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Abstract

This paper reviews the popular methods and models used for the synthesis of the singing voice,

discussing strengths and weaknesses of each technique.  Then a brief review is given of research

on cross-modal visual/auditory perception of the human voice.  The paper concludes with

comments related to the singing synthesis systems discussed, addressing multi-modal perception,

audio morphing, and the categorical perception of sound.

1  Introduction

The human voice is the most ubiquitous, flexible,

and general of acoustic instruments.  We all have

one, yet only a few of us learn to “play” it with

proficiency as a musical instrument.  Most

functions of this instrument we take for granted,

but huge regions of our brains are dedicated to

controlling and perceiving the sounds made by it.

Even those people that never learn to use it

musically still are able to perform amazing feats of

imitation and flexibility with their voice. The voice

can exact independent control across a broad range

of pitch, amplitude, brightness, harmonicity, noise

amount, and spectral shape.

The voice cannot be taken apart and studied

like most other instruments.  We cannot “build”

versions with small variations in the parameters to

observe the effects.  We cannot try different

materials and structures, such as the violin maker/

player might do with different woods, varnishes,

bracing structures, strings, bows, and rosins.  The

true subtleties of a fine singing voice must be

studied, “in vivo,” if at all, and only with the

graceful cooperation of the owner/builder/

player/instrument (all one in the same).

The attraction of composers to the human

voice instrument has a rich, long history.  In

modern times, computer music composers have

time and again been attracted to vocal sounds and

processing.  Part of this is due to the legacy of

computer music tools, with many of them arising

from the great speech labs of the world.  But there

is more at work than the mere availability of tools.

Many historical electronic audio effects

devices intentionally mimic the human voice

(vocoders).  Others sound vocal in some sense, by

the sheer nature of one particular feature such as a

resonance that can be swept independently of the

source sound parameters (the wah-wah pedal).

One might expect that we could look to vocal

analysis/synthesis  techniques  to  give us ideas  for

new digital audio effects, perhaps informing us as

to how to create the “perfect audio morph.”

This paper will survey models, methods, and

systems for the analysis, synthesis, and processing

of the human voice.  It focuses on singing

synthesis and voice-related tools which have found

use in computer music composition.  The positive

and negative aspects of each system or model will

be noted.  Finally, areas of research and perception

of vocal sounds (and images) will be discussed.

2  Singing Voice Methods, Models,

and Systems

The voice has traditionally been viewed as a linear

source/filter system. That is, there are one or more

sources of sound, and one or more filters which

shape the spectrum of those sound sources. By

moving various articulators, we change the ways

the sources and filters behave.

The voice source can be characterized as a

periodic source corresponding to the oscillating

vocal folds, or a non-periodic source

corresponding to turbulent noise, or a mixture of

these. The voice system filter properties are

controlled by the shape of the vocal tract.

The spectrum of the voice is characterized by

resonant peaks called formants. Figure 1 is a

spectrum corresponding to the vocal vowel / i / (as

in beet), showing harmonics of the voice source

outlining the peaks and valleys of the vocal tract

filter response.

Figure 1.   Voice spectrum for the vowel /i/ (as in beet),

showing harmonics and formant peaks.



The location and shapes of formant resonances are

strong perceptual cues that we use to identify

vowels and consonants. The most successful

systems capable of generating, recognizing, or

flexibly modifying speech-like sounds, have

allowed flexible manipulation of the resonant

peaks of the spectrum, and of source parameters

(voice pitch, noise level, etc.).

2.1  Spectral Subband Vocoders

From the early legacy of speech signal processing

came the powerful and flexible signal processing

techniques known as the spectral subband vocoders

(VOice CODERs).  In the channel vocoder [1] and

phase vocoder [2][3], the spectrum is broken into

sections called subbands, and the information in

each subband is analyzed.  The analyzed

parameters are then stored or transmitted for

reconstruction at another time or physical site.

The parametric data representing the information

in each subband can be manipulated, yielding

transformations such as pitch or time shifting, or

spectral shaping.

The channel vocoder models only the time-

varying amplitude within each subband, and

typically uses between 10 and 30 subbands to cover

the entire audible spectrum.  Figure 2 shows a

block diagram of a channel vocoder.  This

architecture yields well to implementation in

analog circuitry, and a number of analog hardware

devices were produced and sold as musical

instrument processing devices in the 1970-80’s.

One attraction of these devices, as with other

source/filter models of the voice, is that the source

can be replaced with arbitrary sounds, resulting in

talking cows, singing guitars, etc.  This is called

cross-synthesis.

Since the channel vocoder explicitly makes an

assumption that the signal being modeled is a

single human voice, it does not generalize to

arbitrary sounds, and fails horribly when the

source parameters deviate from expected

harmonicity, reasonable voice pitch range, etc.

Figure 2.   Block diagram of a channel vocoder

The phase vocoder calculates and maintains

both instantaneous magnitude and phase, and is

implemented using the Fast Discrete Fourier

Transform.  Many subbands (sinusoidal DFT bins)

are typically used (on the order of hundreds to

thousands).  Unlike the channel vocoder, the phase

vocoder does not perform an explicit source/filter

decomposition, and there is no parametric model

of the source.  The phase vocoder does not strictly

assume that the signal is speech, and thus can

generalize to other sounds.  For this reason, the

phase vocoder has found extensive use in computer

music composition.

By the nature of FFT processing; segmenting

the signal in blocks of many samples, then

analyzing it into an equal number of subbands, the

phase vocoder does nothing to make sonic data

more parametric.  For composition, data reduction

or compression is not necessarily a goal.  However,

sound analysis systems which in some way make

data parametric often make for good composition

systems, allowing manipulation of a relative few

parameters rather than thousands of numbers per

second.  For anything other than simple time and

spectrum stretching, more processing must be done

on the raw spectral data yielded by the phase

vocoder.  We will discuss this further in the

section on spectral modeling systems..

2.2  Linear Prediction

Linear Predictive Coding (LPC) [4], as shown in

Figure 3, involves forming a digital filter that

predicts the next time sample from a linear

combination of a few previous samples.  An error

signal is yielded which, if fed back through the

time-varying prediction filter, will yield exactly the

original signal.  The filter models linear

correlations in the signal, which correspond to

spectral features such as formants.  The error

signal models the input to the formant filter, and

typically is periodic and impulsive for voiced

speech, and noise-like for unvoiced speech.  The

error signal can be parametrically coded and

resynthesized, or modified before resynthesis.

Figure 3.   A linear predictive digital filter.

The success of LPC in representing speech

signals is largely due to the similarity between the

source/filter decomposition yielded by the

mathematics of linear prediction, and the



source/filter model of the human vocal tract.  The

introduction of LPC revolutionized speech

technology, and had a great impact on musical

composition as well [5][6][7].  The power of LPC

as a compositional tool stems from the ability to

modify the parameters before resynthesis.  As with

the channel vocoder, the source can be replaced

with arbitrary sounds, allowing for cross synthesis.

In LPC, however, all spectral properties are

modeled in the filter. In actuality the voice has

multiple possible sources of non-linear behavior,

including source-tract coupling, non-linear wall

vibration losses, and aerodynamic effects.  Due to

these deviations from the ideal source-filter model,

the result of analysis/modification/resynthesis

using LPC or a subband channel vocoder often

sounds artificial.  One further problem with LPC is

that the least-squares method of determining the

optimal filter coefficients causes the designed filter

to match well at peaks, but less well at spectral

valleys (see Figure 1).

2.3  Frequency Modulation

Frequency Modulation (FM) involves modulating

the frequency of one oscillator (the carrier) with

the output of another (the modulator) to create a

spread spectrum consisting of sidebands

surrounding the carrier frequency. For FM sound

synthesis, both carrier and modulator operate in

the audio frequency range.  The most easily

described scheme for FM sound synthesis is that in

which both the carrier and modulator oscillators

generate sinusoidal waveforms.  In this case,

sinusoidal sideband frequencies are generated at

the carrier frequency, the carrier frequency plus

and minus the modulation frequency, the carrier

frequency plus and minus two times the

modulation frequency, and so on.  As a rough rule

of thumb, the number of significant sidebands is

equal to the index of modulation (the ratio of

carrier frequency deviation to modulation

frequency) minus two.

FM sound synthesis as introduced by

Chowning [8][7], proved successful for the

synthesis of a variety of sounds, including the

synthesis of singing.  By controlling the amount of

modulation, and using multiple carrier/modulator

pairs, spectra of somewhat arbitrary shape can be

constructed.   This technique proved extremely

efficient for digital synthesis, yet sufficiently

flexible for music composition.  In vocal modeling,

carriers placed near formant locations in the

spectrum are modulated by a common modulator

oscillator operating at the voice fundamental

frequency.  Figure 4 shows a block diagram of a

simple FM voice synthesizer.

In order to generate a harmonic voice

spectrum using FM synthesis, the carrier

frequencies must be integer multiples of the

fundamental modulator frequency.  For this

reason, it is impossible to generate vocal sounds

which smoothly vary arbitrarily from vowel to

vowel, or from pitch to pitch on a single vowel.

Also, there is no closed-form analysis technique

for identifying FM parameters to yield an identity

resynthesis of an arbitrary sound.

Figure 4.   FM voice synthesis block diagram.

2.4  FOFs

Formant Wave Functions (FOFs in French)

represent time-domain waveform models of the

impulse responses of individual formants [9].

These are characterized as a sinusoid at the

formant center frequency with an amplitude which

rises rapidly upon excitation and decays

exponentially.  By describing a spectral region as a

windowed sinusoidal oscillation in the time

domain, FOFs can be viewed as a special type of

wavelet.  The control parameters define the center

frequency and bandwidth of the formant being

modeled, and the rate at which the FOFs are

generated and added determines the fundamental

frequency of the sound.  Figure 5 shows the

process of adding FOFs to create a voice

waveform.

The synthesis system for controlling FOFs was

dubbed CHANT, and has found application in

general music synthesis [10] as well as synthesis of

the singing voice [7].  The parametric FOF

description of spectral features allows for

continuous manipulation  of those features. As

such, the CHANT system provides a convenient

dual description of sonic features in terms of either

the time or frequency domain.

The basic FOF parameters, however, might

not be the most convenient for composers.  Also,

FOFs do not directly allow for cross-synthesis to be

performed between two sounds, as is easily

accomplished using the channel vocoder or LPC.



      

Figure 5.   Three FOFs (top), added and overlapped at a periodic             Figure 6. Formant synthesizer block diagram.

   rate, generate a voice waveform and spectrum.

2.5  Formant Filter Models

Second order resonant filters can be used to model

formants directly [11][12].  An attractive feature of

formant synthesizers is that Fourier or LPC analysis

can be used to automatically extract formant

frequencies, bandwidths, and source parameters from

recorded speech.  Computer music composers have

used formant vocal models for composition [7].

The Speech Transmission Laboratory of the

Swedish Royal Institute of Technology created the

MUSSE DIG (MUsic and Singing Synthesis

Equipment, DIGital version) [13].  This system has

been used in singing synthesis [14], for studying

performance synthesis-by-rule [7], and has been

adapted for real-time control [15].

Formant filters provide parametric control over

what might be the most “speechlike” spectral feature,

however, the assumption is still one of a strictly

linear model. Speech and singing researcher Johan

Sundberg has often been heard to say “none of us has

ever seen a formant,” implying that there is much

more to the voice than a simple linear model.

2.6  Sinusoidal Models

As noted in Section 2.1, simply performing a

Fourier transform on speech data does not yield a

parameterization which is useful beyond simple pitch

and time manipulations.  Sinusoidal speech

modeling [16] uses Fourier analysis to locate and

track individual sinusoidal partials in the voice

signal. Individual trajectories (tracks) of  sinusoidal

amplitude, frequency, and phase as a function of

time are extracted from the time varying peaks in a

series of Short Time Fourier Transforms (STFT).  To

help define tracks, heuristics regarding physical

systems and the voice in particular are used, such as

the fact that a sinusoid should not appear, disappear,

or change frequency or phase instantaneously.

The sinusoids can be resynthesized from the

track parameters, after modification or coding, by

additive synthesis.  Noise can be treated as rapidly

varying sinusoids, or explicitly as a non-sinusoidal,

stochastic component [17].  The technique of

modeling the deterministic (sinusoidal) and

stochastic (noise) components separately is called

Spectral Modeling Synthesis, and has found use in

music composition. Figure 7 shows a deterministic/

stochastic decomposition of a sound wave.

2.7  Acoustic Tube/Physical Models

Acoustic tube models simulate the vocal tract

transfer function by solving the one dimensional

wave equation inside a smoothly varying tube. The

one dimensional approximation is justified by noting

Figure 7.  A sound waveform (upper), the purely

deterministic part as modeled by sinusoids

(center), and the stochastic residual (lower).

(courtesy X. Serra)



that the length of the vocal tract is significantly

larger than any width dimension, and thus the

longitudinal modes dominate the resonance structure

up to about 4000 Hz.  Modal standing waves in an

acoustic tube correspond to the formants.  Early

speech modeling work at Bell Labs included the

acoustic tube model of Kelly and Lochbaum [19].

The basic Kelly-Lochbaum model critically samples

space and time by approximating the smooth vocal

tract tube with cylindrical segments equal in length

to the distance traveled by a sound wave in one time

sample.  Figure 8 shows a smooth acoustic tube, the

sampled version of that, and a ladder filter model of

the sampled tube, with Kelly-Lochbaum scattering

matrix operations at the junctions of adjacent tube

sections.

Figure 8. Smooth acoustic tube, a sampled version,

and a waveguide ladder filter simulation.

The SPASM and Singer [19] systems are based

on a Kelly-Lochbaum physical model of the vocal

tract filter, motivated by the waveguide formulation

[20].  The SPASM model is a direct descendent of

the Kelly-Lochbaum model, but with many

enhancements, such as a nasal tract, modeling of

radiation through the throat wall,  various steady and

pulsed noise sources [21], and real-time controls.

The SPASM/Singer model also adds natural inertial

parameters to the basic acoustic tube model, yielding

interpolations from shape to shape automatically.

Maeda’s [22] acoustic tube model numerically

integrates the wave equation using the rectangular

method in space, and the trapezoidal rule in time.

Wall losses are also modeled, and an articulatory

layer of control modifies the basic tube shape from

higher-order descriptions like tongue and jaw

position.  Carre’s [23] model is based on Distinctive

Regions (DR) arising from sensitivity analysis,

noting that movements in particular regions of the

vocal tract affect formant frequencies more than

movements in others. Liljencrants [24] investigated

an undersampled acoustic tube model and derived

rules for modifying the shape without adding

unnaturally to the energy contained within the vocal

tract.  Acoustics researchers in Helsinki [25] have

used fractional sample interpolation and truncated

conical tube segments to derive an improved version

of the Kelly-Lochbaum model.

2.8  Model Variants and Other Systems

Pabon [26] has constructed a singing synthesizer,

with real-time formant control via spectrogram-like

displays called phonetograms, and source waveform

synthesis using FOF-like controls.  Titze and Story

[27] have produced a super-computer tenor called

"Pavarobotti," which is used for studying many

aspects of  the voice including advanced physical

models of normal and pathological vocal folds.

Ken Lomax at Oxford University, and the

Lyricos project at Georgia Tech have constructed

systems based on spectral templates, using spectral

modeling techniques.  Lomax [28] has tackled the

difficult problem of characterizing, archiving, and

resynthesizing the unique voices and singing styles

of famous singers.  The Lyricos [29] project dealt

with synthesis of arbitrary segments of singing from

a small set of example sounds.  One additional

spectral-template-based project involved the cross

synthesis of analyzed soprano and counter-tenor

singing, to create a virtual castrato singer for the

movie “Farinelli (Il Castrato)” [30].

3  Spectral and Physical Models

Synthesis models can be loosely broken into two

groups:  Spectral models, which can be viewed as

based on perceptual mechanisms, and physical

models, which can be viewed as based on production

mechanisms. Both physical and spectral models

have merit, and one or another might be more

suitable given a specific goal and set of

computational resources.

Of the models and techniques discussed above,

the spectrally-based models include FM, FOFs, phase

and channel vocoders, and sinusoidal models.

Acoustic tube models are physically-based, while

formant synthesizers are spectral models, but could

be classified as pseudo-physical because of the

source/filter decomposition.  LPC can be interpreted

in three ways; as a least-squares linear prediction of

the time domain waveform, as a least squares

matching process on the spectrum, and as a source-

filter decomposition.  Therefore, LPC is both a

spectral and pseudo-physical model, but not strictly a

physical model because wave variables are not

propagated directly in the simulation, and no

articulation parameters go into the basic model.  LPC

can be mapped to a filter related to the acoustic tube



model [31], thus creating a bridge between the

spectral and physical camps.

The main attraction of physical models is that

the control parameters are those that a human uses to

control his/her own vocal system.  As such, some

intuition can be brought into the design and

composition processes.  Another motivation is that

time-varying model parameters can be generated by

the model itself, if the model is constructed so that it

sufficiently matches the physical system.  

Disadvantages of physical models are that the

number of control parameters can be large, and while

some parameters might have intuitive significance

for humans (jaw drop), others might not (specific

muscles controlling the vocal folds).  Further,

parameters often interact in non-obvious ways.

Finally, in general there exist no exact methods for

analysis/resynthesis using physical models.

Spectral models, by virtue of being based on

frequency domain features, are undeniably related to

some aspects of the  human perceptual mechanism.

The cochlea as frequency transformer, the tonotopic

mapping of the auditory cortex, etc. all closely relate

to the Fourier Transform.  Indeed frequency domain

representations have proven the best spaces so far in

which to talk about “audio morphing.”

But vocoders, FFTs, and time-varying sinusoidal

tracks do not actually match any known structures in

the auditory system.  There are no sinusoids in the

human brain, no Hanning windows, and no buffers

in convenient lengths of powers of two.  There are

proponents of the (still hotly debated) “motor theory

of speech perception,” which asserts that we use

articulatory gestures directly to perceive speech

sounds.  The parameter spaces yielded by spectrally

based systems are not necessarily the most natural

ones for composition, manipulation, recognition,

compression, or the study of perception.  Much must

be added to the parameters of vocoders, or sinusoidal

models, to make them truly useful.  Much of this

mapping and parameterization is still unknown, but

it remains an exciting area for future research.

4  Faces, Lips, and Voice Perception

An interesting area of research and artistic endeavor

involves facial animation coupled with voice

synthesis.  This is of interest perceptually because

humans use a significant amount of lip reading in

understanding speech and singing.  The two

modalities compliment each other, with information

that is difficult to discern using only one sense often

disambiguated by the other.  However, interesting

work has been done to investigate cases where the

two sensory modalities disagree [32].  Work has been

done by Massaro [33] and others [34], employing

facial animation to study coupling of visual and

auditory information in human speech

understanding.

Musically, we know that the face of the singer

can carry even more information about the meaning

of music than the actual text being sung [35], further

motivating the combination of facial animation with

singing synthesis.  Work with simultaneous analysis

of audio and facial video has allowed signal

processing to be performed on the speech sound, in

conjunction with image processing on the video,

yielding convincing faces saying things they never

actually said in real life [36].

5  Morphing, Genus, and

Categorical Perception

This final section will briefly address the following:

 

• Is the voice itself, or voice analysis/synthesis/

modeling, the place to look for the perfect audio

morph?

• What is an audio morph anyway?  Is it

appropriate to take a term, concept, etc. from

one sensory modality (or media sub-discipline)

and carry it directly into another?

• Is there something more interesting to do

compositionally with voice modeling systems

beyond pitch shifting, time shifting, and cross

synthesis?

Even the most cursory search of the speech literature

yields many papers on vowel spaces, and on the

categorical perception of vowels.  Exciting recent

work by Kuhl [37] and others has used cross-cultural

infant studies to investigate the process of learning

and acquisition of vowel templates (these templates

to be used later for adult speech production and

recognition).  It is clear from this work and many

vowel perception studies is that there is not a smooth

continuum in any known vowel space, and the

perception of vowels tends to be categorical.  This of

course makes sense; if we are to understand speech at

all, we must “round” sounds to a nearby vowel,

otherwise all sounds which do not match exactly our

internal templates will not be perceived as speech.

The issue of categorical perception goes to one

of the fundamental issues of vocal modeling, vocal

processing, the use of voice-based computer models

to process arbitrary sounds, and computer music

composition in general.  Researchers designing

models, systems, and tools for audio synthesis and

manipulation often make claims such as “we will be

able to create entirely new instruments, not subject to

the restrictions of existing  acoustic instruments,” or

“we will be able to synthesize an instrument that is

halfway between instrument-A and instrument-B.”

This author has, of course, made such claims.  Let’s



briefly examine those issues;  entirely new sounds,

sounds halfway between two known sounds, and

sounds which smoothly vary from one known sound

to another.

One learns in working with synthesis tools that

it is very difficult, if not impossible, to create

“entirely new sounds.”  Sounds tend to sound “like”

something.  This again seems to be an artifact of the

necessities of our linguistic processing systems.  It is

more likely that we will generate something that

listeners describe as “a trumpet-like thing with too

much amplitude modulation,” than to generate

something that illicits a description of “wow, that’s

half-way between an oboe and a trumpet.”

Even synthesizing a “perfect” vocal spectrum,

but omitting random and periodic pitch deviation,

causes the perception to stray from that of a voice.

Likewise, those instruments that are more often

described as “singing,” or “voicelike”; the violin, the

Theremin(oVox), some wind instruments; have those

attributes related to the fine pitch and amplitude

control that are most typical of the human voice.

The term “audio morph,” has been applied to

transitions between two instruments, between two

vocal vowels, between two musical phrases, and even

between the compositional styles of two composers.

None of these are really equivalent to a morph in the

graphics domain.  There is a known fact in topology

that the only morphs that are mathematically well

posed are those that take place between two objects

of the same geometric genus.  This doesn’t stop

anyone from trying to morph a sphere (or human

head) into a coffee cup, with possibly interesting

artistic results.  But geometric morphs that do not

obey this basic rule are not possible to pose or

compute uniquely, and generally don’t tend to work

well perceptually.

In the audio domain, we have an intuitive (or

experienced) feel that it would be easier to move

smoothly from clarinet to trumpet to flute to voice,

than it would be from piano to voice to snare drum to

duck-quack.  Indeed, the clarinet, trumpet, flute, and

voice share much in common: a non-linear periodic

oscillator driven by breath pressure, resonator

structure, components of harmonicity and noise, etc.

But there are fundamental differences as well: the

voice has independent pitch and resonance control,

and the “reeds” are different for each of those wind

instruments (air for the flute, inwardly beating wood

for the clarinet, outwardly beating lips for the

trumpet, etc.).

There are some fundamental physical attributes

of musical instruments which seem almost the

parallel of the topological genus.  There are also

spectral features and attributes that we can use to say

that two sounds are more or less similar.  But there

are also perceptual categories, groups, and

boundaries which challenge the notion of an ideal

audio morph.  The author feels that the profound

linguistic nature of human perception, new

knowledge of physical models of sound producing

objects, and new studies of timbre in general, should

all motivate the questions to be asked in searching

for audio morphs and new digital audio effects.

6  Conclusions

There are many ways to analyze, synthesize, and

process vocal sounds.  Systems intended for speech

coding and compression have had a great influence

on computer music synthesis and composition.

Spectral models, physical models, and others all have

their place, if nothing other than to pose interesting

questions about sound, sound sources, and

perception.
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