
Different Ways to Write Digital Audio Effects Programs

Daniel Arfib
CNRS-LMA, 31 Chemin Joseph Aiguier

13402 Marseille Cedex 20

arfib@lma.cnrs-mrs.fr

Abstract

This paper is a very basic one, where one tries to explain how one can write a digital audio effect in

a non-real time situation with a very general mathematical language such as MATLAB, and how

such digital audio effects can be used in the real life.

1 What is a digital audio effect?

The term « digital audio effects » has been used as an

acronym for the COST action G6. So what is a digital

audio effect?

.

audio-effectinput output

parameters curves

First of all it is not a "sound effect", in the sense of a

collection of sounds be them natural or artificial. A

digital audio effect is a process which when applied to

a sound modifies it in a way to improve it or at least

make some aspect of it more evident. Some of these

effects come from the analog electronics.

Reverberation units for example were the good

companion of mixing tables and equalizers. Then

computers came and it was possible to control

different units, or even do some digital processing in

real-time or out of real time.

2 Real time and non real time

The implementation of digital audio effects roughly

depends on one choice: real time or non real time.

This does not mean slow or fast, but: do we need to

hear the sound at the same time that it is processed or

not.

2.1 Non real time

The non real time situation has been the only way to

use computer for digital audio during years:

computers were slow and unadapted in their

hardware. But the question nowadays is not so much

the question of processing than the one of control. It

is a totally different situation for a musician to control

one sound in real time or not. The non-real time

allows to compose with sounds in a way which can be

totally innovative and complex: for example one can

draw very precise curves to control complex

processes. Also one can analyze the sound

characteristics in order to find the good processing. In

a non real time situation, sounds are recorded and

then processed. The processing time can be small

enough that we can hear the result at once after the

recording. It can be also very large, passing through

different steps before getting an output sound. In

some way the constraints are less than in real time

situations.

2.2 Real time

The real-time situation is often the one of a

performance. Two questions appear: how complex

can be the process and how can we control it. This

has a great influence on the implementation of the

process: the mean processing time for one sample

must be less than the running time, the time lag

between the input and the must be very small in order

not to hear a delay. Though the control rate can be

different, the control must be responsive.

3 Three ways

Basically three types of processing can apply:

- the sample by sample technique, where for each

input sample one output sample is calculated.

- the block technique, which is very related to MusicX

synthesis programs. It has been proved that it is faster

to synthesis sound using buffers, especially if the

program compiles or interprets instructions and itself

uses languages such as C, FORTRAN or Pascal

- the vector technique, where the entire input sound is

considered as a vector and the processing is done on

this vector. Languages such as Matlab are strongly

oriented to such a treatment and are optimised for all

the vector or matrices operations.

3.1 Sample by sample

input sound output sound

1

2

3

4

5

6

,,,

one program

=one sample

This technique can be called "analog device

simulation" because the output is calculated sample

by sample, giving a regular output flow. Given that

the delay time between the input and the output is

reduced to one sample it is very convenient for real-

time situations.

The way to write such a program is to have an unique

program which inputs one sample and outputs one. As

an example a filter can be easily written as a "sample

by sample" program, providing that some memory is

kept for some provisional variables.

This does not mean that « IF instructions » cannot be

taken but that the longest path inside the program

must be executed in less than one sampling period.

For example rectifiers or threshold gate can be

implemented if the machine has a logical if. in its

instructions.

This technique is mandatory in some dedicated

machines. Fore example some real time machine use a

fixed set of pipe line instructions and a program itself

must be held under a fixed number of lines.

3.2 Frame by frame

input sound output sound

1

2

3

4

5

6

,,,

one program

=one frame

this is the situation usually used to process sounds:

the output sound is calculated and output frame by

frame. This means that the delay between the input

sample and the output sample is at least the length of

the frame buffer. Compared to the sample by sample

approach, this technique allows a better distribution

of the computation load: some samples can require

more time than other, or there can be an initialization

time for some specific process.

This technique is a necessity for some techniques like

the use of the sliding Fourier transform. But in this

case frames are usually overlapping

3.3 Vectorized

input sound output sound

1

2

3

4

5

6

,,,

one program

=one sound

This technique is resolutely linked to non-real time

situations or the processing of individual notes. It is

used in real time only for specific applications using

big delays between a sound and its processed version.

 It is the normal way for example to write Matlab

programs. With this kind of approach, an input sound

is considers as a vector. All the processing units will

use a vector as an input and output. So a complete

digital effect will be a series of such procedures.

The main advantage in term of processing time are:

- each procedure is independent and can be

independently tested

- the processing time can be very fast as far as each

procedure is well written

- an effect consists only in the list of chained

procedures.

the drawbacks of such a way to write are:

- it is memory consuming: there must be space for as

many vectors than what are used even as a transitory

variable

- It is absolutely not suited to real-time situations

because one supposes that the input sound is already

known when the computation is going on.

4 The framework of a DAFX: the

"do-nothing effect"

I would like to show three implementations written in

the Matlab language using the simplest example: the

do-nothing program.

the sound to be processed is supposed written on a

hard disk in a raw format, and that the file is mono, 16

bits. The easiest way to simulate a real time process

with Matlab is to have the file ready as is it should be

in such a condition

4.1 sample by sample

%

clear;

clf;

% INPUT FILE

fid=fopen('input.son')

status=fseek(fid,0,'eof')

nbytes=ftell(fid)

% number of bytes in the file

status=fseek(fid,0,'bof')

% OUTPUT FILE

fid2=fopen('son.son','w+')

%

%

nwords= nbytes/2;

% one word is two bytes

%

% DAFX

for n=1:nwords

bufin=fread(fid,1,'int16');

bufout=bufin;

% here insert the effect

fwrite(fid2,1,'int16');

end

fclose(fid);

fclose(fid2);

This is a very inefficient program in a Matlab

implementation because there is one disc access by

sample and also Matlab is oriented toward vector

processing.

4.2 Frame by frame

This time the input sound is read on the disk frame by

frame, processed and written on the disk. The only

difference with the preceding technique is there is a

loop in order to read the whole file. One must be

careful in the fact that the last buffer can be of a

different size. One particularity of MATLAB is also

that the length of the file is calculated in bytes, but the

length of the buffer is calculated with the unit that is

used for reading

%

clear;

clf;

% INPUT FILE

fid=fopen('input.son')

status=fseek(fid,0,'eof')

nbytes=ftell(fid)

% number of bytes in the file

status=fseek(fid,0,'bof')

% OUTPUT FILE

fid2=fopen('son.son','w+')

%

%

step = input ('step in the file: ')

nframes= 1+nbytes/(2*step);

% one word is two bytes

%

% DAFX

for n=1:nframes

bufin=fread(fid,step,'int16');

bufout=bufin;

% insert the effect here

plot(bufout);drawnow;

fwrite(fid2,bufout,'int16');

end

fclose(fid);

fclose(fid2);

It is also possible to use a step from frame to frame

that is different from the size of the frame. This is the

case of the use of a sliding FFT algorithm. In this case

the fread second argument must be the length of the

frame and not the step.

4.3 Vectorised

The structure is straightforward: files have to be

initialized, the input file as well as the output file.

Then the input file is read in memory, the effect is

applied, and the output file is written on the disc.

This is the natural way to use Matlab: all the

instructions of Matlab have been optimized for

vector and matrix operations.

% THE DO-NOTHING DAFX

clear;

clf;

% INPUT FILE

fid=fopen('input.son')

% OUTPUT FILE

fid2=fopen('son.son','w+')

%

% DAFX

bufin=fread(fid,Inf,'int16');

bufout=bufin;

nwords=length(bufout)

fwrite(fid2,nwords,'int16');

%

fclose(fid);

fclose(fid2);

5 The implementation of DAFX on

different machines

So the idea is to start testing an effect in MATLAB

with the vectorized structure, which evident limit is

the need for short sounds.

Then it is interesting to test the feasibility of a

sample-by-sample or a frame by frame structure using

a Matlab program.

Then it would be possible to make an implementation

in a different language or a dedicated machine such

as a DSP board. The matter of plug-ins and their

implementation should be of importance in the

development of such effects too.

6 Conclusion

One goal of COST G6 action is to collect programs

that do digital effects in a Matlab-like language.

These effects can touch different domains such as

filtering, modulation, delay lines, non linear

processing, time-frequency manipulation,

spatialisation, spectral processing and so on. Each

effect can be written in a simple way providing that

the framework for testing is the same: namely the

three proposed ways to write programs, where the do-

nothing line is replaced by the effect itself.

Each effect can then be tested with different source

sounds, and moreover the control parameters can be

described in technical or musical terms.

7 References

A previous article of the author refers to Matlab

programming oriented towards sound

Arfib, D.. une boite à outils de traitement

sonore en matlab. rapport Laforia, Mars 94,

pp68-72

At this stage of the process, these general references

can help:

[1] Kahrs, Mark and Brandenburg, Karlheinz.

Applications of Digital Signal Processing to

Audio and Acoustics. Kluwer. 1998

[2] Moore, F. Richard. Elements of Computer

Music. Prentice-Hall, New Jersey. 1990.

[3] Orfanidis, Sophocles. Introduction to Signal

Processing. Prentice-Hall. New Jersey. 1996.

[4] Pohlmann, Ken. C. Advanced Digital Audio.

Sams. 1991.

[5] Roads, Curtis. The Computer Music Tutorial.

The MIT Press, Cambridge, Massachusetts.

1996.

 [6] Roads, Curtis. The Music Machine. The MIT

Press, Cambridge, Massachusetts. 1986.

[7] Roads, Curtis and John Strawn. Foundations of

Computer Music. The MIT Press, Cambridge,

Massachusetts. 1985.

[8] Steiglitz, Ken. A Digital Signal Processing

Primer. Prentice-Hall, New Jersey. 1997.

[9] Zölzer, Udo. Digital Audio Signal Processing. J.

Wiley & Sons, Chichester. 1997.

[10] Mathews M., Pierce JR Current Directions in

Computer Music Research. MIT Press,

Cambridge, Mass, 1989.

