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ABSTRACT

Ideal three-dimensional resonators are “labeled” (identified) by in-
finite sequences of resonance modes, whose distribution depends
on the resonator shape. We are investigating the ability of hu-
man beings to recognize these shapes by auditory spectral cues.
Rather than focusing on a precise simulation of the resonator, we
want to understand if the recognition takes place using simplified
“cartoon” models, just providing the first resonances that iden-
tify a shape. In fact, such models can be easily translated into
efficient algorithms for real-time sound synthesis in contexts of
human-machine interaction, where the resonator shape and other
rendering parameters can be interactively manipulated. This paper
describes the method we have followed to come up with an appli-
cation that, executed in real-time, can be used in listening tests of
shape recognition and together with human-computer interfaces.

1. INTRODUCTION

Recently, research topics in the field of psychophysics have been
concerned with the faculty of human beings to hear the shape, both
in the two-dimensional (2-D) and three-dimensional (3-D) case
[1]. This means, for example, that sounds coming from square
rather than circular membranes after an excitation, or resonances
that are produced by cubic rather than spherical empty cavities,
containing a sound source in their interior, may convey to the lis-
tener cues accounting for the shape of the resonator.

Several results [1, 2] seem to testify that, in the case of 3-D
shapes, a fundamental role in this type of recognition is played
by the spectral content of the sounds. Since, in the case of ideal
resonators, the sequence of resonance modes depends only on the
resonator shape, it makes sense hyphotesizing that 3-D resonators
convey perceptually relevant cues that are in strong correlation
with their shapes.

The way these cues are perceived by the listener is a matter
of investigation for ecological psychologists [3]. We decided to
focus our attention in the spectral mode series such as a label of the
resonator, meanwhile taking care of preserving as far as possible
the constancy of all other physical and geometrical parameters. In
particular, a variation of the resonator size leads to a proportional
shift in frequency of the mode series: a solution must be found to
govern those shifts during changes in shape of the resonator or, in
other words, a rule to infer the size must be found once a shape is
given.

The simplest idea would be constraining the fundamental mode
to a unique value during changes in shape. This approach is quite
non-ecological. Rather, a psychophysically more well-founded

rule suggests to preserve the constancy of the resonator volume
during changes in shape [4]: following this approach, the funda-
mental mode shift is minimal for intermediate shapes between the
cube and the sphere.

A rule is needed to map one or more morphing parameters into
correspondent shapes. Superquadrics [5] have been adopted here
to realize direct and versatile maps: using just one parameter, ge-
ometries that are consistent with the problem can be selected via a
simple set of equations. These geometries can be used to initial-
ize models of resonators, if these models can be directly “shaped”
exactly like the resonators should be. Waveguide meshes [6, 7]
comply with this requirement, and represent a good modeling so-
lution, with several pros and cons that have been explained in more
detail in previous literature [8].

In particular, Waveguide meshes allow to select the excitation
and acquisition points in the resonators. In this way, the mode
series can be detected in regions where the modal density is partic-
ularly rich, and, conversely, in regions that are nodal with respect
to many resonances [9]. Since our investigation needs only to deal
with the first part of the mode series (i.e., few tens of modes), the
waveguide models allow to assess with enough precision all the
resonances that are present in the mode series: this is done de-
tecting the signal on acquisition points that are located near the
corners of the resonator. Alternatively, for reasons of symmetry
and on a practical and ecologically-consistent basis, the center has
been chosen such as the region where only some resonances are
audible.

Smooth changes in shape using the morphing parameter trans-
late into progressive changes in the resonances positions. In the
meantime, smooth changes in the acquisition point, moving be-
tween the center and the corner of the resonator, translate into cor-
respondent variations in amplitude of the resonance peaks. Hence,
the controls of shape and position map into intuitive features of the
frequency responses.

All these features can be easily reproduced using a filter bank
of second-order filters, where each filter is tuned to one particular
resonance frequency [10]. Moreover, this filter bank has a pre-
cise and physically meaningful interpretation [11]. Simple meth-
ods like linear interpolation can be used to interpolate between
responses that have not been simulated.

We have developed a pd-module [12] that implements such
a filter bank. It is controlled in the parameters of shape (between
sphere and cube), and listening points (between center and corner).
Using this module, proper sounds can be convolved as if they were
listened from a point located in a 3-D cavity having a given shape.
This module realizes a so-called cartoon model [13], that can be
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Figure 1: Positive sections of geometries obtained using (1).  has been set to f2:5 ; 3 ; 4g, starting from left.

Figure 2: Orthogonal projections of Waveguide meshes modeling the geometries seen in figure 1.  has been set to f2:5 ; 3 ; 4g, starting
from left.

used in interactive real-time environments. In particular, we are
going to use it in listening tests of shape recognition.

2. GEOMETRIES

One possible morphing from spheres to cubes can be realized if we
constrain the geometries to be ellipsoids. Superquadrics are, in this
sense, a versatile family of ellipsoids. For our purpose, we restrict
their use to a set of geometries that is defined by the following
equation in the 3-D space [5]:

jxj + jyj + jzj = 1 (1)

Changes in shape are simply determined by varying , that acts
like a morphing parameter:

� sphere:  = 2

� ellipsoid between sphere and cube: 2 <  <1

� cube:  !1.

We have analyzed eight shapes, including the sphere and the
cube, which have been built according to (1). The correspondent
values of the morphing parameters are the following ones:

1 = 2 2 = 2:2 3 = 2:5 4 = 3
5 = 4 6 = 6 7 = 20 8 = 100

8 results in a geometry that approximates the cube with good pre-
cision. Positive sections (i.e., volumes limited to f(x; y; z) : x >
0 ; y > 0 ; z > 0g) of some of these geometries (3, 4 and 5)
are depicted in figure 1, starting from left.

Then, 3-D Waveguide mesh models have been designed, in
such a way that they reproduce ideal resonators having a shape
that matches, as close as possible, the geometry given by the corre-
spondent superquadric. Figure 2 depicts, for the same geometries
and with the same ordering seen in figure 1, orthogonal projections
of the mesh models that have been used in this context. The reader
can find further details of the modeling strategies that have been
adopted in this research in a previous paper [8].

3. SIMULATIONS

For each chosen geometry two impulse responses have been com-
puted. The resonator model was fed with energy in a way that
all the modes in the scope of our analysis were excited1. The re-
sponses were acquired from junctions located near the corner and
at the center. In this way two mode series were collected from
each shape, one accounting for all the modes that a resonator can

1in practice this required to feed several junctions of the mesh with an
impulse.
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Figure 3: Plots of frequency responses from resonators defined by morphing parameters 1; : : : ; 8, starting from above. Solid line:
acquisition near the boundary; dashed line: acquisition at the center. All frequency domains are in Hz, gains are in dB. Theoretical
positions of the resonances in the sphere are depicted with ‘Æ’; theoretical positions of the resonances in the cube are depicted with ‘�’.
All resonators resized to maintain the volume constant with shape. Nominal frequency of the fundamental mode in the sphere has been set
to 415 Hz.

produce in the lower part of the frequency domain, the other pre-
senting only the modes resonating at the center of a 3-D ideal res-
onator, respectively.

Since changes, both in shape and in the acquisition position,
do not introduce discontinuities, the correspondent responses ex-
hibit smooth and continuous variations as well. Changes in the
acquisition point result in mode cancellations that depend on the
nodal regions falling on that point. Such cancellations are present
in the spectra in the form of missing resonances.

The effect of changes in shape is more complicate: they result
not only in shifts of the modes, but also in resonance splits and
merging. By this phenomenon, the higher mode density in the
case of the cube turns to be possible.

Figure 3 depicts all the responses that have been calculated in
our analysis, both acquiring the signal at the center (dashed line)
and at the boundary (solid line). Parameters 1; : : : ; 8 are or-
dered starting from above. All frequency domains are in Hz, and

gains are in dB. Each resonator has been resized to maintain the
volume constant with shape.

The fundamental frequency value is uninfluential in our expe-
rience. It has been set in the sphere to a nominal value of 415
Hz. Other fundamental frequencies are constrained by volume
constancy: in practice, they slightly move with shape toward a
lower frequency [14].

Mode canceling due to changes in the acquisition point are
evident for all the geometries. It can be interesting to notice that
the canceled modes do not change with shape, so that the responses
taken from the center exhibit an overall homogeneity of behavior.
A definite homogeneity is quite evident also for the responses that
are acquired near the boundary. Mode splitting and merging is
figured out in particular focusing on the very first modes.

Finally, the theoretical mode positions (depicted in figure 3
with ‘Æ’ for the sphere, and with ‘�’ for the cube), as they are
calculated using analytical tools, match well with the resonances

DAFX-3



Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8,2001

computed by the simulations. This suggests a correct use of the
Waveguide mesh models in our research.

4. CARTOON MODELS

Transfer functions having magnitude plots such as the ones shown
in figure 3 can be realized straightforwardly. The most versatile
and probably best-known solution makes use of second-order tun-
able equalization filters [15]. In spite of this we have adopted, like
in the case of the volume constancy rule seen in Section 3, a so-
lution that has a more consistent physical background, although
respecting the requirement of efficiency and versatility.

Given the first N resonance modes generated by an ideal res-
onator, we can reproduce them using a one-dimensional (1-D) phys-
ical system consisting of N elementary blocks in series, each one
being made of one mass and one spring. A damper is added to
each block to provide a lossy component, giving physical consis-
tency and realism to the model. In this way each elementary block
independently governs the correspondent mode. More precisely,
the parameters of frequency position and decay time of a mode are
computed by simple functions of the mass, the spring constant and
the damping factor [11]. After discretization, we obtain a physical
model of a 1-D resonator in the form of a parallel second-order fil-
ter bank, where each filter in the bank accounts for a single mode
of the resonator.

The 1-D resonator is, so, a cartoon model of the cavity [13].
Although justified from a physical modeling viewpoint, this model
also allows a quite straightforward control of the position and the
amplitude of each mode. As seen in Section 3, these two param-
eters can be seen as resulting from a particular choice of the res-
onator shape and sound acquisition point. Hence, we can think to
set up a rule that maps couples of (shape,position) into couples of
(frequencies, amplitudes):

(; r) �! (!;G) = ([!1; : : : ; !N ]; [G1; GN ]) (2)

where r is the distance of the acquisition point from the center,
measured along a pre-determined direction common for all shapes
(0 � r � R, R being the distance between the boundary and the
center), !i; i = 1 : : : N are positions in frequency and Gi; i =
1 : : : N are gains of the N modes at the acquisition point; , of
course, selects the shape (1 �  � 8).

A careful design of such a map would require the knowledge
of several responses from each geometry, since the nodal regions
combine in a wide variety over different acquisition points. More-
over, a precise reproduction of the modes may complicate the map
expressed by (2) up to a point where a control in real time of the
1-D model could in principle become difficult. For this reason,
we have “cartoonified” also the control layer, linearly interpolat-
ing between couples (; r) where the image (!;G) is not known.

Suppose to set the input parameters to (s; rs), such that the
N mode positions and amplitudes, (!s;Gs), require interpola-
tion. Bi-linear (Lagrange) interpolation requires to calculate !s
andGs using relations that involve four interpolated points, where
the mode positions and amplitude are known, and the distance be-
tween these points and the interpolation point. If (see figure 4)
the interpolated points are respectively labeled with (n; 0), (n;R),
(n + 1; 0), (n + 1; R) (n is a number between 1 and 7), such re-
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Figure 4: Lagrange interpolation of gains and frequency positions.

lations become:
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Note that bi-linear interpolation reduces to linear interpolation be-
tween two points in the first equation. In fact, mode positions are
independent from the acquisition point.

5. MODEL IMPLEMENTATION

The described model has been implemented as a pd module un-
der a PC running Linux and pd [12]. After acquiring a sound, it
performs a convolution introducing the selected resonances in the
audio signal. The simplicity of the module results in a low compu-
tational load for the hardware, so that enough resources are left to
the graphic interface.

Figure 5 shows a snapshot of the module interface, that pro-
vides an interactive, real-time environment where the user can mod-
ify the parameters of shape and the acquisition point, receiving an
immediate auditory feedback from the system.

This implementation is going to be used in listening tests of
shape recognition. During these tests, particular care must be taken
in the choice of the sound that will be processed by the filter bank,
since poor or inadequate sounds can result in inconsistent tests.
Scope of these tests is investigating if the auditory cues that are
conveyed by our model can evoke sensations of shape, or improve
the effectiveness of a multi-modal display devoted to convey in-
formation about 3-D shapes. For this reason, the model is going
to be implemented also in a system for human-machine interaction
involving a more sophisticate interface.
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Figure 5: Implementation of the model as a pd module: a snapshot of the graphic user interface.
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