ics Processing Units) or FPGA (Field Programmable Gate Array)
are applied. The associated programming methodologies are usu-
ally data-flow oriented and hence link more naturally to a declar-
ative or functional programming style rather than an imperative
C-based programming environment.

2.2.2. Implications of the multi-core era

The advance of semiconductor technologies, related to Moore’s
law, has a huge impact on the evolution of processor technolo-
gies (GPP, GPU, FPGA, DSP). Most dominantly, the energy- ILP-
(Instruction Level Parallelism) and memory walls have driven the
processor evolution into the ”multi-core” era [11]. Multi-core has
a huge impact on programming methodologies, linked to scala-
bility (number of processor cores). In particular, the imperatively
based programming methodologies and associated multi-core pro-
cessors (e.g. DSP, GPP) are faced with a big challenge. Paral-

lelism needs to be extracted from the imperatively described al-
gorithm and subsequently partitioned and mapped on a multi-core
processor. On the contrary data-flow oriented declarative program-
ming styles, associated to GPGPU or FPGA are naturally scalable
and are inherently ”Moore-proof” to a larger extend. This is ex-
actly the reason why GPUs and FPGAs are gaining attention as
processing platforms for scalable and computational intensive al-
gorithms like detailed physical modeling. An FPGA is basically
a fabric of primitive programmable logic functions and embed-
ded memories which can be connected in an almost arbitrary way.
This means that a non-configured FPGA can be seen as an un-
defined chip. Therefore, designing an FPGA based application
implies that the configurable circuitry of the FPGA (i.e. the ”soft-
core”) needs to be developed in a Hardware Description Language
(HDL). This softcore development in itself often is a costly process
which is partially caused by the abstraction level of commonly ap-
plied HDL methodologies (e.g. VHDL). Emerging methodologies,
based on mathematical modeling using functional languages [12]
are intended to raise the abstraction level and hence shorten the
development cycle of softcores. On top of softcore development,
the HW/SW interface and the software part needs to be developed.
This makes FPGA design a multi-disciplinary task which requires
both HW and SW engineering skills.

2.3. Programming Signal Processors

2.3.1. Programming for DSP Chips

Perhaps the most utilized method of programming signal proces-
sors is via low-level languages such as C or the native assembly
language of the target chip. Libraries of typical signal processing
primitives (such as digital filters, delay lines and signal transforms)
are offered by chip vendors and third parties alike. This approach
is relatively straightforward and tends to result in efficient utiliza-
tion of the hardware, as long as the algorithms being implemented
can be expressed in terms of typical primitives.

When the algorithm in question is more complicated, the tra-
ditional method of low level programming is no longer quite as at-
tractive. Implementation of novel processing primitives typically
requires a high level of expertise on both the algorithm and the
hardware in question, and the resulting work is tightly coupled
with a specific architecture. These factors make signal processing
code averse to being portable.

2.3.2. High-Level DSP Languages

Several approaches exist for programming signal processors with-
out a high level of C or Assembly expertise. National Instruments
LabVIEW [13] is a graphical interface to the G language, which is
based on data flow, similar to our methodology. However, the Lab-
VIEW system is proprietary and opaque, so utilization of custom
hardware like the WaveCore is not easily achievable.

Another commercial DSP design methodology is based on
MathWorks’ MatLab and SimuLink (e.g. [14]). SimuLink sup-
ports generation of C code or direct synthesis of signal processing
cores via a hardware description language. These approaches are
focused on multi-domain simulation and are likely too elaborate
for design and application of musical signal processors.

The advantage of our proposed method is in its domain-specificity;
as both Kronos and WaveCore are specifically designed for musi-
cal signal processing, several assumptions can greatly simplify the
task for automatic heterogeneous code generation. In the present

DAFX-2

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

study, we utilize a straightforward clock domain mapping for code
factorization – discussed further in Section 3.3.2.

2.3.3. Musical Programming Languages

Musical Programming Languages are a topic of active research.
The present study is based on our Kronos programming language
[15]. This section offers a brief overview of influential design
paradigms and language implementations specific to musical sig-
nal processing.

The most widely adopted paradigm for musical signal process-
ing is the unit generator concept [16, pp. 787–810]. The ugen con-
cept was solidified by the MUSICn family, of which CSound [17]
is the contemporary example. Pure Data [18] and SuperCollider
[19] are important developments of the concept. Ugen program-
ming is declarative by nature. The programming task focuses on
signal flow and topology, rather than the chronological ordering of
program statements.

Ugen languages can be criticized for their lack of higher level
program constructs. Especially graphical front ends such as Pure
Data [18] – an example of a very successful implementation –
make it quite difficult to express data types, control flow or pro-
gram composition, all of which enhance programmer productivity.

Several attempts have been made to address this problem. CLM
[20] attempts to merge the ugen concept with Common Lisp [21],
an acclaimed high-level language. Since making high-level signal
processing programs efficient is difficult, CLM delimits signal pro-
cessors to a certain subset of Common Lisp and transcompiles that
to C. The resulting programming paradigm is a mixture of styles,
featuring a C-like programming style with Common Lisp syntax.

SuperCollider [19] is a more actively developed idea in the
same vein. SuperCollider is influenced by SmallTalk (e.g. [22]),
and integrates ugens built in the more performant C language. As
a result, SuperCollider programs are tied with the implementation
of the run time library, and the actual signal processors are opaque
to the user.

Faust [23] attempts to address signal processing in a functional
high-level idiom. Faust features an expressive block diagram com-
position system capable of succinctly describing many typical sig-
nal flows. Faust transcompiles to C, with recent work aimed to-
wards direct compilation using the LLVM [24] framework.

Kronos [15] is the language used and adapted for the present
study. Influenced by Faust, it offers a functional signal processing
paradigm, enhancing it with advanced metaprogramming capabil-
ities, automatic factorization and an advanced compiler pipeline
[25]. Kronos makes use of LLVM [24] for native code generation.
For the purposes of the present study, an experimental WaveCore
code generator has been developed, along with facilities for het-
erogeneous compilation of a uniform source program for several
distinct hardware targets.

3. METHODOLOGY

3.1. Graphic EQ Algorithm

In this work we implement a recently developed parallel graphic
equalizer [4]. The filter itself is a parallel IIR structure in which
each filter block has a special second-order transfer function: a
second-order denominator transfer function but a first-order nu-
merator transfer function. Additionally, there is a direct path with
a real weight from the input to the output.

The poles of the graphic equalizer are set in advance at pre-
designed frequencies determined by the frequency resolution of
the graphic equalizer. For example, when a third-octave graphic
equalizer is designed, the poles go at 31 standard frequencies be-
tween 20 Hz and 20 kHz (20 Hz, 25 Hz, 31.5 Hz, 40 Hz etc.). To
obtain high accuracy, additional poles are assigned at 10 Hz and
between each standard center frequency, so that there will be al-
together 62 poles. The pole radii as chosen so that the magnitude
responses associated with neighboring poles meet at their −3 dB
points. All of this is done off-line before running the filter. The
mathematics related to this design are detailed in [4].

During real-time operation, the user can adjust the command
gains of the graphic EQ. To achieve a great accuracy, this EQ de-
sign uses least-squares optimization to adjust the numerator (feed-
forward) coefficients, two per pole. This is similar to FIR filter
design and only requires a matrix operation. However, the non-
negative weighting function is needed to ensure that attenuation is
implemented correctly. As a result, every time a command gain is
changed, the matrix inversion needs to be executed and all feed-
forward coefficients of the graphic EQ updated [4].

3.2. WaveCore – a High Performance Audio DSP Core

WaveCore is a programmable many-core processor which is op-
timized to real-time acoustical and physical modeling. This pro-
cessor concept aims to address the scalability problem which is
described in section 2.2.2. Target applications are all the sound-
production models which are mentioned in section 2.2. Classical
”digitized analog”, and digital waveguide modeling with ultra-low
latency using WaveCore has been published in [26]. A recently
carried out feasibility analysis on the usability of WaveCore for
real-time physical modeling of musical instruments using finite-
difference time-domain techniques has yielded promising results
[27].

3.2.1. Programming Model

The WaveCore processor can be programmed by means of a de-
scription of a data-flow graph. Such a graph consists of one or
more processes, that are interconnected by means of edges. The
data-elements (i.e. tokens) that are carried over the edges consist
of one or more Primitive Token Element (PTE, a floating point
number). All processes in the graph are periodically executed (i.e.
fired) explicitly by a centralized scheduler, where multi-rate ex-
ecution is fully supported. When a process is fired, it consumes
one token per inbound edge and produces one token per outbound
edge. A process may be composed by one or more process par-
titions (WPP). Ultimately each process consists of a number of
interconnected Primitive Actors (PA). The PA has at most two in-
bound edges and as such consumes at most two PTEs x1 and x2
when the PA is fired. The PA produces one PTE yn+λ when it is
fired through an optional delay-line.

The programming model supports a limited set of different
PAs. A few examples are: (1) C-type PA: yn+1 = p, (2) MAD-
type PA: yn+λ = p · xn1 + xn2 , (3) ADD-type PA: yn+λ = xn1 +
xn2 (4) MUL-type PA: yn+λ = xn1 .x

n
2 , and (5) AMP-type PA:

yn+λ = p.xn1 .
This data-flow oriented programming model enables a declar-

ative way of implementing a wide variety of signal processing
algorithms, like flanger, wah-wah, reverberation, EQ, etc. [26].
The declarative nature of the programming methodology enables

DAFX-3

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

a straightforward mapping to functional languages like Kronos, as
we will outline in Section 3.3.

WP1 WPP2
E1

E2

E3

E4

E2

WPP1.a

WPP1.b

Scheduler
Es1

Es2

Figure 1: Data-flow oriented WaveCore programming model.

3.2.2. Processor Architecture

The WaveCore processor consists of a scalable cluster of Process-
ing Units (PU). Each PU embodies a small Reduced Instruction-
Set Computer (RISC). The instruction set of the PU is fully opti-
mized to the execution of a group of PAs (WPP) where each PA
is mapped on a single instruction. The PU can be classified as
a pipelined Harvard processor (instructions and operands are lo-
cated in separate memories). This implies that the PU is capable
of executing one PA per clock cycle. The heart of the PU is a sin-
gle precision floating-point ALU which supports basic arithmetic
operations such as add, subtract, multiply, multiply/add, divide,
compare, etc. Next to the instruction pipeline the PU is equipped
with a DMA controller, called Load/Store Unit (LSU). This LSU
is loosely coupled to the processor pipeline and is responsible for
moving token data and/or delay-line data between external mem-
ory and the processor pipeline. An on-chip network, called Graph
Partition Network (GPN) connects all PUs.

The WaveCore compiler automatically partitions and maps a
WaveCore process onto the processor hardware. Each WPP is
scheduled and mapped on a PU, and the connections between the
WPPs are mapped on the GPN. The compiler also takes care of
external memory allocation and as such maps all tokens and delay-
lines on the LSU parts of the associated PUs.

USB/
RS232

USB/
RS232

128 MByte
DDR2

128 MByte
DDR2

Stream
Actor

Stream
Actor

Spartan6 LX45
FPGA

ControlControl

D
D

R
 C

ontro ller
D

D
R

 C
ontro ller

Digital Audio Interface

PUPU PUPU

PUPU

PUPU PUPU

H
os

t-
P

ro
ce

ss
o

r
In

te
rf

ac
e

H
os

t-
P

ro
ce

ss
o

r
In

te
rf

ac
e

E
xt

.
M

em
.

In
te

rf
ac

e
E

xt
.

M
em

.
In

te
rf

ac
e

WaveCore processor

Digilent Atlys board

USB2.0

AC97
Audio
Codec

AC97
Audio
Codec

Analog
I/O

HPI
Bridge
HPI

Bridge

PUPU

SchedulerScheduler

Figure 2: WaveCore processor on Atlys FPGA board.

The WaveCore processor is implemented as a soft-core in a
Hardware Description Language (HDL). We have integrated a core
instance with 6 PUs in System-on-Chip which subsequently is
mapped on a Xilinx Spartan6 LX45 device on the Digilent Atlys
development board. The block diagram of this development board
and FPGA is depicted in fig. 2. The PU cluster can be initial-
ized (i.e. loading a compiled WaveCore program to the embedded
instruction memories within the PU cluster) by means of en exter-
nally connected host computer through the USB interface. Run-
time control (i.e. run-time modification of control-tokens) is pos-
sible through the same USB interface, which also has full access to
the external DDR2 memory on the board. The board contains an
AC97 compliant audio codec chip (stereo audio DAC and ADC).
This codec is enabled to stream autonomously into/from the DDR
memory. The WaveCore processor cluster itself, which is capa-
ble of executing a process graph with up to 12288 PAs at 44.1kHz
audio rate, is also capable of autonomously accessing the DDR
memory.

3.2.3. The Graphic Equalizer as a WaveCore process graph

Scheduler

AudioRate

Equalizer Kernel
Stim Resp

DACADC

Equalizer Control Param

Figure 3: Process graph of equalizer

The equalizer application as a WaveCore process graph is de-
picted in fig.3. The ”Equalizer Control” process is mapped on
the externally connected computer and the ”Equalizer Kernel” pro-
cess runs on the WaveCore processor. This kernel process consists
of one WPP and hence utilizes only one out of the 6 PUs. The
”param” edge is mapped on the USB interface and hence imple-
ments the run-time control of the kernel process. The associated
control tokens are allocated in DDR memory. The ADC and DAC
processes are mapped on the AC97 codec chip and the associated
audio edges ”Stim” and ”Resp” are mapped on DDR memory. The
tokens which are moved over the ”Stim” edge are produced by the
AC97 codec and consumed by the kernel process which is mapped
on the WaveCore. Similarly, the tokens which are moved over the
”Resp” edge are produced by the kernel process which is mapped
on the WaveCore, and consumed by the DAC process on the AC97
chip. The ”Stream Actor” block within the ”Digital Audio In-
terface” takes care of moving tokens between the AC97 chip and
DDR memory. The scheduler periodically generates fire tokens to
the real-time kernel, ADC and DAC processes at audio rate. Note
that the ”Equalizer Control” process is not linked to the scheduler,
and responds to human interaction. The processing latency is short
because there is almost no buffering between the ADC/DAC pro-
cesses and the equalizer kernel (one token per edge, and hence 2
Ts streaming latency).

DAFX-4

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

3.3. Kronos – a High Level Music DSP Language

Kronos [25] is a high level functional signal processing language
designed for musical applications. The declarative dataflow prin-
ciple is common to Kronos and WaveCore, making WaveCore a
natural compile target for the Kronos compiler. An experimen-
tal Kronos code generator for WaveCore was implemented for the
purposes of this research.

The user-facing aspect of the Kronos language resembles a
high level functional programming language with very little data
type notation, along with features designed for musical signal pro-
cessing. The most significant of these include language level mem-
ory operators, such as unit delays and recursions, that exhibit pure
functional semantics[28] and are reified into stateful constructs by
the compiler. In addition, the compiler performs full-program type
derivation and dataflow analysis to generate a highly performant
statically typed run time representation that can be automatically
factored into several clock domains. The factorization process re-
sults in a set of driver routines that share and mutate a state buffer
that represents the signal memories of the running application as
well as the requisite state for transferring signals between clock
regions. For a more detailed discussion, the reader is referred to
prior work[15].

3.3.1. WaveCore Code Generation

The lowered runtime program representation generated by Kronos
is typically compiled into native code with LLVM[24], an open
source compiler back end framework. Generating code for the
WaveCore compiler is much simpler, as the program format of the
WaveCore compiler is declarative, exactly like the intermediate
representation produced by the Kronos compiler. The WaveCore
backend is a simple idiom translator implemented as a pattern
matcher, in which a group of N Kronos primitives is mapped into
a group of M WaveCore Primitive Actors. As WaveCore is much
more streamlined than a typical CPU, not all Kronos operations
map efficiently or even at all onto WaveCore programs, but the
overlap is considerable, especially considering that the two designs
were not coordinated initially. As of this writing, most Kronos
programs dealing with single precision floating point DSP can be
mapped to WaveCore, including the equalizer design discussed in
this paper.

3.3.2. Heterogeneous Code Generation

Since Kronos already does signal clock factorization, heteroge-
neous code generation simplifies to the problem of adopting dif-
ferent compile targets for different signal clocks, and generating a
transport layer to enable the clock regions to communicate.

Our heterogeneous code generation technique utilizes the Kro-
nos program representation after the global type derivation and
data flow analysis passes have completed. At this point, we have
a static signal flow graph annotated with clock regions. Normally,
the compiler would generate driver routines for each clock region,
but for heterogeneous compiling, we have added an option to filter
the set of clock regions included in the current compilation unit.

The equalizer design features two main clock regions: one is
the audio clock region, including the parallel biquad filter bank
and its summation. The other is the control clock region, which is
driven by the user interface and includes the coefficient generation
code. Because an update to any command gain causes recompu-

Table 1: Equalizer error maxima, decibels

Setting RM EQ4 PGE
All up 9.8 3.6 0.00
Zigzag 6.3 2.8 0.75
Every 3rd up 4.1 1.5 0.32

tation of all the feed forward coefficients, it is best to use a single
clock region for all the command gains.

Compiling the equalizer program source once for WaveCore,
including only the audio clock region, and once for PC, including
the control region, results in the requisite program objects for the
two architectures. These program objects correspond to the Equal-
izer Control and Equalizer Kernel shown in Figure 3. Next, we
address the transfer of filter coefficients from the PC component to
the WaveCore component.

Since the Kronos data flow analysis detects clock region bound-
aries, communication can be enabled by special handling of the
boundaries that involve a transition between compile targets. Since
version 2.0, WaveCore has a well-defined protocol for external
control. A ForeignProcess description is generated by the Kro-
nos/WaveCore compiler, including tokens for each signal graph
edge that crosses from the PC to the DSP. In the case of the graphic
equalizer, these edges represent the feed forward coefficients of the
biquad filter bank. On the PC side, such edges are represented by a
section of the state buffer generated by the compiler for the Kronos
program.

To facilitate transport, an option to invoke a user-defined call-
back function was added to the compiler whenever a particular
boundary is updated. A special compiler driver uses the Kronos
JIT Compiler to generate the PC-specific section of the signal pro-
cessing system, and hooks into the callback mechanism to propa-
gate boundary edge updates to the WaveCore submodule. These
updates are sent over the serial port to the WaveCore board as per
the control protocol.

4. DISCUSSION

4.1. Equalizer Response

The presented equalizer algorithm offers a highly precise frequency
response. Three command gain settings were used to find the max-
imum error in the actual magnitude response of the equalizer in
comparison to the command gains.

Table 1 lists the results of our algorithm (PGE) contrasted to
the second order Regalia-Mitra EQ (MR) [29] and a higher order
design (EQ4) [2]. The All up settings features all the command
gains set to +12 dB. In Zigzag, the command gains alternate be-
tween +12 dB and unity. The final setting of Every 3rd up features
one band at +12 dB followed by two bands at unity.

The proposed algorithm features the smallest error maxima,
staying within a decibel of the target curve on all settings. For a
more detailed evaluation and comparison of the PGE algorithm,
the reader is referred to [4].

4.2. Performance

As the described implementation is heterogeneous, the performance
characteristics that concern us are also varied. As the audio pro-
cessing on WaveCore obeys hard real time constraints, we are
mostly concerned about chip utilization.

DAFX-5

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Table 2: Equalizer performance summary

Equalizer Kernel PAs of PU % of chip
per channel @ 44.1kHz 740 81% 13.5%
Equalizer Control avg max min
time per update 32ms 51ms 31ms

On the PC side, the computational complexity manifests as
control latency – the delay between user interaction and the corre-
sponding change in the equalizer response. This latency is domi-
nated by the time required for coefficient computation.

Table 2 summarizes the central performance characteristics of
our solution. Our current WaveCore chip is a cluster of six Pro-
cessing Units running at 86MHz, achievable on the Digilent Atlys
board wiath a Xilinx Spartan6 FPGA. The equalizer control tim-
ings were measured on a Windows PC with an Intel Core i7 CPU
running at 2.8GHz. Minimum, maximum and average control la-
tency were collected from 1000 simulated coefficient updates. As
shown, one audio channel can be equalized by one PU in hard real
time. This results in a throughput latency of two sample periods,
excluding the latency of A/D/A conversion. Our WaveCore cluster
is computationally capable of 6 channels of real time equalization,
although the Atlys board is limited to stereo audio I/O.

4.3. Future Work

In the future, the design could be adapted to an embedded setting
with, for example, a low power CPU combined with a WaveCore
chip and a dedicated control surface. Such a setup would func-
tion well as a dedicated hardware equalizer. Alternatively, a room
correction module could be developed based on the technology,
with a PC-based analysis and filter design solution combined with
hardware equalization.

The support of the Kronos language on WaveCore could also
be further developed. The areas of interest range from the em-
ulation of double precision floating point arithmetic to automatic
factorization of programs to several concurrent WaveCore process
partitions to better utilize parallelism.

5. CONCLUSION

In this paper, we presented an implementation of a recent graphic
equalization algorithm on a heterogeneous computing platform con-
sisting of a commodity PC and a WaveCore-based signal process-
ing board. The system was shown to exhibit excellent latency
characteristics due to the use of dedicated hardware, as well as
excellent precision due to the advanced coefficient computation
technique made possible by a powerful CPU. The graphic equal-
izer serves as an example of our proposed heterogeneous signal
processor development workflow, which enables automatic factor-
ization of a single source program to two distinct program objects.

The Kronos compiler suite is available in binary and source
form at https://bitbucket.org/vnorilo/k3. WaveCore
is available for the published Digilent Atlys FPGA development
board.

6. ACKNOWLEDGMENTS

Vesa Norilo’s work has been supported by the Emil Aaltonen foun-
dation.

7. REFERENCES

[1] D. A. Bohn, “Operator adjustable equalizers: An overview,”
in Proc. AES 6th Int. Conf., Nashville, TN, May 1988, pp.
369–381.

[2] M. Holters and U. Zölzer, “Graphic equalizer design using
higher-order recursive filters,” in Proc. Int. Conf. Digital Au-
dio Effects, Montreal, Canada, Sept. 2006, pp. 37–40.

[3] J. Rämö and V. Välimäki, “Optimizing a high-order graphic
equalizer for audio processing,” IEEE Signal Process. Lett.,
vol. 21, no. 3, pp. 301–305, Mar. 2014.

[4] J. Rämö, V. Välimäki, and B. Bank, “High-precision par-
allel graphic equalizer,” IEEE/ACM Trans. Audio Speech
Language Processing, vol. 22, no. 12, pp. 1894–1904, Dec.
2014.

[5] J. A. Belloch, B. Bank, L Savioja, A. Gonzalez, and
V. Välimäki, “Multi-channel IIR filtering of audio signals us-
ing a GPU,” in Proc. IEEE Int. Conf. Acoust. Speech and Sig-
nal Processing (ICASSP-2014), Florence, Italy, May 2014, p.
6692–6696.

[6] S. Bilbao, Numerical Sound Synthesis: Finite Difference
Schemes and Simulation in Musical Acoustics, Wiley, 2009.

[7] U. Zölzer (ed.), DAFX: Digital Audio Effects, Wiley, second
edition, 2011.

[8] V. Välimäki, S. Bilbao, J. O. Smith, J. S. Abel, J. Pakari-
nen, and D. Berners, DAFX: Digital Audio Effects, chapter
‘Virtual analog effects’, pp. 473–522, U. Zölzer (ed.), Wiley,
second edition, 2011.

[9] J. O. Smith, “A new approach to digital reverberation using
closed waveguide networks,” in Proc. Int. Computer Music
Conf., Vancouver, Canada, Sept. 1985, pp. 47–53.

[10] Y. Orlarey, D. Fober, and S. Letz, “Faust (programming lan-
guage),” Available at https://faust.grame.fr, ac-
cessed Dec. 8, 2013.

[11] S. Borkar and A. A. Chien, “The future of microprocessors,”
Communications of the ACM, vol. 54, no. 5, pp. 67–77, 2011.

[12] J. Kuper et al., “Cλash, from haskell to hardware,” Avail-
able at https://http://www.clash-lang.org/,
accessed June 8, 2015.

[13] J. Travis and J. Kring, LabVIEW for Everyone: Graphi-
cal Programming Made Easy and Fun (National Instruments
Virtual Instrumentation Series), Prentice Hall PTR, 2006.

[14] A. Krukowski and I. Kale, “Simulink/Matlab-to-VHDL
route for full-custom/FPGA rapid prototyping of DSP algo-
rithms,” in Proc. Matlab DSP Conf. (DSP’99), 1999, pp.
1–10.

[15] V. Norilo, “Introducing Kronos—A novel approach to sig-
nal processing languages,” in Proc. Linux Audio Conf.,
Maynooth, Ireland, May 2011, pp. 9–16.

[16] C. Roads, The Computer Music Tutorial, MIT Press, Cam-
bridge, MA, 1996.

[17] R. Boulanger, The Csound Book, MIT Press, 2000.

[18] M. Puckette, “Pure data: another integrated computer mu-
sic environment,” in Proc. 1996 Int. Computer Music Conf.,
1996, pp. 269–272.

DAFX-6

https://bitbucket.org/vnorilo/k3
https://faust.grame.fr
https://http://www.clash-lang.org/

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

[19] J. McCartney, “Rethinking the computer music language:
SuperCollider,” Computer Music Journal, vol. 26, no. 4, pp.
61–68, 2002.

[20] B. Schottstaedt, “Machine tongues XVII: CLM: Music V
meets Common Lisp,” Computer Music Journal, pp. 30–37,
1994.

[21] G. L. Steele, Common Lisp, vol. 2, Digital Press, 1984.

[22] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay,
“Back to the future: The story of Squeak, a practical
Smalltalk written in itself,” in ACM SIGPLAN Notices.
ACM, 1997, vol. 32, pp. 318–326.

[23] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and seman-
tical aspects of Faust,” Soft Computing, vol. 8, no. 9, pp.
623–632, 2004.

[24] C. Lattner and V. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in Proc.
Int. Symp. Code Generation and Optimization (CGO 2004),
2004, pp. 75–86.

[25] V. Norilo, “Recent developments in the Kronos program-
ming language,” in Proc. Int. Computer Music Conf., Perth,
Australia, 2013.

[26] M. Verstraelen, G.J.M. Smit, and J. Kuper, “Declaratively
programmable ultra low-latency audio effects processing on
FPGA,” in Proc. 17th Int. Conf. Digital Audio Effects, Erlan-
gen, Germany, Sept. 2014, pp. 263–270.

[27] M. Verstraelen, F. Pfeifle, and R. Bader, “Feasibility analy-
sis of real-time physical modeling using WaveCore processor
technology on FPGA,” in Proc. 3rd Vienna Talk on Music
Acoustics, Vienna, Austria, 2015.

[28] P. Hudak, “Conception, evolution, and application of func-
tional programming languages,” ACM Computing Surveys,
vol. 21, no. 3, pp. 359–411, 1989.

[29] P. A. Regalia and S. K. Mitra, “Tunable digital frequency re-
sponse equalization filters,” IEEE Trans. Acoustics, Speech
and Signal Processing, vol. 35, no. 1, pp. 118–120, Jan.
1987.

DAFX-7

	1 Introduction
	2 Background
	2.1 Graphic Equalization
	2.2 Musical DSP Chips
	2.2.1 Relevant processor technologies
	2.2.2 Implications of the multi-core era

	2.3 Programming Signal Processors
	2.3.1 Programming for DSP Chips
	2.3.2 High-Level DSP Languages
	2.3.3 Musical Programming Languages

	3 Methodology
	3.1 Graphic EQ Algorithm
	3.2 WaveCore – a High Performance Audio DSP Core
	3.2.1 Programming Model
	3.2.2 Processor Architecture
	3.2.3 The Graphic Equalizer as a WaveCore process graph

	3.3 Kronos – a High Level Music DSP Language
	3.3.1 WaveCore Code Generation
	3.3.2 Heterogeneous Code Generation

	4 Discussion
	4.1 Equalizer Response
	4.2 Performance
	4.3 Future Work

	5 Conclusion
	6 Acknowledgments
	7 References

