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ABSTRACT

In sound production, engineers cascade processing modules at var-

ious points in a mix to apply audio effects to channels and busses.

Previous studies have investigated the automation of parameter set-

tings based on external semantic cues. In this study, we provide an

analysis of the ways in which participants apply full processing

chains to musical audio. We identify trends in audio effect usage

as a function of instrument type and descriptive terms, and show

that processing chain usage acts as an effective way of organising

timbral adjectives in low-dimensional space. Finally, we present a

model for full processing chain recommendation using a Markov

Chain and show that the system’s outputs are highly correlated

with a dataset of user-generated processing chains.

1. INTRODUCTION

Mixing audio involves a range of complex processes that include

balancing source amplitudes, applying audio effects, and position-

ing a sound source in a perceived space. These tasks can be time

consuming and are often carried out for either corrective or cre-

ative reasons. Corrective tasks are straightforward but time con-

suming operations, including noise removal, temporal alignment,

and level correction using equalisation and dynamics processing.

Creative tasks on the other hand require artistic interpretation, and

can involve perceptually mapping ideas and descriptions of audio

to processing parameters.

During production, audio effect modules are often cascaded

to create processing chains for each channel and bus in the mix,

including the master. This allows combinations of linear and non-

linear systems to be able to apply processing to the audio signal

at various points in the workflow, typically using a Digital Audio

workstation (DAW). For corrective purposes, the effects included

in each of the processing chains are selected by the engineer as a

reaction to audible cues, such as artefacts in the mix. For creative

purposes, they can be selected with a view to make a source more

or less prominent in the mix, or to achieve a given aesthetic.

1.1. Intelligent Music Production

Intelligent Music Production aims to provide interfaces and algo-

rithms to automate and facilitate the music production process [1].

This should effectively reduce the time spent by producers and en-

gineers on time consuming, menial tasks, and allow them to focus

on the creative aspects of music production. Previously, these sys-

tems have been developed for automatic mixing, whereby aspects

of the production workflow such as balance [2, 3] and panning [4],

can be optimised according to psychoacoustic principles.

Studies in the area of Intelligent Music Production have ex-

plored methods for the automation of parameter settings based on

external semantic cues, such as descriptive language [5]. This

has been applied to a range of audio effects such as equalisation

[6, 7, 8], distortion [9], compression [10] and reverberation [11].

In each of these cases, parameter automation is applied within the

context of a single effect, meaning the user of the system needs to

be aware of the type of processing required to achieve the desired

aesthetic.

The use of descriptive terms in music production can be shown

to represent changes in musical timbre, which often requires the

application of multiple audio effects [12, 13]. This suggests that

in order to provide users with a flexible interface, combinations

of effects need to be explored. This process is nontrivial, as in-

dividual audio effects are complex, multidimensional processing

units [6], and the combination of linear and nonlinear systems are

noncommutable, resulting in a large number of possible combina-

tions. For example, Dynamic range compression placed before an

equaliser (EQ) will provide a potentially different outcome than an

EQ placed after the compressor [14], even when the settings of the

two audio effects are retained and only the order of them is altered.

This is confounded by additional contextual conventions, such as

effects being used for specific instrument classes (e.g. drum com-

pression or vocal equalisation).

1.2. Objectives

In this paper, we present a method for full processing chain rec-

ommendation, based on a dataset of empirically captured user data.

We provide a comparative analysis of audio processing tools, based

firstly on the frequency of individual effect usage within a chain,

then on combinations thereof. Using this information, we can then

identify commonalities and patterns in audio effects usage, with

respect to contextual attributes such as timbral descriptions, audio

effects and genre. We conclude by presenting a system which is

able to recommend a number of processing modules based on the

likelihood of an effect’s position in a processing chain, weighted
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by external factors. This method for processing chain recommen-

dation can help lower the barrier to entry of novice engineers, and

can reduce the time required for expert users, when incorporated

into an intelligent mixing environment [15].

2. METHODOLOGY

In order to investigate the ways in which processing chains are

constructed by audio engineers, we conducted an experiment in

which participants were asked to apply audio processing to a num-

ber of predefined audio samples, to achieve a specified timbral

transformation. Subjects were provided with a range of audio ef-

fects, with no restrictions placed on the number of instances of an

effect, or the order in which they can be selected.

Audio samples were taken from the Mixing Secrets library1

and were selected to span a range of instruments and genres. The

instruments, selected for their popularity and availability in the

dataset were acoustic guitar, bass guitar, drums (mixed), electric

guitar, piano, saxophone, violin, and vocals. In order to evalu-

ate the effects of the channel type, mixed signals were also used.

These covered 5 genres: Reggae, Folk, Hip Hop, Rock and Jazz.

From the multi-track recordings 30 seconds long excerpts were

selected, in which all the instruments were active.

To describe the transformations requested from the users, a

range of timbral descriptors were obtained from the SAFE Project

[12]. Firstly, the ten most frequent terms were chosen based on the

number of entries into the dataset, and then the ten terms with the

highest generality across audio effects. This was to ensure that

both terms which are associated with a single audio effect and

terms that are associated with multiple audio effects were used

[12]. The terms were: air, boom, bright, close, cream, crisp,

crunch, damp, deep, dream, fuzz, punch, room, sharp, smooth,

thick, thin, and warm. The total number of terms was 18, as two

of the most frequently used terms also displayed a high generality

score. These were then stored in a relational database, resulting in

450 possible combinations of instrument, genre, and descriptor.

The tests were deployed using a web interface, in which sub-

jects were given a URL2 and asked to participate in their home

studios. Whilst distributed tests like these contain more ambiguity

due to uncontrolled variables such as listening environment and

participant experience, we were able to collect larger amounts of

data. This is a common practice in audio research [8, 16] pro-

vided suitable screening of participants takes place [17]. Partici-

pants were asked to follow the test instructions for a predetermined

period of time. The duration of the tests was set to 5, 10, 15 or 30

minutes, depending on their availability. During this time, audio

samples were presented along with a descriptor and a set of avail-

able audio effects.

The four audio effects available to test participants were (1) a

parametric equaliser, (2) a dynamic range compressor, (3) a non-

linear distortion, and (4) an algorithmic reverberation. These were

chosen to reflect the plugins available through the SAFE Project3

[5], and were built using the JSAP web audio plugin framework

[18]. Each time a processing chain is submitted, the plugins and

their parameters are transmitted to a server along with an extensive

set of differential audio features for each node in the chain, using

1Available at http://www.cambridge-mt.com/ms-mtk.htm
2Available at http://dmtlab.bcu.ac.uk/nickjillings/

safe-AMT/
3Available at http://www.semanticaudio.co.uk

the JS-Xtract feature extraction library. A full list of the audio

features can be found in [19].

3. SINGLE EFFECTS

A total of 178 submissions were made over a two week period by

47 participants. Of the four available plugins, 124 equalisation,

72 compression, 57 reverb and 40 distortion effects were used. 90

of the 178 entries only use a single plugin (50.6%) with a further

64 only using two plugins (36.0%). The longest processing chain

created is 4, giving 256 possible permutations. As there were no

bounds on the number of plugins in a chain, this suggests that long

processing chains are unnecessary for the given task. Tables 1, 2

and 3 show the number of entries per instrument, descriptor and

genre respectively, distributed across the audio effect type.

Inst. # EQ Comp. Dist. Revrb.

Ac. Gtr 8 4 (0.43) 3 (0.29) 1 (0.00) 4 (0.43)

El. Gtr. 14 9 (0.73) 4 (0.14) 5 (0.36) 5 (0.22)

Saxo. 4 4 (1.00) 2 (0.33) 2 (0.33) 1 (0.00)

Mix 36 22 (0.68) 17 (0.40) 6 (0.15) 15 (0.48)

Bs. Gtr. 31 22 (0.65) 12 (0.36) 7 (0.08) 8 (0.27)

Vocals 21 15 (0.81) 6 (0.16) 3 (0.04) 5 (0.27)

Drums 30 21 (0.57) 13 (0.53) 9 (0.19) 8 (0.27)

Violin 17 12 (0.70) 7 (0.26) 4 (0.27) 8 (0.36)

Piano 17 15 (0.81) 6 (0.53) 3 (0.07) 3 (0.20)

Table 1: Number of entries for each instrument with the number of

plugins applied and generality gi across all descriptors in braces.

Desc. # EQ Comp. Dist. Revrb.

air 7 4 (0.60) 3 (0.40) 0 (0.00) 3 (0.40)

boom 7 7 (0.86) 4 (0.30) 0 (0.00) 0 (0.00)

bright 10 10 (0.73) 3 (0.33) 1 (0.00) 3 (0.33)

close 13 11 (0.64) 5 (0.40) 1 (0.00) 5 (0.67)

cream 9 8 (0.81) 4 (0.38) 0 (0.00) 3 (0.17)

crisp 9 9 (0.58) 3 (0.44) 0 (0.00) 1 (0.00)

crunch 15 5 (0.34) 7 (0.61) 14 (0.78) 2 (0.14)

damp 8 4 (0.75) 1 (0.00) 1 (0.00) 9 (0.83)

deep 9 9 (0.82) 3 (0.11) 0 (0.00) 2 (0.17)

dream 9 4 (0.50) 1 (0.00) 1 (0.00) 9 (0.82)

fuzz 11 2 (0.25) 0 (0.00) 11 (0.64) 1 (0.00)

punch 9 7 (0.86) 9 (0.71) 1 (0.00) 0 (0.00)

room 13 4 (0.50) 2 (0.17) 1 (0.00) 13 (0.72)

sharp 7 7 (0.86) 5 (0.53) 1 (0.00) 0 (0.00)

smooth 9 6 (0.67) 5 (0.48) 2 (0.20) 3 (0.40)

thick 9 8 (0.56) 5 (0.20) 3 (0.50) 1 (0.00)

thin 11 11 (0.73) 1 (0.00) 1 (0.00) 2 (0.17)

warm 13 11 (0.82) 5 (0.40) 2 (0.17) 3 (0.11)

Table 2: Number of entries for each descriptor with the number of

plugins applied and generality gd across all descriptors in braces.

3.1. Effect Generality

A plugin or transform can be considered general if the likelihood

of it occurring is not bound by the measured term (instrument,

genre or descriptor). If an effect is only applied to a single in-

stance, it has a low generality score; if an effect is applied to every
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Genre # EQ Comp. Dist. Reverb.

Reggae 32 22 (0.61) 13 (0.43) 7 (0.21) 9 (0.33)

Jazz 33 24 (0.66) 20 (0.65) 9 (0.10) 13 (0.49)

Hip Hop 38 25 (0.64) 10 (0.39) 12 (0.21) 12 (0.34)

Folk 22 14 (0.684) 10 (0.31) 2 (0.07) 10 (0.31)

Rock 53 39 (0.60) 19 (0.47) 10 (0.20) 13 (0.20)

Table 3: Number of entries for each genre with the number of plug-

ins applied and generality ggenre across all descriptors in braces.

Term EQ Comp. Dist. Reverb.

Genre 0.786 0.799 0.713 0.904

Instrument 0.692 0.625 0.656 0.640

Descriptor 0.766 0.631 0.291 0.464

Table 4: Generality of plugins against the type of term (genre,

instrument, descriptor).

instance, it has a high generality score. Equations 1 and 2 calcu-

late a single generality score from the data for a given contextual

term (instrument, genre or descriptor). If a plugin only occurs for

a small number of the terms, then the g will be low. These were

adapted from [12]. Table 1 gives the generality of each plugin ac-

cording to the source instrument.

gi (p) =
2

D − 1

D−1
∑

d=0

dsort
(

x (d, p)
i

)

(1)

x (d, p)
i
=

np (d, i)
∑D−1

d=0
np (d, i)

(2)

Here, gi (p) is the generality of a plugin p on instrument i.

np (d, i) is the number of plugin occurrences on descriptor d and

instrument i. These measurements refer to the range of plugins are

used to process a given instrument.

Table 1 shows that distortion is the least general effect whilst

the EQ exhibits a consistently high generality score. The com-

pressor is most general on Piano, Drums and full Mixes, suggest-

ing that in these cases, the effects are applied irrespective of the

genre and timbral descriptor. Table 2 measures the generality of

descriptors across instrument classes. The genre, like the instru-

ment, has little impact on the choice of plugin with all plugins at-

taining similar generality scores across the various genres, shown

in table 4. Distortion is significantly less general when used on

Folk samples, indicating that it must only be used in very specific

use cases, with only 2 instances when a distortion was used from

all 22 responses for Folk. The reverb effect followed similarly low

generality scores.

Table 4 shows the cumulative generality scores for an effect

being used across contexts: genre, instrument and descriptor. A

low score here indicates the term has a high impact on whether a

plugin appears. This suggests the genre and instrument play a rel-

atively small role in the selection of effects in a processing chain.

However the descriptor has an impact on whether distortion or

reverb is used in the chain, indicating these only appear when a

specific descriptor is used. EQ and compressor appear to be uni-

versally more general and can appear in any chain.

1 2 3 4
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P
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g
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Figure 1: Euclidean distances of the features according to plu-

gin type (SAFE distortion, SAFE equaliser, SAFE compressor and

SAFE reverb) and position in the chain

3.2. Effect Salience

Each processor in the chain has a varying number of parameters,

each set empirically by the participant. We quantify this by ex-

tracting audio features before and after each effect in the chain.

Over 30 temporal and spectral features are averaged over each au-

dio sample, extracted using JS-Xtract [19], in line with the features

extracted by the SAFE project [5]. The impact of each plugin can

then be characterised by the change in feature space before and af-

ter processing. We measure this using the Euclidean distance over

each feature dimension, defined in Eq. 3.

d(p, q) =

√

√

√

√

N
∑

i=1

(qi − pi)
2

(3)

Each feature is vector normalised against all other instances of

that same feature within a processing chain, thus capturing relative

salience in the chain. Fig. 1 shows the feature distance as a func-

tion of position in the chain across all entries into the dataset. This

indicates the first plugin generally has the greatest impact, irre-

spective of plugin type. As the plugin index increases, the feature

differences decrease. The mean effect chain length is 1.64, where

the probability of an effect being selected for a given position in

the chain is presented in Table 5.

Effect 1st 2nd 3rd 4th

EQ (E) 0.44 0.43 0.21 0.33

Compressor (C) 0.22 0.28 0.25 0.33

Distortion (D) 0.15 0.10 0.16 0.00

Reverb (R) 0.17 0.18 0.38 0.33

Table 5: Probability of effects per chain position

For the first position, which includes chains of single effects,

the EQ is the most popular, appearing in 44.9% of the total in-

stances, followed by the compressor (22%). The first and sec-

ond positions retain the same structure, and the effects in order of

descending popularity are EQ, compressor, reverb and distortion.
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This aspect shifts when moving to the third position, were the most

popular effect is the reverb (37.5%), followed by the compressor

(25%), EQ (20%) and distortion (16%). Finally the fourth posi-

tion is split equally between EQ, compressor and reverb with the

distortion never appearing in that position.

3.3. Plugin Order

We consider each processing chain to be a multi-dimensional vec-

tor, where each dimension represents a plugin instance. Each in-

dex in the vector is then considered to have a finite state. The

likelihood of a plugin appearing at position k, given the state at

positions {0, . . . , k − 1} can be evaluated using a Markov chain

[20, 21]. Eq. 4 and 5 give the state transition matrix for the chain,

highlighting the probability of the next plugin type given the pre-

vious plugin, defined in equation 6. A fifth state is entered which

represents a blank plugin state. The chain must start at this empty

plugin and the chain terminates once this state is re-entered. The

state vector v comprises equalisation (E), compression (C), distor-

tion (D), and reverb(R).

v = [‘None’, ‘E’, ‘C’, ‘D’, ‘R’] (4)

P =











0.000 0.645 0.555 0.675 0.544
0.449 0.000 0.250 0.200 0.316
0.191 0.250 0.013 0.025 0.088
0.124 0.056 0.111 0.000 0.053
0.235 0.048 0.069 0.100 0.000











(5)

Pr (An = pi|An−1 = pj) = Pi,i−1 = Pi,j (6)

Pr (An = pi|An−1 = pj , ..., A0 = p0) =

N
∏

n=1

P (An, An−1)

(7)

Here, the probability that the kth plugin is the last plugin in

the chain is given by the first row, whilst the probability of the

first plugin in the chain is given by the first column. The transition

matrix can be used to generate all possible outcomes with their

probabilities. Eq. 7 provides a formal definition, showing nodes

in the chain be represented a probabilistic series of states. Using a

Markov Chain, the most likely sequences from the model are: 1)

EQ (29.0%), 2) reverb (12.8%), 3) compressor (10.6%), 4) distor-

tion (8.3%), 5) compressor-EQ (6.2%) and 6) EQ-reverb (4.8%).

4. PROCESSING CHAINS

In total, 30 unique processing chains were constructed during the

experiment. In order to compare the various combinations, plugin

chains that were implemented only once in our dataset were ex-

cluded, leaving 19 unique entries. The mean usage of a processing

chain is 8.78 times, and the most popular processing chains are

EQ (27.5%), reverb (12.5%), compressor-EQ (11.9%), distortion

(8.9%), EQ-compressor (8.9%) and EQ-reverb (5.3%). This cor-

relates with effect transitions generated by the Markov Chain in

Section 3.3.

To measure processing chain similarity, a matrix of descrip-

tor occurrences per chain is constructed, using a distance measure

based on the coexistence of terms in each pair of processing chains.

We then compute pairwise distances to perform multidimensional

scaling [22], followed by agglomerative clustering to establish a
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Figure 2: Hierarchical clustering of unique chains based on term

usage
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Figure 3: Hierarchical clustering of unique terms based on pro-

cessing chain usage.

hierarchy of the plugin chains in the dataset, presented in Fig. 2.

Plugin chains that are used to achieve similar terms, as is the case

with EQ and EQ-compressor, are placed close in the hierarchy,

whereas chains that do not share any descriptors, as is expected

with distortion and reverb are placed further apart. Similarly, we

can identify the relationship between transform descriptions based

on the frequency of use across processing chains. In this case we

represent the descriptive terms in multidimensional space, where

each of the dimensions is the frequency of use for a given process-

ing chain. A matrix D, with dimensions M × N is constructed,

where M is the descriptor and N the unique plugin chain, and

entry D(i, j) is the amount of times plugin chain j was used to

achieve descriptor i. This process allows us to perform hierar-

chical clustering, this time on the descriptive terms, presented in

Fig. 3. The results show that the terms are organised in three pre-

dominant groups: a group that uses mainly distortion (punch, fuzz,

crunch), a group that uses mainly reverb (room, dream, damp), and

a group with high generality, distributed across a range of plugin
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chains. For example warm is a descriptor that can be achieved by

8 different unique plugin chains, using 42% of the unique chains

in our dataset, while fuzz makes use of just 15%.

4.1. Transform Similarity

An audio effect can have a more significant effect on the audio

signal than others in the chain, based on its respective parameter

space. In order to quantify this, audio feature differences across

each effect in the chain are captured using Euclidean distance. This

is represented as a matrix P with dimensions M × E, where M

represents the number of descriptors and E is the number of base

effects (EQ, compressor, distortion, reverb). We can then apply

dimensionality reduction to this matrix using PCA and project the

audio effect classes into the low-dimensional space, as shown in

Fig. 4.
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sharp smooththick

thin

warm

Figure 4: Low-dimensional descriptor mapping with prevalent di-

mensions

The figure shows that terms associated with specific effects, i.e.

those with low generality scores, are highly correlated with the

effect dimensions. Fuzz and crunch for example are correlated

with distortion, damp and room with the reverb, and sharp with

the compressor. Terms with a more general representation, such as

warm tend to exhibit lower correlation scores.

5. FULL CHAIN RECOMMENDATION

5.1. Descriptor-based chain recommendation

The Markov chain approach to processing chain generation uses a

matrix of conditional probabilities, based solely on the effect in the

chain at position k − 1. This method will be inherently biassed to

favour plugins with a high generality (tables 1 and 2). For example,

there is a high probability that the matrix P (Eq. 5) will generate a

chain consisting of a single effect, given the likelihood of 60.7%.

To improve the recommendation, we use a state transition matrix,

based on the specific probabilities for each descriptive term Pd.

Sequentially generating states using Pd will then produce a set

of chains for the specified descriptor d. For instance, fuzz will

generate a chain of just distortion with a likelihood of 74.38%,

and an EQ-distortion chain with a likelihood of 16.53%.

By implementing an independent matrix for each timbral de-

scriptor, we are also able to compare the way in which terms are

organised in our generated processing chains, to the way the terms

are organised in our dataset. By generating the same number of

entries per transform, we construct a similarity matrix of terms,

based on their frequency of plugin chain usage. We then apply di-

mensionality reduction and the resulting mapping is presented in

Fig. 5. Here, descriptors that generate similar chains are placed

together such as room and damp, or sharp and punch. This be-

haviour adds a level of versatility to the system, given that similar

or identical chains, which can be used for achieving neighbouring

descriptors, have a high probability of co-occurring.

To demonstrate the similarity of the original and generated de-

scriptor mappings, the two spaces can be assessed using the trust-

worthiness (Tk) and continuity (Ck) metrics [23, 24], shown in Eq.

8 and 9.

Tk = 1−
2

nk(2n− 3k − 1)

n
∑

i=1

∑

j∈U
(k)
i

(r(i, j)− k) (8)

Ck = 1−
2

nk(2n− 3k − 1)

n
∑

i=1

∑

j∈V
(k)
i

(r̂(i, j)− k) (9)

Here, the distances of the n entries in two spaces (U and V ) are

converted to ranks (r and r̂) between points i and j. The measure-

ments then evaluate the distributions of datapoint in the respective

spaces over a number of neighbouring datapoint (k).

The low-dimensional space generated by the descriptor-wise

state transition matrices (presented in Fig. 5) achieves a trustwor-

thiness score of 0.78 for the original structure of unique terms (the

space used to generate the clusters in Fig. 3). This suggests that

the organisation of terms is preserved when generating processing

chains using the Markov Chain approach. Similarly, for continu-

ity, the structure of the probability matrix is retained with a score

of 0.782.

For terms with low generality, i.e. those that have very specific

plugin usage patterns such as fuzz and dream (see table 2), very

specific plugin chains will appear from Pd. However, for entries

which consist of more general effects, warm, smooth and cream,

more chains can appear which have lower probabilistic scores.

This can be interpreted as a low confidence score, thus produc-

ing more variance in the results. Psmooth generates the following

chains: EQ (16.67%), EQ-compressor (13.33%), reverb (11.11%)

and distortion (11.11%). These all have low and relatively equal

probability of occurring, highlighting how unspecified this matrix

is.

This can be improved by weighting the transition matrix prob-

abilities to penalise plugins which are not related to the term. This

is done by incorporating weights which indicate the plugin’s preva-

lence in a chain. A weight wp is found using Eq. 10 to 12.

wp =

∑N−1

n=0

∑L−1

l=0
f(d, l)g(x(l), p)

∑N−1

n=0
n

(10)

f(d, l) =

{

1, if l = argmax(d)

0, otherwise
(11)

g(x, p) =

{

1, if x = p

0, otherwise
(12)
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Here, N is the number of chains, L the length of chain n,

d is a vector of the plugin Euclidean distances (Eq. 3) and x a

vector of the plugin codes. Function f (Eq. 11) returns 1 if the

plugin at position l is the most prevalent effect and function g (Eq.

12) returns a 1 if the plugin at position l is the same as plugin p.

The weights are then multiplied with the corresponding row of the

descriptor’s transition matrix.

Applying weights to the probability increases the possibility

of the prevalent effect(s) appearing at any position in the chain.

In this manner the system gains an additional level of adaptivity,

being able to recommend chains that might not exist in the origi-

nal dataset, but concurrently takes into account the most important

plugin in the chain. For example, using the weighted transition ma-

trix, we are able to predict chains for the the smooth descriptor with

higher accuracy, predicting compressor (28.87%), EQ (21.66%)

and EQ-compressor (15.28%).

The distribution of terms using the weighted Markov chain

approach are presented in Fig. 6. Using the trustworthiness and

continuity metrics, the original structure of the descriptors is re-

tained at a value of 0.75, and the continuity between the trans-

formed space to the original data has increased to 0.86.

5.2. Instrument-based chain recommendation

As the source instrument also proves to be a salient attribute plugin

selection, we can apply the same weighting method to the instru-

ment classes Pi. This will allow the effects, which are specific

to an instrument to be favoured in the processing chain. For in-

stance, for the Mix samples, the Markov chain method generates

EQ (19.69%), reverb (17.78%) and compressor (13.73%). How-

ever, applying the weighting wi based on the most prevalent ef-

fect does not improve the model. With the weights, the generated

processing chains for Mix are compressor (30.05%), EQ (25.69%)

and reverb (21.44%). Thus, applying the weights reduces the like-

lihood of complex chains occurring. The weights for the Mix,

wMix are 0.250, 0.333, 0.138 and 0.278 for the EQ, compressor,

distortion and reverb respectively. Conversely, the weights for the

crunch, wcrunch are 0.066, 0.266, 0.667 and 0. This shows that

whilst certain plugins are applied more generally to a given instru-
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ment class, the most prevalent effect in a chain is actually driven

by the descriptor. The weights for the mixed samples are all rela-

tively similar, except the distortion, which means after scaling and

normalising the matrix, a very similar transition matrix is created.

6. CONCLUSION

We have introduced a method for audio processing chain recom-

mendation, based on a dataset of user-inputs. We captured infor-

mation regarding the instrument, genre and descriptor and used

them to weight a state transition matrix. To evaluate the output of

the model, we measured the similarity of descriptor mappings in

low-dimensional space using trustworthiness and continuity, and

we showed that a descriptor-based Markov chain method achieves

a score of T (k) = .78, C(k) = .782 and the weighted descriptor-

based model achieves a score of T (k) = .75, C(k) = .86.

We provide an evaluation of plugin usage in processing chains

and show that the role of genre is negligible in plugin selection,

whilst the descriptor heavily influences this decision making pro-

cess. The EQ and compressor plugins both exhibit high generality,

which suggests they are selected for most processing chains ir-

respective of instrument or descriptor. The distortion and reverb

plugins are very specific, which means they are more frequently

used when a specific timbral transformation is required.
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