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Abstract

This paper describes a method for decomposing steady-state instrument data into excitation and
formant filter components.  The input data, taken from several series of recordings of acoustical
instruments is analyzed in the frequency domain, and for each series a model is built, which most
accurately represents the data as a source-filter system.  The source part is taken to be a harmonic
excitation system with frequency-invariant magnitudes, and the filter part is considered to be
responsible for all spectral inhomogenieties.  This method has been applied to the SHARC database
of steady state instrument data to create source-filter models for a large number of acoustical
instruments.  Subsequent use of such models can have a wide variety of applications, including
wavetable and physical modeling synthesis, high quality pitch shifting, and creation of “hybrid”
instrument timbres.

1 Introduction

Currently, two techniques are used most successfully
for digital emulation of acoustical instruments –
physical modeling and sampling (or wavetable
synthesis). Both have their inherent limitations –
physical modeling is, in general, computationally
expensive and requires a good understanding of the
mechanical workings of a particular instrument,
whereas sampling is poorly informed of the physical
properties of instruments and is not well-suited for
modeling transitions or dynamic control of sound.  In
addition, sampling often relies on pitch shifting by
varying the playback speed of a sample – a technique
that disregards the spectral "signature" of an
instrument and often creates undesirable audible
artifacts.

In order to overcome these limitations, various
intermediate representations have been sought.  A
source-filter model, well-known from speech
research [1] has been applied to both physical
modeling [3] and sampling [4] and proved useful for
providing better control of timbre and reducing pitch
shifting artifacts.  When combined with well-
designed representations for the excitation system, it
can lead to robust synthesis methods.

This paper describes an algorithm, which allows to
obtain magnitude data for the formant filter and the
excitation part of the source-filter model, given a

series of steady state data from a particular harmonic
instrument (or voice).  The algorithm treats the
decomposition as a fitting problem, finding a solution
that most accurately represents the original data.  In
general, the problem under-determined; by selecting
the right constraints, one should be able to obtain a
solution that will be most appropriate for further
applications.

2 Input Data

While the algorithm  described in this paper can be
applied to any set of steady-state data, we tested it out
on SHARC, a timbral database covering a large
number of acoustical instruments, which is free and is
readily available on the web [2].  For each
instrument, a chromatic series of notes has been
analyzed (every note had been individually played
and digitally recorded; a description of the original
recordings can be currently found in [6]).  Several
periods of steady-state sound had been selected from
each note in a series and spectrally analyzed.
SHARC assumes that all input sounds are harmonic,
and since for every note the fundamental is known,
the steady-state data can be represented as a set of
values for magnitudes and phases of partials.  The
total number of detected partials varies from note to
note, and the range and total number of notes varies
from instrument to instrument.  For the purposes of
this paper, only the magnitude data is utilized; phase



information can be added later to get a more precise
description of the formant filter.

3 Representation

Let S be the total number of chromatic samples in a
series, and K – the smallest number of available
partials for any given sample (for the purposes of
uniformity, we choose to consider the same number
of partials for every sample; higher notes will tend to
have fewer partials due to the Nyquist limit, therefore
one can either disregard some of the partials for the
lower notes, or truncate the input series). Let Di,j be
the amplitude of j-th partial of i-th note – these are
the data points.  Now consider an equally spaced grid
in the log frequency space, whose bins are centered
on the fundamentals of equally tempered chromatic
tones.  This grid will define the resolution for the
formant filter coefficients Rn, i.e. for each bin the
magnitude of filter’s frequency response in that bin
will have to be determined.   This resolution is
reasonable, because the formant curve is expected to
be fairly smooth and because for most traditional
applications one will rarely need to synthesize notes
less than a semitone apart (however, if required, an
interpolated curve can be used).  Note also that this
resolution is only determined by the spacing of the
original samples, and adapting to a more finely
sampled input would be trivial.   The target excitation
system will consist of K partials with amplitudes Pj,
which remain constant for every sample.
Additionally, to account for the differences in the
musical performance of individual notes, an overall
multiplicative scaling coefficient Ai for each sample
is introduced.

The data points and the variables are related by a set
of equations

                               Di,j  =  Ai Pj Rn                                       (1)

for i=1..S and j=1..K.  Index n is the number of the
bin into which the frequency of the j-th partial of i-th
sample falls, starting with 1 for the fundamental of
the lowest note, i.e.  n  =  12 log2 j + 1/2   + i.

All of the values in (1) are positive, and thus, to
facilitate the solution, the products in (1) can be
easily converted into sums by switching to a
logarithmic magnitude scale:

                             di,j  =  ai + pj + rn                                     (2)

where di,j = ln(Di,j),  ai  = ln(Ai),  pj = ln(Pj), and
rn = ln(Rn).  This is a system of S*K linear algebraic
equations; the data matrix {di,j} can be collapsed into

a vectord , and all the variables – into a vector v ,
thus transforming (2) into a linear system
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where M is the corresponding matrix of zeroes and
ones.  Figure 1 shows a graphical representation of
M for S=12, and K=16, with ones marked in black :

Fig.1

4 Approaches to the solution

The system (3) is generally underdetermined, since
the rank of M is always less than S+K+N.  One extra
degree of freedom can be easily eliminated – an
overall scaling factor that could be applied to the
excitation at the expense of scaling coefficients Ai.
However, even after normalizing the excitation
(setting  p0=0 and eliminating the first column from
M), the system will remain underdetermined (for all
practically interesting cases this can be verified
empirically by computing the rank of M).

There are many ways in which constraints could be
added to (3) in order to choose the solution.  For
example, assumptions could be made about the
smoothness of the filter or about the range into which
the scaling coefficients {Ai} fall.  For the general
case, after some experimentation, a robust iterative
method was chosen.  The iterations alternate between
solving for {pj} given {rn} and solving for {rn} given
[normalized] {pj}.  No special assumption is made
about the values of ai – they are readjusted after each
iteration.  A weighted least-squares convergence
metric is used as a test for the termination of the
iterative process.  For every instrument from SHARC
this algorithm converges within 20 iterations,
allowing for deviations of  <0.1%.
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5 Results

The following figures illustrate some of the strengths
and shortcomings of the proposed method.  The pairs
of figures 2,3 and 4,5 show the excitation and filter
solutions for plucked and bowed cello respectively
(S=28, K=32, F1=65.4060Hz).  As one would expect,
the excitations are somewhat different, while the
filter curves exhibit similar resonant properties,
although they are not identical.  Figures 6 and 7 show
the excitation and filter solutions for bass clarinet
(S=25, K=32, F1=69.2960Hz).  The suppression of
even partials is clearly evident in the excitation,
which conforms to the physical process of harmonic
generation in clarinets [5].

6 Summary and discussion

The algorithm described here provides a fast and
simple tool for obtaining excitation and filter
components from steady-state magnitude data.  The
problem is reduced to a system of linear equations,
which is generally under-constrained, and an iterative
solution method has been proposed, which, we
believe, selects qualitatively appropriate solutions.
The final representation of the original magnitude
data is precise; there is no data loss.  An automated
interface for the SHARC database has been built,
providing excitation and filter patterns for a large
number of acoustical instruments.

There are several directions for further improvement.
As was mentioned previously, applying carefully
chosen constraints to the variables can lead to a more
appropriate choice of solution.  With a slight
modification, the algorithm could collect more
information in cases when different excitation
patterns are processed by the same filter (such as
recordings of the same instrument played via
different techniques) or the same excitation applied to
different  filters (e.g. a voice singing different
vowels).   Similarly, more information can be
obtained by analyzing the same series played a
number of times, since repetition will tend to average
out the effects of uneven performances.   Phase
information can be added to obtain a more complete
filter representation.  Finally, once filter’s magnitude
and phase response is established, it could be used to
determine the behavior of partials in attacks and other
non-steady-state portions of the sound.
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