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ABSTRACT

Nonlinear interactions between different parts of musical instru-

ments present several challenges regarding the formulation of re-

liable and efficient numerical sound synthesis models. This paper

focuses on a numerical collision model that incorporates impact

damping. The proposed energy-based approach involves an itera-

tive solver for the solution of the nonlinear system equations. In

order to ensure the efficiency of the presented algorithm a bound is

derived for the maximum number of iterations required for conver-

gence. Numerical results demonstrate energy conservation as well

as convergence within a small number of iterations, which is usu-

ally much lower than the predicted bound. Finally, an application

to music acoustics, involving a clarinet simulation, shows that in-

cluding a loss mechanism during collisions may have a significant

effect on sound production.

1. INTRODUCTION

Collisions inherently take place during sound production from mu-

sical instruments [1]. Recent attempts have been therefore made in

order to incorporate numerical collision models to physics-based

sound synthesis algorithms [2, 3, 4]. The prevalent approach to-

wards efficient schemes that may cover the whole audio range is to

use time-stepping algorithms, such as the finite difference method

[5], digital waveguides [6] and modal-based approaches [7, 8].

This requires discrete-time modelling of nonlinear interactions, a

problem that gives rise to several challenges, such as existence and

uniqueness of solutions to the underlying nonlinear equations, as

well as the guarantee of numerical stability.

Although impact losses are often neglected in music acoustics

applications, it has been proposed to include this effect by using

the Hunt-Crossley impact model [3, 9, 10, 11]. Such a practise

may result in minor, yet acoustically significant alterations of the

synthesised sounds, as will be shown in Section 4. The accuracy

of numerical solutions to this model equations has been the subject

of a recent study [12], where a correction-based method was pro-

posed to accurately approximate the velocity of impacting objects,

based on enforcing numerical energy consistency. In the present

work a solver is employed, that is shown to provide approxima-

tions of high accuracy, without the need of a post-processing step.

Furthermore, since iterative solvers are employed in order to nu-

merically solve the (nonlinear) model equations, special attention

is devoted to the convergence speed of the algorithm, by calcu-

lating the maximum number of required iterations. Convergence

within a given number of iterations is particularly useful in appli-

cations where an efficient solver is sought after, as for example

real-time sound synthesis.

Section 2 presents the Hunt-Crossley impact model, along with

an energy-based numerical formulation. Section 3 incorporates

this model to the simulation of a damped harmonic oscillator, with

or without the presence of external forces. An iterative solution is

carried out, for which a bound on the number of required iterations

is calculated. Section 4 presents an application of the formulated

model to musical instruments, in terms of a clarinet tone simula-

tion and Section 5 discusses the findings of the current study in the

context of acoustics research.

2. IMPACT MODELING

Consider a mass approaching a rigid barrier from below, with con-

tact occurring at y = 0. The Hunt-Crossley repelling force can be

defined as

fc = −kc⌊y⌋α − λc⌊y⌋α dy

dt
, (1)

where ⌊y⌋α = h(y)yα, α ≥ 1 is a power-law exponent and h(y)
denotes the Heaviside step function. This non-negative term repre-

sents the compression of the mass while in contact with the barrier

[2, 10, 13], a model which has been shown to be in agreement with

experimental measurements in musical instruments [14, 15, 16].1

The constant kc represents stiffness and λc is a damping constant.

The negative sign indicates that this force is acting against the mo-

tion of the mass ‘through’ the barrier. Newton’s second law can be

used to derive the equation of motion of the system

m
d2y

dt2
= fc, (2)

where m represents mass. For this system of lumped contact Pa-

petti et al. [12] derived an analytic expression for the energy H as

a function of the velocity v, which reads

H(v) =
m

2
v2 − m

r
(v − vim) +

m

r2
ln

∣

∣

∣

∣

1 + rv

1 + rvim

∣

∣

∣

∣

, (3)

where vim is the velocity with which the mass hits the barrier (im-

pact velocity) and r = λc/kc is a damping factor. This formula

may be used to compare numerically obtained results with an ana-

lytical solution.

An energy-based formulation of the system may be derived by

defining the collision potential

Vc =
kc

α+ 1
⌊y⌋α+1. (4)

The collision force can then be written as [13]

fc = −∂Vc

∂y
− r

∂Vc

∂t
. (5)

1Note that in cases where the collision is assumed to be rigid (see, e.g.
[4, 8]), this term corresponds to an artificial penalisation.
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Following [10] (2) is cast into Hamiltonian form as

dy

dt
=

∂T

∂p
(6a)

dp

dt
= −∂Vc

∂y
− r

∂Vc

∂t
, (6b)

where T = p2/(2m) represents the kinetic energy, p being the

conjugate momentum. Similar formulations, including losses within

an energy balanced framework, have been recently derived using a

port-Hamiltonian formulation (see, e.g. [17]).

2.1. Numerical formulation

System (6) can be discretised by employing mid-point derivative

approximations for all terms (see, e.g. [2, 3]). The approximation

to the continuous variable y(t) at time n∆t, where ∆t is the sam-

pling interval, is denoted by yn. Then (6) is discretised as

yn+1 − yn

∆t
=

T (pn+1)− T (pn)

pn+1 − pn
(7a)

pn+1 − pn

∆t
= −Vc(y

n+1)− Vc(y
n)

yn+1 − yn
− r

Vc(y
n+1)− Vc(y

n)

∆t
.

(7b)

Defining the normalised momentum qn = pn∆t/(2m) yields

yn+1 − yn = qn+1 + qn (8a)

qn+1 − qn = −∆t2

2m

Vc(y
n+1)− Vc(y

n)

yn+1 − yn

− r
∆t

2m

(

Vc(y
n+1)− Vc(y

n)
)

. (8b)

Using the auxiliary variable x = yn+1−yn leads to the following

nonlinear equation in x

F (x) = x− 2qn +
∆t2

2m

Vc(y
n + x)− Vc(y

n)

x

+r
∆t

2m
(Vc(y

n + x)− Vc(y
n)) = 0.

(9)

Note that

lim
x→0

F (x) =
∆t2

2m
V ′

c (y
n)− 2qn, (10)

where V ′

c signifies taking the derivative of Vc with respect to po-

sition. This can be used to avoid singularities in F (x). Equation

(9) can be solved using, e.g. the Newton-Raphson or the bisection

method. A bound on the required number of iterations for these

methods can be obtained as shown in Section 3.3. Existence and

uniqueness of solutions for (9) can be proven, as explained in [2],

using the convexity of Vc and the positivity of V ′

c which imply

that F ′ ≥ 1 and F ′′ ≥ 0. Displacement and momentum can be

subsequently updated using

yn+1 = x+ yn

qn+1 = x− qn,
(11)

whence pn+1 is also obtained. For energy conserving (Hamilto-

nian) systems this method can be shown to conserve the numeri-

cal energy within machine precision in implementations on digital
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Figure 1: Simulation of a mass colliding with a barrier, using

the Hunt-Crossley model. The system energy of the presented

method and the fourth order Runge-Kutta method during the im-

pact is compared to the continuous (analytical) solution from (3).

A zoomed area shows a more clearer comparison of the approxi-

mation methods.

processors [13] and is hence labelled EC for the remainder of this

text.

Following [12] the presented method is compared to the ana-

lytical solution (3) and to a higher order approximation given by a

fourth order Runge-Kutta method (RK4). Figure 1 shows the en-

ergy during the impact as a function of the compression velocity.

The parameters’ values used for the simulations (listed in Table 1)

are taken from [12]. It can be observed that the EC method accu-

rately reproduces the analytical result, outperforming the higher-

order Runge-Kutta method. This is a result of the exact energy-

conserving nature of this algorithm, in the case of Hamiltonian

systems, that is projected here to a dissipative case.

Table 1: Parameters used in the impact model.

mass m = 0.01 kg

stiffness constant kc = 107 N/mα

damping factor r = 0.01 s/m

exponent α = 1.3
impact velocity vim = 0.5 m/s

sampling rate fs = 44100 Hz

3. DAMPED OSCILLATOR WITH CONTACT

The above impact model can be readily incorporated to the simu-

lation of a damped oscillator. Consider a mass-spring system with

stiffness k = m(2πf0)
2, f0 being the resonance frequency of the

oscillator. The potential energy is now given by V = Vs + Vc,

where Vs = ky2/2 and Vc is the collision potential of the previ-

ous section. A damping term is also included in the equation of

motion of the system (see Figure 2), which reads

m
d2y

dt2
+mγ

dy

dt
+ ky + kc⌊y⌋α

(

1 + r
dy

dt

)

= 0, (12)
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Figure 2: Sketch of a damped harmonic oscillator (a) before and

(b) during contact with the barrier.

γ being a damping factor. This system can be written in Hamilto-

nian form as [10]

dy

dt
=

∂T

∂p
(13a)

dp

dt
= −∂V

∂y
− r

dVc

dt
− γp. (13b)

For the evolution of the system energy H = T + V the fol-

lowing expression can be derived

dH

dt
=

∂H

∂y

dy

dt
+

∂H

∂p

dp

dt
= −γp2

m
− rp

m

dVc

dt

= − p2

m2
(mγ + rkc⌊y⌋α) ≤ 0,

(14)

which is in accordance with both loss mechanisms, with the en-

ergy decreasing due to frictional forces. In search of an invariant

quantity, the following conservation law can thus be derived [18]

H +

∫

γp2

m
dt+

∫

rp

m
dVc = const. (15)

The numerical formulation of (13), using the EC discretisation

method, is

yn+1 − yn

∆t
=

T (pn+1)− T (pn)

pn+1 − pn
(16a)

pn+1 − pn

∆t
= −V (yn+1)− V (yn)

yn+1 − yn

− r
Vc(y

n+1)− Vc(y
n)

∆t
− γµt+p

n, (16b)

where µt+p
n = (pn+1 + pn)/2. This leads to the solution of a

nonlinear equation in x (again for x = yn+1 − yn)

F (x) = (1 + γ
∆t

2
)x− 2qn +

∆t2

4m
k(x+ 2yn)

+
∆t2

2m

kc
α+ 1

⌊yn + x⌋α+1 − ⌊yn⌋α+1

x

+ r
∆t

2m

kc
α+ 1

(

⌊yn + x⌋α+1 − ⌊yn⌋α+1) = 0.

(17)

Note that proving existence and uniqueness of solutions, as well as

avoiding singularities can be shown in a similar fashion as for (9).

3.1. Energy balance

In musical instrument simulation, such lumped oscillators, rep-

resenting the vibroacoustical behaviour of an instrument, are of-

ten driven by external forces due to interacting objects or acoustic

pressure. Given such an external force fex, equation (13b) trans-

forms into
dp

dt
= −∂V

∂y
− r

dVc

dt
− γp+ fex, (18)

which causes (17) to transform into

F (x)− ∆t2

2m
µt+f

n
ex = 0. (19)

The energy balance accordingly becomes

dH

dt
=

pfex
m

− p2

m2
(mγ + rkc⌊y⌋α) . (20)

Note that the energy is, in general, not monotonically decreasing

any more, due to the power supplied by the external force, hence

the system is not dissipative. However, in the absence of excita-

tion (when the external force fex = 0) the energy is continuously

decreasing, since dH/dt ≤ 0 and the system is dissipative. Dis-

cretising (20) yields

Hn+1 −Hn

∆t
=− γ

m
(µt+p

n)2 − r

m
µt+p

n V
n+1
c − V n

c

∆t

+
µt+p

n

m
µt+f

n
ex,

(21)

with Hn = T (pn) + V (yn). This induces the following discrete

conservation law [18]

Hn+1 +
n
∑

κ=0

µt+p
κ

m

(

γµt+p
κ + r

V κ+1
c − V κ

c

∆t
− µt+f

n
ex

)

∆t

=Kn = const. (22)

3.2. Bounds on the discrete solution

The magnitude of the numerical approximations for qn and yn can

be bound in regard to the initial energy of the system, the external

force and the model parameters. Since

µt+p
n V

n+1
c − V n

c

∆t
= µt+p

n V
n+1
c − V n

c

yn+1 − yn

yn+1 − yn

∆t

=
(µt+p

n)2

m
V ′

c (y) ≥ 0,

(23)

it follows from (22) that

Hn+1 ≤ Hn −∆t
γ

m
(µt+p

n)2 +∆t
µt+p

n

m
µt+f

n
ex. (24)

The parabola −γz2 + zµt+f
n
ex attains its maximum at

z = µt+f
n
ex/(2γ), hence we obtain the estimate

Hn+1 ≤ Hn +
∆t

m

(µt+f
n
ex)

2

4γ
. (25)
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Using the facts that 0 ≤ p2

2m
, ky2

2
≤ H , q = p

∆t

2m
and x =

qn+1+qn, the following local estimate for the solution of F (x) =
0 is obtained

∣

∣qn+1
∣

∣ ≤ ∆t

2m

√

2mHn +
∆t

2γ
(µt+fn

ex)
2. (26)

Assuming an upper bound on the external force, fmax
ex , one can

also obtain the global estimate for times smaller than a final time

tend ≥ (n+ 1)∆t

Hn+1 ≤ H0 +
tend
m

(fmax
ex )2

4γ
, (27)

which leads, for γ > 0 to

∣

∣qn+1
∣

∣ ≤ ∆t

2m

√

2mH0 + tend
(fmax

ex )2

2γ
(28a)

|x| ≤ ∆t

m

√

2mH0 + tend
(fmax

ex )2

2γ
:= Bx (28b)

and for the solution yn+1, we obtain for k > 0 the following

estimate

∣

∣yn+1
∣

∣ ≤

√

2H0

k
+ tend

(fmax
ex )2

2mkγ
:= By . (29)

Note that for γ = 0 and fex = 0 (as is the case in Figure 4)

these bounds can be shown to be equal to Bx = ∆t

m

√
2mH0 and

By =
√

2H0

k
.

3.3. Bound on the number of iterations

One common issue when using iterative methods to solve nonlin-

ear equations is the number of iterations required for the numerical

solution to converge. Indeed, for certain parameter choices similar

iterative schemes may fail to converge, as reported in [7]. There-

fore a formal calculation is presented here for the maximum num-

ber of iterations required for the numerical solution of (19) using

Newton’s method (or alternatively the bisection method).

In the presence of an external force, the uniqueness of the so-

lution of F (x) = 0 needs to be analysed separately. Assuming

uniqueness, the bisection method halves the interval whose mean

is an approximation to the solution of F (x) = 0 in each iteration.

From the bound (28b) on x therefore it follows that it takes at most

k = log2
Bx

ε
(30)

iterations for the bisection method to converge up to precision ε,

when starting within the interval [−Bx, Bx].
Uniqueness can be guaranteed when the external force does

not depend on the state (y and y′) of the oscillator, hence fn+1
ex is

a function independent of x. Under this assumption, one can show

that

F ′(x) ≥ 1, (31)

F ′′(x) ≥ 0, (32)

and use these facts for the analysis of Newton’s method. This leads

(see Appendix) to the fact that in order to achieve a given precision

ε in the approximation of the unique solution x∗ of F (x) = 0, one

needs to perform at most k Newton iterations when starting from

x0 ≥ x∗ and k + 1 iterations when starting from x0 < x∗, with

k =
log ε− log(2Bx)

log
(

1− 1
F ′(Bx,By)

) . (33)

When fex depends on (y, y′) but a bound on its magnitude is

known, then existence and uniqueness can also be guaranteed for

∆x being small enough. Note that both bounds (for the bisection

and Newton’s method) constitute a worst-case-scenario estimation

and, as shown in Figures 3 and 4 below, convergence is expected

to occur earlier. It is still advisable however to ensure that such

bounds exist.

3.4. Numerical results

Figures 3 and 4 show simulation examples for a damped, driven

oscillator and an undamped oscillator, both undergoing repeated

collisions including impact damping. Figure 3(b) demonstrates the

conservation law (22) by plotting the error

en =
Kn −K0

P∈(K0)
(34)

for a system with resonance frequency f0 = 3000 Hz, where

P∈(K
0) ≤ K0 is the nearest power of two to K0 from the left

[19]. The external driving force is a sinusoid with a 440 Hz fre-

quency. The other model parameters are the same as in Section 2

and the initial conditions are y0 = −0.1mm; p0 = 0.005 kg m/s.

The dashed line in Figure 3(a) shows the mass displacement in

the absence of the external force. Figure 3(c) shows how many

Newton iterations are required at each time step for convergence to

machine precision. These are well below the theoretical bound cal-

culated in Section 3.3, which is equal to 12 iterations for Newton’s

method and 38 iterations for the bisection method; note however

that the bisection method requires less operations at each iteration.

Figure 4 presents the case where the external force and the linear

damping are omitted (γ = 0), and the impact damping factor r is

increased 500 times to exaggerate its effect. It can be observed that

in both cases Kn is conserved within machine precision and New-

ton’s method converges quite fast, which can be explained by the

presence of a good starting point for x, available from the solution

at the previous time step.

Figure 5 shows how the number of iterations may increase

when an arbitrary starting point is chosen. This starting point is en-

forced for all time-steps during a 10 ms long simulation, using the

same parameters as in Figure 3. The maximum number of required

iterations across all time-steps is plotted for each chosen starting

point value. Since F ′(x) ≥ 1 and F ′′(x) ≥ 0 only a poor starting

point larger than Bx will result in slower convergence rates2, as

explained in the Appendix.

2In practice, using the solution at the previous time-step as a starting
point guarantees that x0 ∈ [−Bx, Bx]. However, depending on the shape
of F (x), x1 may indeed lie on the right hand side of Bx. In that case one
should set x1 = Bx, since the solution x∗ is expected to lie in [−Bx, Bx].
When generating Figure 5, starting from an arbitrary x0, this substitution
was not carried out, in order to demonstrate the possibility of slow conver-
gence rates in the absence of a bound on the discrete solution.
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Figure 3: Simulation of a damped, driven oscillator involving mul-

tiple impacts modeled using the Hunt-Crossley approach (γ =
3000 s−1, r = 0.01 s/m). (a): mass displacement (the dashed line

shows the displacement in the absence of the external force). (b):

error in the conservation of Kn. Horizontal lines indicate multi-

ples of single bit variation. (c): Number of iterations required for

Newton’s method to converge (the dashed line indicates the theo-

retical bound on the number of iterations).

4. APPLICATION TO SOUND SYNTHESIS

An application of the above damping model is demonstrated in

this section using a problem from music acoustics. In particular,

the motion of a clarinet reed is simulated and the resulting sound is

synthesised. The clarinet reed is driven by the pressure difference

across it p∆ = pm − pin, where pm is the blowing pressure and

pin is the pressure inside the clarinet mouthpiece. Hence the force

applied to the reed due to the pressure difference is f∆ = Srp∆,

where Sr is the effective reed area [20]. Thus the motion of the

reed is governed by [3]

m
d2y

dt2
+mγ

dy

dt
+ky+kc⌊(y−yc)⌋α

(

1 + r
dy

dt

)

= f∆. (35)

Two distinct nonlinearities take place here. The first one is due

to the collision of the reed with the mouthpiece lay and is modelled

using the collision potential defined in Section 2. This nonlinear

reed-lay interaction becomes effective after the reed displacement

y exceeds a certain value yc [21, 22] and hence an offset is required

inside the ‘beating bracket’ defined under equation (1). The sec-

ond nonlinearity stems from the relationship between mouthpiece

pressure pin and mouthpiece flow uin. The flow is built up from two

components [3, 22], the Bernoulli flow uf and the flow ur induced
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Figure 4: Simulation of an undamped oscillator involving multiple

impacts modeled using the Hunt-Crossley approach (γ = 0, r = 5
s/m). (a): mass displacement. (b): error in the conservation of

Kn. Horizontal lines indicate multiples of single bit variation. (c):

Number of iterations required for Newton’s method to converge

(the dashed line indicates the theoretical bound on the number of

iterations).

Bx

x0starting point

-2 -1 0 1 2 3 4

m
a

x
(N

it
e

r
)

0
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Figure 5: The maximum number of required iterations for differ-

ent choices of the starting point x0 for the Newton solver. The

horizontal dashed line indicates the theoretical bound on the num-

ber of iterations and the vertical one shows the limit that should

be enforced on x1 in order for the iteration bound to be valid (see

Appendix; in this case Bx = 4.42 · 10−5). Evidently such a limit

was not enforced in this numerical experiment.

by the motion of the reed, with

uin = uf + ur (36a)

uf = σwh

√

2|p∆|
ρ

(36b)

ur = Sr
dy

dt
, (36c)

where σ = sign(p∆), ρ is the air density, w the width of the reed
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Figure 6: Sketch of the single-reed–mouthpiece system. yeq is the

equilibrium position of the reed, uf and ur the Bernoulli and reed

flow respectively and pm and pin the mouth pressure and mouth-

piece pressure.

11 12.7 15

31.6 51

0 2 4 6 8 10 12

−0.3

−0.2

−0.1

0

0.1

time [ms]

re
fl
e

c
ti
o

n
 f

u
n

c
ti
o

n

330

length [mm]

di
am

et
er

 [m
m

]

mouthpiece cylindrical tube

Figure 7: Top: schematic profile of a simplified clarinet bore (not

to scale). Bottom: the simulated reflection function.

and h = yeq − y the reed opening, yeq being the equilibrium open-

ing of the reed after the player positions his lip (see [23]). These

parameters, related to the single-reed excitation mechanism, are

visualized in Figure 6. Note that in principle h is allowed to be-

come negative, something avoided in the simulations presented

here, due to the effect of the collision force. Nevertheless, it is

safer to define h = ⌊yeq − y⌋, in order to allow an arbitrary varia-

tion of model parameters that might affect the reed opening.

The mouthpiece pressure can be obtained using convolution

with the reflection function of the tube [22]. The geometry of the

tube (including the mouthpiece) used in the numerical simulations

is shown in Figure 7. Its input impedance was calculated using the

Acoustics Research Tool [24], including viscothermal losses at the

walls and radiation losses at the open end. This can be converted to

the reflection function of the tube (also plotted in Figure 7) follow-

ing the procedure described in [25]. An energy balance for such a

coupled system has been explored in [3] where the air column is

also discretised using the finite difference method.

The effect of including the impact damping in the single-reed

model is visualized in Figure 8 where the spectrogram of the mouth-

piece pressure pin is compared to that of the same simulation but

with the impact damping omitted. The model parameters used in

the simulations are given in Table 2. It can be observed that taking

impact damping into account results in the dissipation of higher

Table 2: Physical model parameters used in the clarinet simulation.

reed surface Sr = 9.856 · 10−5 m2

stiffness/area k/Sr = 1.792 · 107 Pa/m

equilibrium yeq = 4.09 · 10−4 m

blowing pressure pm = 3637 Pa

reed width λ = 0.012 m

reed mass/area m/Sr = 0.0332 kg/m2

damping γ = 3000 1/s

impact stiffness/area kc/Sr = 2 · 1010 Pa/mα

impact damping r = 1 s/m

impact exponent α = 2

r = 1
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Figure 8: Spectrogram of the simulated mouthpiece pressure pin
with (left) and without impact damping (right).

harmonics, especially during the transient. The parameters related

to this loss mechanism are here chosen arbitrarily; they are ex-

pected to vary depending on the type of reed used (plastic reeds

have seen increased use lately) and the material properties and ex-

act geometry of the mouthpiece lay. The latter is often specified

by musicians as having a significant effect on the response of the

instrument.

5. DISCUSSION

A power balance model for impact damping has been presented.

This leads to the numerical solution of a nonlinear equation, with

Newton’s method being a suitable solver. The fact that such equa-

tions need to be solved iteratively led to an efficiency analysis in

terms of the maximum number of iterations required for conver-

gence. Note that such a limit represents a worst-case scenario.

Convergence is usually achieved earlier, due to the presence of a

good starting point for the solver, which is given by the solution at

the previous time step. Nevertheless, the presented analysis pro-
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vides a guarantee that simulation algorithms will always converge

within a given number of iterations steps.

Including impact damping when modelling object collisions,

a quantity that is often neglected in sound synthesis applications,

appears to have a significant effect on certain systems. This is

illustrated by a simulation of a clarinet tone, in which case the in-

fluence of impact damping on the simulated tone is apparent on

the calculated spectrum. The necessity of such a model for sim-

ulating other types of instruments (or different acoustic systems)

remains to be investigated using both a numerical and a perceptual

approach.

Including two types of damping in this study (parameterised

using γ and r) provides a framework for the treatment of a wide

range of lumped systems involving nonlinear interactions. An in-

teresting extension of the presented convergence study would be

to analyse distributed systems, such as a string interacting with a

barrier (see, e.g. [7, 8, 10, 13]). For such systems the nonlinear

equation to be solved is a vector equation of the form

F(x) = 0. (37)

In this case a direct analysis of Newton’s method is more involved.

However (37) could be interpreted as a fixed-point iteration prob-

lem x = T(x), where the Lipschitz constant of T [26] relates to

the number of required iterations until convergence to the solution

x
∗ is achieved.
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APPENDIX: BOUND ON NEWTON INTERATIONS

Starting from a user chosen x0, one iteratively gets approximations

to the solution of F (x) = 0 by

xk+1 = xk − F (xk)

F ′(xk)
, k = 0, 1, . . . . (38)

Let x∗ denote the unique solution of F (x) = 0. Due to (31), we

know that

F (x) > 0, for x > x∗, (39)

F (x) < 0, for x < x∗. (40)

First we assume that x0 < x∗, hence F (x0) < 0. It follows from

(32), that

−F (x0) =

x∗

∫

x0

F ′(x)dx ≥ (x∗ − x0)F
′(x0), (41)

hence

x1 = x0 − F (x0)/F
′(x0) ≥ x∗, (42)

so after the first Newton step, we end up to the right of the solution

x∗. On the other hand, starting from x0 > x∗, we obtain

F (x0) =

x0
∫

x∗

F ′(x)dx ≤ (x0 − x∗)F ′(x0), (43)

hence

x∗ ≤ x0 − F (x0)/F
′(x0) = x1. (44)

In summary, starting Newton’s method with an x0 > x∗ yields a

sequence xk, k = 0, 1, . . . with xk > x∗, whereas when starting

with an x0 < x∗ then xk > x∗ for k = 1, 2, . . . .

Furthermore, for x0 > x∗, we observe that

F (x0) =

x0
∫

x∗

F ′(x)dx ≥ (x0 − x∗)F ′(x∗). (45)

Therefore

0 ≤ x1 − x∗ = (x0 − x∗)− F (x0)

F ′(x0)
(46)

≤ (x0 − x∗)− (x0 − x∗)F ′(x∗)

F ′(x0)
(47)

= (x0 − x∗)

(

1− F ′(x∗)

F ′(x0)

)

(48)

≤ (x0 − x∗)

(

1− 1

F ′(x0)

)

(49)

We can now estimate the error in the kth step, xk − x∗ by the

initial error, using the fact that F ′ is an increasing function, and

the sequence xk, k = 0, 1, . . . is decreasing.

0 ≤ xk − x∗ ≤ (xk−1 − x∗)

(

1− 1

F ′(xk−1)

)

(50)

≤ (xk−1 − x∗)

(

1− 1

F ′(x0)

)

(51)

≤ (x0 − x∗)

(

1− 1

F ′(x0)

)k

. (52)

To finalise a priori estimates on the error xk − x∗, we observe

from (28b) that x∗ is in the interval [−Bx, Bx], hence x0 − x∗ ≤
2Bx, provided the starting point x0 is taken from the same interval.

Finally, we estimate

1 ≤ F ′(x0) ≤ F ′(Bx). (53)

The function F ′ depends on yn as well,

F ′(x, yn) =

(

1 +
γ∆t

2

)

+
∆2

t

2m

(

V ′(yn + x)

x

)

− ∆2
t

2m

(

V (yn + x)− V (yn)

x2

)

+
r∆t

2m

(

V ′

c (y
n + x)

)

.

(54)

In order to get a bound independent of yn , we observe that

∂

∂yn
F ′(x, yn) =

∆2
t

2m

V ′′(yn + x)

x

− ∆2
t

2m

V ′(yn + x)− V ′(yn)

x2

+
r∆t

2m
V ′′

c (yn + x) ≥ 0

(55)

Using the fact that V ′ is convex, it can be shown that

F ′(Bx, y
n) ≤ F ′(Bx, By), (56)

where By is given by (29), hence for x0 ≥ x∗,

0 ≤ xk − x∗ ≤ 2Bx

(

1− 1

F ′(Bx, By)

)k

. (57)

To achieve a given precision ε, one needs to perform at most

k =
log ε− log(2Bx)

log
(

1− 1
F ′(Bx,By)

) (58)

Newton steps. For x0 ≤ x∗, one needs to perform at most k + 1
steps, since x1 ≥ x∗, and if x1 exceeds Bx, one should set x1 =
Bx.
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