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Abstract

This paper presents a technique to resynthesize the sound generated by the vibrations of two piano strings
tuned to a very close pitch and coupled at the bridge level. Such a mechanical system produces doublets of
components generating beats and double decays on the amplitudes of the partials of the sound. We design
a waveguide model by coupling two elementary waveguide models. This model is able to reproduce
perceptually relevant sounds. The parameters of the model are estimated from the analysis of real signals
collected directly on the strings by laser velocimetry. Sound transformations can be achieved by
modifying relevant parameters and simulate physical situations.

1. Introduction

Synthesis of piano tones by physical modelling
requires the simulation of an intricate chain
which begins by the finger of the pianist, the
hammer–string impact, the propagation of string
vibrations, the interaction between strings and
bridge and the acoustic field radiation by the
soundboard [1]. In this study, we focus on the
resynthesis of the vibration generated by a
system of two coupled piano strings using
waveguides synthesis models [2]. Indeed, in a
real piano, two strings (or three for medium and
high pitch) tuned to a very close pitch are used to
produce the same note. Moreover, each string is
tightened between a fixed support (the nut) and a
mobile support (the bridge). Thus, the bridge
permits interactions between strings and this
coupling generate audible phenomena like beats
[3]. They constitute one of the most important
features of the piano sound from a perceptive
point of view. Previous work [4] has shown that
by coupling two elementary waveguides, the
vibrations of a single string with two
polarisations (horizontal and vertical) could be
accurately reproduced. This coupling
phenomenon between orthogonal polarisations
for one string is similar to the interaction
between two strings belonging to the same
doublet and coupled through the bridge. In this
article, we shall first describe this coupled
waveguide model and see how it can be adapted
to the case of two strings. For that purpose, we

shall consider only the vertical polarisations
which represent the most important contribution
to the resulting sound. The parameters of this
model are estimated from the analysis of real
signals. We shall end up by discussing how these
parameters can be changed to simulate various
physical configurations.

2. Waveguide model for two
coupled strings

We consider a system of two strings belonging
to a same doublet and coupled through the
bridge. The synthesis model used to simulate the
behaviour of this system is similar to the model
used for a string with two polarisations, which is
designed by coupling two elementary waveguide
models represented in figure 1.
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Fig 1 : Elementary waveguide model
representing a single string in one polarisation.
e

i
 is the input of the model and s the output. i

indicates the number of the string (1 or 2). The
filter D

i
 represents the propagation delay for the

vibration to go back and forth along the string.
The filter F

i
 represents all the dissipation and

dispersion phenomena.



The transfer function of one elementary
waveguide model is :

Gi
= si (ω )

e(ω )
= Fi (ω)e− iωDi

1− Fi (ω)e−iωDi

We now couple two such waveguides by feeding
the input of one by the filtered output of the
other one (figure 2).
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Fig 2 : Coupled waveguide model. e represents
the input of the model, s

1
 is the output at the

string 1 level (the excited string) and s
2
 the

output at the string 2 level (the string excited by
the coupling). Each element G

1
 and G

2

represents one string (indexed by 1 and 2) and is
an elementary waveguide model as presented on
figure 1. H and F are the coupling filters.

The coupling elements of the model are the
filters F and H. We assume that this coupling is
localised at one end of the strings, namely the
bridge. The filters F and H are complex-valued.
This type of model has already been proposed. In
particular, Tolonen and al. models [5] take into
account multiple strings in the guitar case. These
models can reproduce some of the effects
generated by the interaction between strings.
Nevertheless, as the coupling elements of the
model are constant real gains, they give the same
behaviour for all partials. In our model, F is
related to the amount of energy transferred from
string 1 to string 2, and similarly H is related to
the amount of energy transferred from string 2 to
string 1. As we are interested in describing the
coupling, we assume that only one string is
excited. The transfer functions of the coupled
waveguide model are given by:

T1(ω) = s1(ω)

e(ω )
= G1(ω)

1− H(ω)F(ω)G1(ω)G2(ω)
 and

T2(ω) = s2(ω)

e(ω)
= F(ω)G1(ω)G2 (ω)

1− H(ω)F(ω )G1(ω )G2(ω)

We notice that the two transfer functions T1(ω)
and T2(ω) have the same denominators and one
can show that they generate the same resonance

frequencies. In the time domain, this model
generates two signals, which are sums of
exponentially damped sinusoids:

T1(t) = H (t) ake
−α kteiµ1kt + bke

− βkteiµ2 kt

k= −∞

k= +∞

∑  and

T2(t) = H (t) cke
−αkteiµ 1kt + dke

− βkteiµ2kt

k= −∞

k= +∞

∑

where H(t) is the Heaviside function. The
parameters ak, bk, ck, and dk are the amplitudes of
each component. The terms αk and βk are the two
damping coefficients. µ1k and µ2k represent the
resonance frequencies of mode k. All these
parameters can be expressed as functions of the
coupled waveguide parameters. By putting
D1=D2 (which corresponds to two strings with
the same length), one can show that the partials
are grouped into doublets of components. The
frequency gap is typically in the range [0.1Hz ;
5Hz]. In order to build the elements of the
coupled waveguide model from the analysis of
real sounds, we are brought to deal with the
inverse problem. Its solution leads to an estimate
of the filters of the models at the resonance
frequencies as function of the amplitudes, decay
times and frequencies of the partials [4].

3. Results

Real signals have been collected from an
experimental set up constituted of a massive
support on which the two strings are tightened.
The string velocity of each string is measured at
a single location (near the bridge) by laser
velocimetry. The velocity measured on the
plucked string corresponds to the signal S1 and
the velocity measured on the string excited by
sympathetic coupling corresponds to the signal
S2. As expected, the attack of the excited string is
sharp whereas the amplitude of the signal from
the coupled string increases slowly from zero.
Figure 3 shows the whole spectrum obtained by
Fourier transform of the signal, which contains
more than fifty partials. Some of them seem to
be missing: it is the phenomenon of rejection
which depends on the location of both the
excitation point and the measurement point.
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Fig 3 : String excited by  sympathetic coupling.
The axes are arbitrary.
           Top : spectrum of the real signal
          Bottom: blow up of the measured spectrum
around the fifth partial (marked by an asterisk
on the top graph)

Each partial is then isolated by band-pass
filtering (fig 3, bottom). It shows a double
resonance which introduces beats on the
amplitude modulation law in the time domain.
The two frequencies of each resonance
correspond to the eigen frequencies of the
coupled system which are different from the
eigen frequencies of the uncoupled waveguide
models. In a second step, a parametric method
used on each doublet of partial in the time
domain allows us to obtain temporal parameters
(amplitudes, decay times and frequencies of the
doublets), which are necessary to identify the
values of the filters of the model at the resonance
frequencies.
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Fig 4 : fifth partial, string excited by sympathetic
coupling. The axes are arbitrary.

Top: superposition of the measured (-) and
the estimated (+) amplitude modulation law
       Bottom: blow up of the estimated spectrum

By assuming that these functions are smooth
enough in the frequency domain, they can be
easily interpolated.
The modulus of the filters F1 and F2 are very
close to one. Indeed, the propagation is weakly
damped and this damping is due to the intrinsic
losses within the string (viscoelastic,
thermoelastic…) and to an energy transfer to the
bridge [6]. The coupling filters (figure 5) show a
peak for the third partial.
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Fig 5 : Modulus of the coupling filters F and H
as functions of the index of the partials.

The coupling is important at this frequency. In
order to know if the behavior of the coupling
filters is linked to the transfer function of the
bridge, we have measured its response to a
hammer shock while the strings were blocked.
The analysis of the signal enabled us to obtain
the frequency response of the bridge (figure 6).
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Fig 6 : Frequency response of the bridge as
function of the frequency (in Hz).

It clearly shows a resonance around 470 Hz,
which corresponds to the third partial of the
coupled strings. The relation between the
frequency response of the bridge and the values
of the coupling filters thus seems obvious.



4. Synthesis with transformations

It is possible to achieve sound transformations
by modifying some parameters of the model.
First, there are two ways to transpose the sound,
yielding different results:
• By changing the average frequencies of the

partials before using them for building the
filters. In this case, the transposition seems
realistic as long as they are close to the
initial frequencies; otherwise, the attack is
not realistic.

• By modifying D1 and D2. This
transformation is physically equivalent to
change the length of the strings. The sound
produced is satisfactory from a perceptive
point of view.

We can also put the system out of tune by
changing the phase of only one of the filters F1

and F2. In this case, the signal S2 is much weaker
than when strings are tuned and we can hear two
distinct frequencies with beats. This result has a
physical explanation: the fundamental
frequencies of the two strings are distant, so the
energy of the "first" string is not totally
transferred to the "second" string. The partials,
the frequencies of which are too different, are
much weakly coupled. If the difference between
the two frequencies is just one octave, the
coupling becomes optimal and the string excited
by coupling is vibrating. The intensity of the
coupling is then related to the number of partials
sharing the same frequency. The exchange
between the filters F1 and F2 does not modify the
features of the produced signal: those filters
describe the internal loss phenomena in the two
strings, which are supposed to be identical. The
coupling is mainly associated to the filters F and
H. Others parameters such as the excitation or
the coefficient of inharmonicity (by acting on the
phase of the two filters F1 and F2) can be
changed to simulate other physical situations.

5. Conclusion

This study has shown that a coupled waveguides
synthesis model is able to reproduce the
perceptive effects of coupling between two piano
strings, namely the phenomena of beats and
double decay.  By prolonging the work done in
the case of a unique string with two polarisations
to the case of two strings, we could determine

the parameters of the model directly from the
analysis of real sounds. For that purpose, we
used a calibrated experimentation. From a
mechanical point of view, we have seen that the
behaviour of the coupling filters can be linked to
the eigen modes of the bridge. From a musical
point of view, the accuracy of the resynthetized
sounds validates the use of this model and the
techniques of parameters estimation. Though we
worked on velocity signals from a specific
experiment, the model in itself is valid in the
case of real piano tones. Sound synthesis using
this model gives the possibility, first of all, to
transpose easily the sound and create ad
infinitum new sounds by simply modifying the
relevant parameters of the filters, which were
estimated from the analysis. These new sounds
can, for instance, correspond to simulations of
systems of two strings with completely different
physical properties (for example, one can
virtually couple a nylon string of guitar and a
steel string of piano).
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