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Abstract

We present a general audio coder based on a
structural decomposition : the signal is ex-
panded into three features : its harmonic part,
the transients and the remaining part (referred
as the �noise�). The �rst two of these �lay-
ers� can be very e�ciently encoded in a well-
chosen basis. The noise is by construction mod-
elized as a gaussian (colored) random noise.
Furthermore, this decomposition allows a good
time-frequency psycoacoustic modeling, as it
dircetly provides us with the tonal and non-
tonal part of the signal.

1 Introduction :

Because of its extraordinary variety and com-
plexity, representing audio signals in a both ef-
�cient and precise way (ie. with the smallest
amount of data and no audible distortion) is a
challenging task for scientists and audio engi-
neers. Within the last few years, the growth of
digital audio industry has urged the developpe-
ment of e�cient compression algorithms. Sim-
ilarily as an image can be seen as a mixed en-
semble of regular surfaces, edges and textures,
sounds feature pseudo-periodic patterns, tran-
sients and stochastic-like components. Broadly
used commercial algorithms rely on analyzing
signals on short temporal segments and in each

of them use Fourier-like transforms to split
them into frequency bins. The trade-o� be-
tween time and frequency resolution should not
be kept identical between the fast-varying tran-
sients and the (pseudo-)stationnary harmonic
tones, therefore such codecs have to switch
between di�erent operating modes. Although
proved e�cient for a broad variety of sounds,
such a reprensentation is not fully satifying (es-
pecially at high compression ratios) : one can
just imagine that there's no such tradeo� when
two instruments are playing simultaneously,
one of them with short notes, the other one
with a long sustained note. A more adequate
way to describe signals is thus to consider that
the three kinds of features (harmonic, tran-
sients and stochastic-like) are simultaneously
present at anytime. Similar approaches have
already been proposed for analysis purposes,
like Serra's [1] decomposition into determinis-
tic and stochastic parts, or sinusoidal + noise
+ transients [2, 3]. The design of this analysis
algorithm is critical, because the three kind of
features are often di�cult to distinguish. As
far as data amount is concerned, this expan-
sion of the signal into three parts, each of them
having the same amount of data as the original
signal, might not seem the optimal approach ;
but now as we shall see each of these �layers�
can be very e�ciently represented in appropri-
ate basis (now di�erent for all of them).
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2 Analysis algorithm

The analysis algorithm is represented on �g. 1.
The original signal s(t) is �rst split into time
segments (of size 1024 samples for a 44.1 kHz
sampling frequency), and then decomposed as
follows:

s(t) = stonal(t) + stransients(t) + snoise(t) (1)
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Figure 1: Block diagram of the encoder.

As these three elementary signals are not
orthogonal to eachother (in the standard L2
sense), much care has to be put into this sepa-
ration algorithm. We here refer as �noise� the
remainer when the tonal part and the tran-
sients have been removed. The main point
here is that, for modelization purposes, it is
necessary to make some assumptions about
this noise : we'll here assume that it can be
modelized as a gaussian random colored noise.
Previous experiments [8] have shown that, for
a large class of sounds, the non-deterministic
part of a signal cannot be distinguished from a
gaussian noise with the same power spectrum.

Therefore, the main point of our analysis pro-
cedure is the estimation of the noise spectral
properties.

2.1 Noise model

The baseline for modelizing the noise is here
the claim that the ear will generally not be able
to distinguish between two realizations of the
same random process. Equivalently, to repre-
sent this noise it is su�cient to estimate the
(possibly time-varying) parameters of this ran-
dom process. As previously mentionned, if
the probability density function (pdf) of the
noise is a gaussian, this process is entierly de-
termined by is power spectrum. Furthermore,
psychoacoustic studies have shown that ran-
dom noises are averaged over critical bands (in
a way, this can be seen as a de�nition of the
critical bands [5]): it is then only necessary to
characterize the variance �k of the noise in each
critical band:

snoise(t) =
29X
k=1

�k:Wk(t) (2)

where Wk is a gaussian random generator with
unit variance, that only (in the ideal case) con-
tains frequencies in the subband k. The vari-
ances �k are here assumed constant over the
whole segment.

2.2 Denoising algorithm

Starting from this model for the noise, we can
design a �denoising� algorithm. We implement
our �lterbank with a wavelet packets decom-
position [6], which frequency resolution closely
matches the critical bands, as used for instance
by Tew�k et al. in [7]. Within each subband
k, we perform a hard thresholding of the coef-
�cients [10] :

Ttk
(x) =

(
0 if jxj < tk
x if jxj � tk

(3)
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The threshold tk is adaptively chosen such that
the pdf of the coe�cients below tk (the series
of which is seen as random process) is well ap-
proximated by a gaussian (for instance using a
chi-square test). The �ltered signal is recon-
structed from the thresholded coe�cients.

2.3 Tonal part estimate

As seen on �gure 1, before the tonal part es-
timate, we perform a preliminary noise �lter-
ing, to reduce biases. This preliminary �lter-
ing is made in a very conservative way. The
tonal part of the sound is then estimated with
a lapped cosine transform, also called Malvar-
Wilson wavelet transform [9]. The overlap
between analyzed segments reduces artifacts
caused by discontinuities . The locally har-
monic parts of the signals will here give way to
large coe�cients. These are selected by thresh-
olding as follows : Let ck be the lapped DCT
coe�cents and C = maxk(jckj). The threshold
is taken as a fraction of C, namely �C, where �
is a constant (� < 1), chosen according to the
available bit-rate.

2.4 Transients estimate

After the tonal part removal, another noise
�ltering is performed, this time with released
constraints on our gaussian test (the transients
estimate is more likely to be corrupted by
noise). Transients are detected through a stan-
dard dyadic wavelet transform (DWT) : fast-
varying features will cause large DWT coe�-
cients across scales. Here again, a thresholding
relative to the maximum coe�cient is applied.

2.5 Noise estimate

The remainer of the signal when the tonal part
and the transients are subtracted represents
the noise. Again, we perform a critical band-
based wavelet packets analysis. The variances

�k in each subband k are simply estimated from
the sample variances of the coe�cients.

3 Coding technique

For compression puposes, the selected DCT
and DWT coe�cients are encoded (ie. quan-
tized) with a given number of bits, that de-
pends on the target compression ratio. After
this quantization, some e�cient entropy cod-
ing is performed, like arithmetic coding. One
also has to represent the set of indices of se-
lected coe�cients, and this is e�ciently done
using a run-lengh followed by entropy coding.
Similarily, the variances �k of the noise in each
subband are quantized and encoded.

4 Conclusion

We propose an original representation of audio
signals, in a both accurate and compact way.
The signal is split into its toanl part, transients
and noisy part. The key feature of this algo-
rithm is an explicit model of the noise, which
allows a good estimate of the other parameters.

In addition to obvious compression purposes,
this allows a better understanding of the in-
ternal structure of the musical sounds, and al-
lows sound transformations (for instance if we
want to increase the duration of a sound with-
out changing the pitch we want transients to
remain sharp). Furthermore, as we are directly
given with a separation between the tonal and
the non-tonal parts, psychoacoustic models can
be simpli�ed in this framework.

Preliminary results appeared encouraging,
though extensive comparisons with existing
coding algorithms still remain to be done. We
deeply think that such an approach can be ex-
tremely promising for a large class of signals,
especially at very low bit-rate (typically less
than 32 bits/sec) where the percieved quality
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of traditionnaly-encoded sound�les falls drasti-
cally.
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