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ABSTRACT

The use of the bandlimited ramp (BLAMP) function as an an-
tialiasing tool for audio signals with sharp corners is presented.
Discontinuities in the waveform of a signal or its derivatives re-
quire infinite bandwidth and are major sources of aliasing in the
digital domain. A polynomial correction function is modeled after
the ideal BLAMP function. This correction function can be used to
treat aliasing caused by sharp edges or corners which translate into
discontinuities in the first derivative of a signal. Four examples of
cases where these discontinuities appear are discussed: synthesis
of triangular waveforms, hard clipping, and half-wave and full-
wave rectification. Results obtained show that the BLAMP func-
tion is a more efficient tool for alias reduction than oversampling.
The polynomial BLAMP can reduce the level of aliasing compo-
nents by up to 50 dB and improve the overall signal-to-noise ratio
by about 20dB. The proposed method can be incorporated into
virtual analog models of musical systems.

1. INTRODUCTION

Nonlinear audio processing introduces frequency components that
are not present in the original input signal. When the frequen-
cies of these components exceed half the sampling rate, or Nyquist
limit, they are reflected into the baseband through aliasing [1} 12].
Aliasing distortion can cause audible disturbances, such as beating
and inharmonicity, and affect the overall performance of an audio
system [3} [1]]. In fields such as virtual analog modeling of musi-
cal systems, the aim is to emulate the harmonic distortion intro-
duced by analog systems while avoiding aliasing distortion [4} 2].
Therefore, it is of great importance to find efficient algorithms that
minimize its effect.

A well known previous approach to avoiding aliasing in non-
linear audio processing is oversampling [4} 15 |6} [7]. In oversam-
pling, the input signal is upsampled prior to processing (typically
by a low factor) and downsampled back to the original rate after
processing. This approach requires access to the original unpro-
cessed signal and, ideally, some knowledge on the order of the
nonlinear processing stage. In oversampling, the added compu-
tational costs will depend on the oversampling factor and order
of the filters used for its implementation. Other techniques avail-
able to avoid aliasing in nonlinear processing include the harmonic
mixer [8] and reducing the order of the nonlinearity [S]. The lat-
ter approach can also be used in distortion synthesis of classical
oscillator waveforms [9].

Signal processing operations that introduce discontinuities in
the waveform of a signal or its derivatives are major sources of
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aliasing. These discontinuities require infinite bandwidth to be
represented in the digital domain. Attempting to sample them triv-
ially will inevitably introduce aliasing distortion [10} [11]. When
a discontinuity is introduced in the first derivative of a signal, a
sharp edge or corner is introduced in the actual waveform.

Previous work on alias-reduced synthesis of oscillator wave-
forms has introduced the concept of quasi-bandlimiting discon-
tinuities found in the waveform [12, 11} [13]. This work further
explores this idea by presenting the use of the bandlimited ramp
(BLAMP) function to treat any discontinuities found in the first
derivative of a signal. This is achieved by quasi-bandlimiting the
corners found in the waveform of a signal. The BLAMP func-
tion was originally proposed for synthesis of alias-free triangular
waveforms [14} [11]. We derive a polynomial approximation of
the BLAMP function, or polyBLAMP, which leads to an efficient
implementation. Four examples of audio-specific scenarios where
corners appear in the waveform of a signal are discussed: syn-
thesis of triangular oscillator waveforms, hard clipping, half-wave
and full-wave rectification. Results obtained demonstrate that the
polyBLAMP method can effectively reduce the aliasing caused by
these corners and the discontinuities they introduce.

This paper is organized as follows. Section 2 derives the an-
alytical form of the BLAMP correction function. Section 3 dis-
cusses the computational costs of the BLAMP function and presents
the derivation of its polynomial approximation. In Section 4, the
performance of the method is evaluated by considering four appli-
cations. Finally, concluding remarks appear in Section 5.

2. INTEGRATED BANDLIMITED FUNCTIONS

Analog signals with discontinuities in their waveforms have infi-
nite frequency content and must be bandlimited to less than half
the Nyquist limit prior to sampling to avoid aliasing. The full-
band nature of discontinuous signals can be observed, for instance,
by considering the Fourier series (FS) expansion of a rectangular
pulse. The FS for this signal consists of an infinite sum of odd
sinusoidal components, with the amplitude of the k' harmonic
defined as 1/k of the first harmonic or fundamental.

We can model a single discontinuity in the continuous-time
domain using the Heaviside unit step function, which is defined as

u(t) = {(1) o ()

where ¢ is time. This function jumps from O to 1 at ¢ = 0 and is

used in system analysis to measure the step response of a system.
In this work we are concerned with aliasing caused by discon-

tinuities occurring not in the waveform of a signal, but in its first
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Figure 1: Time-domain waveform of the (a) impulse, (b) bandlim-
ited impulse, (c) Heaviside unit step, (d) BLEP, (e) ramp, and (f)
BLAMP functions. Parameter T' is the sampling period.

derivative. Therefore, we model a discontinuity in the first deriva-
tive by evaluating the integral of the Heaviside function (T) as

/t u(r)dr = tu(t) = r(t). 2)

Equation (2) is known in the literature as the ramp function [13].
It is characterized by the sharp corner that occurs at ¢ = 0 when
the function starts to linearly increase.

Signals with discontinuities in their first derivative also have
infinite frequency content. One example of this is the triangular
waveform, which can be represented using the FS as an infinite
sum of odd sinusoidal components. In this series, harmonics decay
at a steeper rate than in the case of the rectangular pulse, with
the amplitude of the k" harmonic given by 1/k? with respect to
the fundamental. In the digital domain, this steeper decay means
that the level of aliasing introduced during trivial, non-bandlimited
sampling of a sharp corner will be lower than that introduced in
discontinuous signals. Nevertheless, when working at audio rates
(e.g. 44.1kHz) the effects of this aliasing may still be perceived,
particularly at high fundamental frequencies. Section further
expands on the issue of aliasing in triangular waveforms.

In order to derive a correction function that can reduce the
aliasing introduced by trivial sampling of sharp corners we need
to take one step back and evaluate the derivative of the Heaviside
unit step function with respect to time. This derivative is defined
as the Dirac delta function [15]], so that

=5(t). 3)

Figures[I[a), [[c) and [I{e) show the continuous-time domain
waveforms for the Dirac delta (represented by a single impulse),
Heaviside unit step, and ramp functions, respectively. From these
waveforms it should become evident that the size of the discontinu-
ity introduced in the first derivative by a sharp corner will depend
on the slope of the signal at this corner.

Un-F T T T T T T ]

Time (s)

Figure 2: BLAMP residual function is the difference of the BLAMP
and trivial ramp functions. Cf. Figs. Erf) and Ere ).

The delta function has a flat unity spectrum, so its bandlimited
form can then be obtained by evaluating the inverse Fourier Trans-
form (FT) of an ideal brickwall lowpass filter [16], which yields

hO(t) = fisine(ft), )

where f; represents the sampling rate and sinc(z) = sin(nz)/7z.
Figure[T|b) shows the waveform for this expression.

Following our previous logic, we can derive a bandlimited ex-
pression for the ramp function (2) by integrating (@) twice. The in-
tegral of the bandlimited unit impulse yields the closed-form equa-
tion for the bandlimited step (BLEP) function [[11]], expressed as

RV (1) = % + %Si(wfst), (5)

where Si(z) is the sine integral, defined as Si(z) = [, Sintﬁdt.
Previous work in the field of alias-free synthesis of rectangular
and sawtooth oscillators has focused on using this expression to
bandlimit the inherent discontinuities of these waveforms [[17, [11}
18]. Figure[T[d) shows the shape for this function.

Moving on, (B) can be integrated once more using integration
by parts, yielding

(1) t [% + %Si(ﬁfgt)] + % ©
= thV(1)+ %ﬂfﬂ @

This equation gives the closed form expression for the BLAMP
function with unit slope, and its shape is shown in Fig.[T{f). At first
glance, Figs. [[[e) and [T[f) may appear indistinguishable. How-
ever, computing the difference between (7) and ) quickly proves
otherwise, as shown in Fig. 2] This function is referred to as the
BLAMP residual function in this study.

In the discrete-time domain, the BLAMP residual can be used
to reduce the aliasing caused by a discontinuity in the first deriva-
tive by adding it to every sharp edge in the waveform. The first
step of this process involves centering the residual function at the
exact points in time where the edges occur and sampling it at the
nearest integer sample points. These sampled values must then be
scaled by the magnitude and direction (i.e. rising or falling edge)
of the discontinuity introduced in the first derivative of the signal.
The magnitude parameter, as previously stated, can be computed
from the slope of the signal at the edge.

3. POLYNOMIAL BLAMP APPROXIMATION

The analytic expression for the BLAMP residual function has two
limitations. First, its implementation is computationally expensive
due to the presence of the sine integral function. Secondly, the
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Table 1: Third-order B-spline basis functions, its first integral
! ! (polyBLEP), its second integral (polyBLAMP), and polyBLAMP
residual (1 < D <2and 0 <d < 1) [20].
0.5 0.5
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Figure 3: (a) Cubic B-spline basis function, (b) its first integral, Span Four-point polyBLAMP residual
(c) its second integral or polyBLAMP approximation and (d) the (2T, T] /120
polyBLAMP residual, i.e., the difference between the polyBLAMP (-, 0] — /40 + d* /24 + )12 + d? /12 + d /24 + 1/120
and the trivial ramp functions. [0, T] &40 — d* /12 + d2/3 — /2 +7/30
[T, 2T —d®/120 4 d*/24 — d*/12 + d* /12 — d/24 + 1/120

function does not have finite support, it does not vanish. There-
fore, its truncation to a finite interval introduces small discontinu-
ities which will produce further aliasing. Both issues can be ad-
dressed by storing a windowed precomputed portion of the func-
tion in a lookup table. This approach is sometimes used in practi-
cal implementations of the BLEP method [17} 12} [18]]. In general,
the effectiveness and efficiency of a table-based implementation
will depend on several variables, including table size, interpola-
tion method used (if any) and type of window.

In this work, we instead propose the use of a B-spline poly-
nomial approximation of the BLAMP function (the polyBLAMP)
which can be implemented with minimal computational costs. This
polyBLAMP function can correct four samples, two on each side
of every sharp edge in the waveform. The four-point polyBLAMP
function is derived by first approximating the bandlimited impulse
(@) as a piecewise polynomial using the coefficients for the third-
order B-spline basis function and following the same steps detailed
in the previous section [i.e. integrate twice and subtract (IZ])]. B-
spline interpolating polynomials have been used in this study due
to their steep spectral decay which makes them suitable for an-
tialiasing applications [[19} [11].

Before moving on to the derivation of the polyBLAMP, we
first consider that, in practice, the exact sample points at which the
sharp edges occur in a signal (i.e. the points where the derivative
of the signal is discontinuous) will most likely not coincide with
the sampling intervals of the system and must be estimated. In the
four-point case, the process of centering the correction function
around a set of four samples can be seen as equivalent to delaying
itby D = Din + d samples, where Diyy = 1, and d € [0, 1) is the
fractional delay.

The coefficients for the B-spline basis function can be ex-
pressed in terms of delay D using the four polynomials shown
at the top of Table[T] These polynomial coefficients are derived
via the iterative convolution of a rectangular pulse, and the re-
sulting waveform can be seen in Fig. [3(a). From this figure, that

loosely resembles the central lobe of the bandlimited impulse [see
Fig. [T[b)], we can observe the characteristic bell-shaped curve of
B-spline interpolators. Integrating this basis function once yields
the B-spline polynomial form of the BLEP function (known as the
polyBLEP [12l[11]]), and integrating once more results in the four-
point polyBLAMP function [20]. The polynomials for these two
functions and their corresponding waveforms are shown in Table
[1] and Figs. B{b) and [3c), respectively. Finally, the bottom four
rows of Table [I| show the piecewise polynomial coefficients for
the polyBLAMP residual evaluated by substituting D = d + 1
and computing difference between the polyBLAMP and the ramp
function. A two-point version of the polyBLAMP function can be
found in [21]. However, due to its superior performance, this work
focuses solely on the four-point method.

Expressing the four-point polyBLAMP residual function in
terms of the fractional delay d required to center it around a sharp
edge simplifies the procedure of sampling it at the four neighbor-
ing sample points. Therefore, parameter d must be estimated to
a certain degree of accuracy. First, we consider s[n] to be the
discrete-time signal to be antialiased, where n € Zx>¢ is the sam-
ple index. Next, we define n, and ny as the sample indices of the
signal before and after an edge, i.e. the corner boundaries. For ev-
ery edge in the waveform, sample points n, — 1, n,, n, and np + 1
will be processed by the algorithm. The aim is to fit a polynomial
of the form f(D) = aD?® + bD? + ¢D + e to the signal s[n] at
these four points. Lagrange interpolation can be used to find the
closed form expressions for coefficients a, b, ¢, and e. Since the
data points are evenly spaced, these coefficients can be written as

a = —gsna— 1]+ 35[na] — 3s[ne] + s + 1]

b = s[na—1] — 2s[n. + 2s[ns] — 3s[n + 1]

c = —s[na— 1]+ 3s[na] — s[ne] + 5s[n + 1]

e = sn.—1]. ®)

After fitting the polynomial, the next step is to obtain the inter-
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section of this curve with p, the corner parameter. The value of p
will depend on the particular application. For instance, for corners
caused by rectification we need to find the zero-crossings of the
polynomial, thus p = 0. Further details on how this parameter is
adjusted for each application are given in Sec.[d] This inverse in-
terpolation problem is equivalent to solving the following equation
for D:

aD? +bD* +¢D+e—p=0. )

A solution can be estimated using Newton-Raphson’s (NR) itera-
tive method [20], defined as

_ f(Dq)

Dq+l Dq f/(Dq)7 (10)
where ¢ = 0,1,2,...,Q — 1, and @ is the number of iterations re-
quired for the ratio f(Dy)/f'(Dgq) to become small enough to be
neglected, and Dy is an initial guess [22]]. Since the solution to (9)
will range between [1,2) due to the restriction on D, an appropriate
initial guess would be Dy = 1.5.

We can then estimate the point where the discontinuity in the
first derivative occurs as

aDZ’+bD§+ch+efp
3aD2 4 2bDg + ¢

Dys1 = Dy — (11)

The resulting value D¢ represents the fractional delay associated
with a sharp edge or corner. The slope at this point is obtained as
a byproduct of the NR method, which is given as

w(Dq) = 3aDg + 2bDg + c. (12)

Finally, the value of d can be computed as d = Dg — 1. This
represents an estimated sharp edge at nq + d, i.e. s[nq + d] = p.

4. POLYBLAMP APPLICATIONS

This section shows how the polyBLAMP correction method can
be applied for antialiasing in four audio applications where dis-
continuities appear in the first derivative of the signal waveform.

4.1. Alias-Free Triangular Oscillator

The first application considered in this study is the synthesis of an-
tialiased triangular oscillator waveforms. This type of geometric
waveform is commonly used as a source signal in subtractive syn-
thesis due to its rich harmonic content. As mentioned in Sec.[2] the
triangular waveform is composed of odd harmonics only and has
the perceptual attribute of being smoother to the ears than sawtooth
and rectangular waveforms. This characteristic can be attributed to
the steep spectral decay of its harmonics, which decay at a rate of
about —12dB per octave (the spectrum of sawtooth and rectan-
gular waveforms decays at a rate of about —6 dB per octave) [3].
This steep spectral decay rate is associated with the discontinuity
in its first derivative [[10].

Fig.@a) shows the continuous-time domain waveform for four
periods of a triangular oscillator with fundamental frequency fo
and period Ty = 1/ fo. Computing the first derivative of this sig-
nal results in the square signal shown in Fig. f|b). The peak-to-
peak amplitude of this resulting waveform is determined by 2y,
where (i is the absolute value of the slope of the rising and falling
portions of the signal. Since the slope of the falling section is the
negative of the slope of the rising section, the signal in Fig.[]a) is

l T T T
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-1 L L L
0 TO 2T0 3T0 4T0
(a)
7 I I I
0» -
- L L L
0 'I‘0 2T0 3T0 4T0
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(©)

Figure 4: (a) Continuous-time triangular waveform with arbitrary
fundamental frequency fo, (b) its first and (c) second derivatives.

formally known as the symmetrical triangular waveform. Finally,
evaluating the derivative of Fig.fb) yields the alternating impulse
train shown in Fig. f]c).

In theory, an alias-free discrete-time implementation of the tri-
angular waveform can be achieved by replacing the impulses seen
in Fig. fc) with @) (note that the polarity of every second pulse
has to be inverted) and integrating the function twice [16]. Due
to the infinite nature of the bandlimited impulse @) and the diffi-
culties associated with performing the double integration, this ap-
proach is impractical. Instead, we propose adding the four-point
polyBLAMP residual function to the actual waveform at the exact
points where the impulses would appear in the second derivative,
i.e. at the corners. The residual function has to be scaled by 2
and inverted for positive edges of the waveform [see Fig. [#c)].

Since this is a synthesis application of the polyBLAMP method,
there is no need to estimate the fractional points at which the edges
occur or the slope of the signal at those points; these two parame-
ters are readily available. To implement the proposed method we
first synthesize a trivial triangular waveform using a bipolar mod-
ulo counter ¢[n] that switches its direction every time it reaches
+1 or —1 [23]. The fractional delay d associated with each corner
can be computed every time the polarity of the counter is inverted
as

d= (T — ¢[n])/Ty, (13)

where Ty = 2fo/ fs is the phase step size. The slope parameter is
given by |u| = 2T.

Fig.[5]shows the waveform and spectrum for a 1661-Hz (MIDI
note A6) trivial triangular waveform sampled at 44.1 kHz without
and with four-point polyBLAMP correction. These results show
that the corrected signal is virtually alias-free below approx. 12 kHz.
Due to the inherent steep spectral decay of B-spline polynomi-
als, the polyBLAMP method introduces a frequency droop of ap-
prox. —12dB. This droop begins after the 10 kHz mark and, if
necessary, can be compensated using a shelving EQ filter [11].
However, due to it only affecting high frequencies, it can be ne-
glected in most applications. One convenient property of the B-
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Figure 5: Waveform and magnitude spectra of a (a)-(b) 1661.2-Hz
trivial triangle wave, and (c)-(d) the same signal after four-point
polyBLAMP correction. Circles indicate non-aliased components.

spline polyBLAMP method is that it preserves the original range
of signal values, as the correction is performed “inwards”, so to
speak.

Several methods to synthesize triangular waveforms with re-
duced aliasing have been proposed. Stilson et al. initially sug-
gested double integration of a bipolar bandlimited impulse train
(BLIT) [164[19]. Vilimiki et al. developed a more efficient ap-
proach using a differentiated parabolic waveform (DPW) [24]]. This
approach was later optimized for synthesis of triangle waveforms
by Ambrits and Bank [13] using efficient polynomial transition
regions (EPTR). The EPTR method was used as a reference to
evaluate the performance of the proposed polyBLAMP method.

The signal-to-noise ratio (SNR) of the A6 triangular wave-
form was measured with and without polyBLAMP correction. In
this context, SNR was defined as the power ratio between har-
monics and aliasing components. To show the limits of the pro-
posed method, a second measurement was performed on a 4168-
Hz (MIDI note C8) signal. This frequency represents the high-
est fundamental frequency on a piano. For further evaluation, the
SNRs obtained using oversampling by factors 2 and 4 were also
computed. The top two rows of Table [2] show the results obtained
from these measurements. The polyBLAMP method exhibits re-
sults comparable to oversampling by 4 at a fraction of the com-
putational costs. Additionally, the resulting SNRs for the EPTR
algorithm were 54 dB and 43 dB for the A6 and C8 signals, re-
spectively.

In terms of computational costs, the top row of Table [3]shows
the average synthesis times for a 1-second C8 triangular signal us-
ing oversampling by 2 and 4, the EPTR method and the four-point
polyBLAMP. These results were obtained by porting the algo-
rithm into Python and using the t ime function. The polyBLAMP
method yielded the fastest processing times.

Table 2: SNR measurements in dB for test signals of 1661 Hz (A6)
and 4186 Hz (A8). The best SNR on each row is bolded.

Signal Triv. (0N} polyBLAMP
by 2 by 4

Triangular A6 42dB 52dB 56dB 54dB
Triangular C8 30dB 42dB 46dB 45dB
Clipping A6 34dB 42dB 43dB 57dB
Clipping C8 24dB 34dB 38dB 42dB
Half-W. Rec. A6 40dB 43dB 44dB 61dB
Half-W.Rec. C8 28dB 36dB 38dB 48 dB
Full-W.Rec. A6 32dB 40dB 41dB 53dB
Full-W.Rec. C8 20dB 28dB 30dB 39dB

4.2. Alias-Free Hard Clipping

Hard clipping is another example of an audio application where
discontinuities in the first derivative of a signal are introduced [20].
Signal clipping is a form of distortion that limits the values of a sig-
nal that lie above or below a predetermined threshold. Symmetric
hard clipping can be expressed as

fe(@[n]) = sgn(z[n])min(|z[n]| , L), (14)

where z[n] is the input signal, sgn(-) is the sign function, and
L € (0, 1] is the normalized clipping threshold. In practice, signal
clipping may be necessary due to system limitations, e.g. to avoid
overmodulating an audio transmitter. In discrete systems, it can
be caused unintentionally due to data resolution constraints, or in-
tentionally as when simulating an analog system in which signal
values are saturated [25]].

Fig. [6]a) shows the continuous-time clipped fo-Hz sinusoid
with clipping threshold L = 0.7 (solid line) together with the
original sine wave (dashed line). Following the same approach
as in the previous subsection, we evaluate the first derivative of
this signal and observe that this derivative presents discontinuities
at the exact points in time where it enters or leaves a saturation
[see Fig.[f]b)]. Further derivation of this signal yields the wave-
form shown in Fig. [f[c), which contains impulses whose polarities
depend on the direction of the observed discontinuities.

Implementation of the four-point polyBLAMP correction on
an arbitrary input signal requires a polynomial to be fit to the four
corner boundaries as described in Sec.[3] Then, the NR method can
be used to estimate parameters d and p by substituting p = +L in
(TI). The polarity of p will depend on the polarity of the clipping
point being corrected, as shown in Fig. [6fc). Fig. [7] shows the

Table 3: Averaged computation time (in ms) for oversampling by
factors of 2 and 4, the EPTR, and 4-point polyBLAMP methods.

Oversampling EPTR  polyBLAMP
Signal by 2 by 4
Triangular C8 36ms 72ms  45ms 18 ms
Clipping C8 46ms 102ms - 43 ms
Half-W. Rect. C8 40ms  89ms - 18 ms
Full-W.Rect. C8 41ms  90ms - 28 ms
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Figure 6: (a) Continuous-time fo-Hz sinusoid hard-clipped with
clipping threshold L = 0.8, (b) its first and (c) second derivatives.

waveform and magnitude spectra for a 1661-Hz sinusoid clipped at
L = 0.3 before and after four-point polyBLAMP correction. Once
again, the corrected signal exhibits improved performance in terms
of aliasing. For instance, the level of the most prominent aliasing
component below the fundamental, at 720 Hz has been attenuated
by 43 dB. As before, the clipping threshold is preserved after the
correction, since the polyBLAMP method does not introduce any
overshoot in the time domain.

Rows 3 and 4 of Table 2l show the SNRs measured for two si-
nusoidal signals (MIDI notes A6 and C8) trivially-clipped, using
oversampling by factors 2 and 4, and after four-point polyBLAMP
correction. All these measurements were performed using a clip-
ping threshold L = 0.3. In this application, the four-point poly-
BLAMP method also exhibits better performance than oversam-
pling by low factors, with SNR improvements of 22.6 and 17.4 dB
for each respective signal. In terms of computational costs, the
polyBLAMP method shows similar costs to those of oversampling
by factor 2 but with improved SNR (see Tables 2] and [3)).

As a final note on hard clipping, Fig. [f[c) shows that the sec-
ond derivative of the signal has discontinuities around each im-
pulse. These discontinuities, while small, will contribute to the
overall aliasing seen at the output of the clipper. Integrating the
BLAMP or polyBLAMP function should, in theory, yield a cor-
rection function that further reduces aliasing. This idea is not ex-
plored any further in this study and is left as future work.

4.3. Alias-Free Half-Wave Rectification

Signal rectification is a type of memoryless nonlinear processing
that can be used to introduce harmonic distortion. In a half-wave
rectifier, only positive portions of the waveform are kept, while
negative portions are set to zero

fr(z[n]) = max(z[n], 0). (15)

In analog applications, this can be achieved using a diode, which
only allows current to flow in one direction. A particular feature of
half-wave rectification is that it introduces even harmonics only.
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Figure 7: Waveform and magnitude spectra of a (a)-(b) 1660-Hz
trivial hard-clipped sine wave (L = 0.3), and (c)-(d) the same
signal after four-point polyBLAMP correction.

Figs. [B(a) and [8[b) show the continuous-time domain wave-
form for a half-wave rectified sine wave and its first derivative,
respectively. As expected, the corners introduced by the rectifier
translate into discontinuities in the derivative. The magnitude of
each discontinuity is determined by the slope u of the original sig-
nal at the zero-crossings. Derivating this signal once more yields
the positive impulse train depicted in Fig. [8fc).

The polyBLAMP method can be used to round the corners
seen in Fig.[8|a) by centering it at the zero crossings. Parameters d
and p can be estimated by replacing p = 0 in (9) and (TI). This is
equivalent to finding the zero-crossings of the input signal. Fig.[9]
shows the waveforms and magnitude spectra for a 1660-Hz sinu-
soid without and with polyBLAMP correction. In this example,
the removal of the spurious frequency components is evident, with
aliases below the fundamental are attenuated by more than 40 dB.
Rows 5 and 6 of Table 2] show the proposed method outperforms
oversampling by 2 and 4, and increases SNR by more than 20 dB
with respect to a trivial implementation of half-wave rectification.
In terms of computational costs, this implementation is cheaper
than oversampling by a factor 2, as shown in Table 3]

4.4. Alias-Free Full-Wave Rectification

In full-wave rectification, negative portions of the waveform are
not zeroed, but inverted, for example by taking the absolute value:

fr(z[n]) = |z[n]|. (16)

This process introduces both even and odd harmonics. Several
analog audio effects incorporate a full-wave rectifier as part of a
larger signal processing chain, such as the Octavio Fuzz pedal [26].
It can also be found as a stand-alone effect in modular synthesizer
units, e.g. the Malekko 8NU8R [27].

Fig.[I0(a) shows the continuous-time waveform for a rectified
sine wave. Figs. @Kb) and @kc) show the first and second deriva-
tives of this waveform, respectively. In this case, the magnitude
of the discontinuities that appear in the first derivative are defined
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Figure 8: (a) Half-wave rectified continuous-time sine wave, (b)
its first and (c) second derivatives.
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Figure 9: Waveform and magnitude spectrum of a (a)-(b) 1660-Hz
trivial half-wave rectified sine wave, and (c)-(d) the same signal
after four-point polyBLAMP correction.

as twice the slope of the original signal at the zero-crossings. As
with hard clipping, both types of rectification also introduce dis-
continuities in subsequent derivatives of the signal, hinting at the
possibility that further correction could be achieved using higher-
order bandlimited integral functions.

The polyBLAMP method can be used in the same fashion as
with half-wave rectification by scaling the slope parameter by fac-
tor 2. The bottom two rows of Table 2] show the measured SNRs
for the two sinusoidal test signals discussed in the previous sub-
sections. Once again, the polyBLAMP method outperforms over-
sampling by factors 2 and 4, offering a nearly 20-dB improvement
in SNR with reduced computational costs (cf. Table [3).
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Figure 10: (a) Full-wave rectified continuous-time sine wave, (b)
its first and (c) second derivatives.

Lane et al. [28]] have proposed to use a full-wave rectified sine
wave (after further linear filtering) to approximate the sawtooth
waveform. Viliméki and Huovilainen analyzed this approxima-
tion showing that, while it contains considerably less aliasing than
the trivial sawtooth, the aliasing can be still be audible at high fun-
damental frequencies [[12]. The polyBLAMP method could now
be used to further enhance this sawtooth generation method.

Additionally, to demonstrate that the BLAMP method is ap-
plicable to nonlinearly processed arbitrary signals and not just sine
waves, Fig. [TT]shows the waveform and magnitude spectrum for a
synthetic string sound recording before and after full-wave rectifi-
cation without and with polyBLAMP correction. Overall, aliasing
components have been reduced by nearly 20 dB on average.

5. CONCLUSIONS

The corner-rounding capabilities of the polynomial approximation
of the BLAMP function, or polyBLAMP, were studied. In addi-
tion to alias-free synthesis of triangular waveforms, it can enhance
certain nonlinear waveshaping methods, which introduce discon-
tinuities in the first derivative of the signal waveform. The frac-
tional delay and slope at each corner need to be estimated, and
then this method can correct a few samples in the neighborhood of
each corner. The polyBLAMP method helps implementing alias-
free versions of hard-clipping and rectification for arbitrary signals
without oversampling, and thus enables enhanced nonlinear audio
effects processing.

Supplementary material, including MATLAB code and sound
examples, can be found inhttp://research.spa.aalto.
fi/publications/papers/dafxlée-blamp/.
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