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ABSTRACT

In the area of digital musical effect implementation, attention has
lately been focused on computer workstations designed for digital
processing of sound (DAW – Digital Audio Workstation), which
perform all operations with audio signals, such as routing,
mixing, editing, effect processing, recording, coding, etc. They
are in fact a combination of a powerful computer program and
hardware cards with digital signal processors. Most of these
operations, except editing, must be performed in real time. Until
recently, all real-time operations were performed on digital signal
processors. Thanks to the power enhancement of personal
computer core, performing these operations in the CPU is
currently possible. However, in most cases, digital signal
processors are still used for these purposes because digital
musical effect modelling is more effective and more precise with
the digital signal processor. In addition to this, processing in
digital signal processor saves the CPU computing power for other
functions. This paper deals with optimizing algorithms of digital
musical effects for DAW systems.

1. DIGITAL MUSICAL EFFECTS IN DAW SYSTEMS

We can split the software-produced digital musical effects that
are used in DAW systems, into two groups – effects called DSP
effects, which run in digital signal processors on hardware cards
of these systems, and effects processed directly in the processor
of a personal computer, which are called CPU effects. Sometime
the former type of processing is referred to as Native Signal
Processing and the other type as Host-based signal processing.
There is no difference between the DSP and CPU usage from the
user’s point of view. From the technical angle, however, the
algorithm of the former type of effect is transferred in the signal
processor assembler into the memory of signal processor placed
on the PCI card and the computer is no longer concerned with it.
In the other case the process that realizes the selected musical
effect algorithm is started directly in the host computer – it means
that the next process (which absorbs computing power) is
invoked.

1.1. Plug-In Technology

A plug-in is a virtual module that is inserted into the processing
path of a digital audio signal, similar to the effect inserted into the
signal path of a mixing desk channel. The idea of plug-in

technology is as follows: we create a hardware-independent
program module that processes the signal with an exactly defined
format of input and output. Then we create a host environment
that will provide for this module links to this environment, i.e. it
will offer standardized interfaces for communication with the
hardware. See [1] for details.

1.2.  Current DAW Systems

Current DAW systems like the ProTools by Digidesign and the
Pulsar/Scope system by Creamware use their own DSP and CPU
effect technology. They are very powerful systems but they have
one disadvantage – for effects they use firm’s own interfaces and
thus they can only be used in a single program. However, systems
that use the VST (Virtual Studio Technology) interface by
Steinberg [2] for DSP effects appeared recently on the market.
The TC Works and Universal Audio companies developed TC
Powercore and UAD1 DSP cards that support DSP effects with
the VST interface. Today, there are many programs on the PC
and Mac platforms that support the VST interface. Thanks to the
TC Powercore and UAD1 cards these programs will be able to
use DSP effects too.

2. OPTIMIZING DIGITAL SIGNAL PROCESSING
ALGORITHMS FOR DSP

Depending on the signal processor structure, digital signal
processing algorithms for digital signal processors can be further
optimized such that they reach maximum power in the DAW
systems and thus match the plug-in architecture.
Many factors affect the precision of digital signal processing
algorithms implemented on digital signal processors. With
discrete linear systems it is mainly the setting of initial
conditions. When we use a floating-point processor, the
quantization of signal and, above all, the quantization of transfer
function coefficients also influence the precision. The
architecture of arithmetical-logic unit is also important – due to
the limited ALU range there may appear saturation during
computation and this can cause non-linear distortion or change in
the frequency response of linear system. The Motorola DSP56k
family digital signal processors [3] are used in most DAW
systems so we dealt with implementation and optimization in this
DSP family. We do not deal with digital audio effect algorithms
themselves in this paper, but only with optimizing their
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algorithms for Motorola DSP56k processors. A description of the
effects mentioned in this paper can be found in [4].

2.1. Optimizing Parametric Filter Algorithms

Parametric filter structures allow direct access to the parameters
of the transfer function such as gain, bandwidth and center or cut-
off frequency, via the associated coefficients. To modify one of
these parameters it is therefore no longer necessary to compute a
complete set of transfer function coefficients but only one
coefficient in the filter structure is calculated instead. A feed-
forward structure for boost and feed-backward structure for cut
achieve an independent control of gain, center/cut-off frequency
and bandwidth. See [1] for details.
Any designed parametric filter is the linear time-invariant (LTI)
discrete system of the sth order. Such a system is usually described
by LTI difference equation
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where y(n) is the output signal, x(n) is the input signal, and ai ,
and bj are the time independent coefficients. The initial
conditions are defined by 2s values of y(0), y(1), … , y(s-1) and
x(0), x(1), … , x(s-1). A more effective description of the discrete
system is the state-space representation. Difference equation (1)
can be rewritten as two state-space equations of the first order
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The state-space vector is defined by state-space variables
[ ]Tv ),(),...,(),()( 21 nvnvnvn s= Matrices A,B,C, and D define

the properties of the discrete system. There are only s initial
values v1(0), v2(0), … , vs(0). Eq.(2) is made practical use of in the
Matlab program. If Y(z) and X(z) are the z-transforms of y(n) and
x(n), respectively, then the solution of Eqs.(2) and (3) can be
shown as
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The z-transform of the total response Y(z) in Eq.4 is given by the
sum of the ZSR (Zero State Response – the first term of Eq.4)
and of the ZIR (Zero Input Response – the second term of Eq.4).
Therefore, the transfer functions Hi(z) constitute the transient
response as a response to initial conditions. It is sometimes
difficult to determine this response. A new method has been
suggested that uses signal flow graphs to describe difference
equations.

2.1.1. Generalized Models for Digital Signal Processor

The digital signal processor architecture is typically a simple or
dual Harvard architecture. In order to reduce the number of
iterations in the design it is desirable to be able to predict the
performance of the digital filter hardware before actually
implementing the filter. This includes the complexity of the
structure, finite word-length effects, the prediction of arithmetic

saturation, and design flexibility with respect to changing
specifications.
There is a list of practical rules, which can be recommended to
optimize the digital filter implementation on a DSP:

• Lower quantization effect sensitivities can be obtained by
parallel or series connections of the first- and second-order
partial sections. It is possible to use other structures (lattice
or continued fraction expansion, etc.). The system transfer
function H(z) must be stable and may have real coefficients.

• The maximum values of the coefficients must lie inside
two’s complement range, i.e. inside the interval ±1. It is
useful to divide by 2 all coefficients of the second-order
partial section.

• For effective implementation, the coefficients of 2nd order
partial sections b2 are set to one. The optimized state-space
difference equations of the second-order partial sections
have the form

Canonic Model 1
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Canonic Model 2
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If Eqs (5) are solved by the z-transform, the signal flow graphs
(SFGs) of the generalized models of the partial section can be
obtained as shown in Fig.1 and Fig.2.

Figure 1. SFG of the generalized canonic model 1 for DSP
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Figure 2. SFG of the generalized canonic model 2 for DSP

Both model 1 and model 2 have the same system transfer function
H(z), which can be calculated by Mason’s Gain Rule as a path
from input node x(n) to output node y(n). The other transfer
functions, H1(z) and H2(z), are also obtained by Mason’s Gain
Rule as the path from input nodes v1(0)δ(n) and v2(0)δ(n)
respectively, to output node y(n). To sum up, we can see that
having the same H(z) both models have the same ZSR, but there
are great differences in the ZSRs. The results are summarized in
Table 1. We can expect much worse implementation properties
for canonic model 2 than for canonic model 1 in spite of the fact
that canonic model 2 is preferred in most world-known books!
Definitely, the implementation of IIR digital filters on Motorola’s
fixed-point DSP56002 confirms these assumptions. Moreover,
the behaviour of the state-space variables of the two models is
different.

Table 1. Transfer functions from Eq.4 for partial section of the 2nd

order (b2 = 1)
Model 1 Model 2
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The following example shows the core of optimized IIR filter
algorithm using canonic model 1 for Motorola DSP56k family
processors. Symbols vk,2 and vk,1 denote the state-space variables
of kth section and symbols a0,k, a1,k, a2,k, b0,k, and b1,k denote the
coefficients of kth section transfer function. Kk is the scale
coefficient of kth section. Register y1 contains an input sample at
the beginning and output sample at the end of algorithm, m is the
number of 2nd-order sections.

Memory usage:
X data memory Y data memory

vk,2(0) -b0,k/2
vk,1(0) kka0,k/2

vk-1,2(0) -b1,k/2
vk-1,1(0) kka1,k/2

: kka2,k/2
v22(0) :
v21(0) ← r1 -b0,1/2
v12(0) kka0,1/2
v11(0) ← r0 -b1,1/2

kka1,1/2
kka2,1/2 ← r4

move x:(R0),a
do #m,_end
macr y1,y0,a x:(R1),b y:(R4)+,y0
asr b a,x0
mac y1,y0,b y:(r4)+,y0
macr x0,y0,b y:(r4)+,y0
mpy y1,y0,b b,x:(r0)+ y:(r4)+,y0
macr x0,y0,b x:(r0),a a,y1
asr a b,x:(r1)+ y:(r4)+,y0

_end

Since the digital filter is realized on a fixed-point digital signal
processor, we set the state space variables to the limit values of
the complementary code range. We have assumed that the
structure chosen is robust enough and that the response to initial
conditions will abate quickly and that no problems will appear.
However, in spite of the suitably chosen structure, correctly set
coefficients of the partial sections, etc., we got to the limit of
implementation stability, that is to say the effects of quantizing
the coefficients, of partial results of mathematical operations
within the arithmetic-logic unit of digital signal processor, etc.,
result in that output signal y(n) does not get steady and remains
chaotic. See [5] for more details.

2.2. Optimizing Modulation Effect Algorithms

The fundamental element of all modulation effects is a delay line
with variable delay and a low-frequency oscillator (LFO) that
controls the delay of this delay line.

2.2.1. Delay Line with Variable Delay

The delay line with variable delay can be realized using the
shift register with FIFO structure. Input samples of the signal
enter the register and they are shifted towards the output at the
sampling frequency. The sampling frequency is controlled by the
LFO and latency time τ is given by the relation

)()( ngDepthn ⋅=τ , (6)

where Depth is the depth of modulation, or magnitude of
wobbling, and g(n) is the LFO sample. Multiplying the delay time
by the sampling frequency yields a real number K, which gives
the delay in the number of samples:
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SfnK ⋅= )(τ . (7)

However, multiplication by the value of sampling frequency
cannot be realized in the fixed-point signal processor. Therefore
we have to split the sampling frequency value into the product of
a number <1 and a power of 2. Using the bit-rotation instructions
we place the integer part of number K into the a1 accumulator
part and the fractional part into the a0 accumulator part. The
integer part of number K gives information about the position of
two neighbouring samples in the buffer between which
interpolation will be performed. Buffer length L depends on the
required maximum delay time τMAX and sampling frequency fS:

SfL MAX ⋅= τ (8)

With the regard to the possibilities of the Motorola DSP address
generation unit the buffer length of a power of 2 is useful. If we
choose a buffer length of 213, i.e. 8192 samples, and a sampling
frequency of 48 kHz, the maximum line delay will be about 170
ms, which is sufficient for all common applications.

Figure 3. Modulo buffer

We have to carry out the interpolation of two neighbouring
samples to obtain output sample xD:

( ) )()(1 10 KfractxKfractxxD ⋅+−⋅= , (9)

where fract(K) is the decimal part of K and x0 and x1 are
neighbouring samples:

( ))('0 KceilDelaynxx ±−= (10a)

( )1)('1 ±±−= KceilDelaynxx , (10b)

where Delay is the adjusted mean magnitude of delay and ceil(K)
is the integer part of K. Important relations among modulation
depth, mean value of delay, and modulo buffer size L follow from
Fig. 3:

Delay + Depth < L (11a)
Delay > Depth. (11b)

Algorithm needs 2 addreses in the X data memory, where delay
line parameters – mean value of delay and modulation depth -
will be stored, and 1 address position in the Y data memory for
storing information about the sampling frequency.

Memory usage:
X data memory Y data memory

Delay
Depth

FS/65536 ← r2

Delay
Line

Modulo
Buffer ← r1

Evaluation of delay amount (y1 contains relative delay):

move l:(r2)+,x
mpyr x0,y0,a x:(r2),x0
move a,y0
mpy x1,y0,a x0,n1
abs a a,b
rep #7
asr a r5,r1
move a1,n5
move a0,a1
asr a
move a1,y0
move n5,n1

Obtaining two samples for interpolation (x0 and x1 registers):

tst b
move (r1)+n1
move y:(r1)+,x0
move y:(r1)-,x1
jmi _nxt
move (r1)-n1
move (r1)-n1
move y:(r1)-,x0
move y:(r1),x1

Interpolation (at the end of algorithm, b contains the output
sample):

_nxt mpy x1,y0,b #$3fffff,a
asl a
sub y0,a
move a,y0
mac x0,y0,b

2.2.2. Low Frequency Oscillator

LFO parameters are frequency and the shape of generated
signal. The frequency range is from tenths of Hertz to tens of
Hertz. The sine, triangular, saw and rectangular waveforms are
used most often. The triangular waveform is generated according
to the equations

kngng +−= )1()( for the leading edge (12a)
)()1()( kngng −+−= for the trailing edge, (12b)

where g(n) is the triangular signal sample in nth step and k is
the increment
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where fs [Hz] is the sampling frequency and fLFO [Hz] is the
LFO frequency. The saw waveform is generated in the same way
as the leading edge of the triangular waveform (12a). Since the
duration of the leading edge of the saw waveform is twice that of
the triangular waveform, the increment for the saw waveform
must be half the increment in (13). The rectangular waveform is
generated according to the triangular waveform – the value
changes with the processor arithmetic overflow, i.e. with
changing increment sign.

The sine waveform can be generated by various methods, e.g.
by means of the Taylor series or we can use the triangular
waveform. However, the optimal solution is applying the
recursive generator in Fig. 4.

Figure 4. Recursive generator of sine and cosine waveforms

The realization equations of the recursive generator from Fig.
4 are

)sin().()cos().()1( αα nsncnc −=+ (14a)

)cos().()sin().()1( αα nsncns +=+ , (14b)

where  c(n) is the cosine signal and s(n) the sine signal, and
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where fs [Hz] is the sampling frequency and  fLFO [Hz] is the LFO
frequency. Initial conditions are c(0)=1 and s(0)=0. The values of
generated waveforms are placed into the X data memory.
Algorithm parameters (initialization values and increment) and
memory pointer of currently selected waveform are stored in the
Y data memory. Saving the new pointer that points to the newly
selected waveform does the LFO waveform selection.

Memory usage:
X data memory Y data memory

rectangle Selected wave adr.
triangle $800000

saw 4*F1/Fvz
sine @sin(2*pi*F1/Fvz)

cosine ← r0 @cos(2*pi*F1/Fvz) ← r4

Sine and cosine waveform:

move x:(r0)+,x0 y:(r4)+,y0
mpy x0,y0,a x:(r0)+,x1 y:(r4)+,y1
macr -x1,y1,a
mpy x0,y1,b a,x0
macr x1,y0,b x:(r0)-,a

Saw waveform:

move a,b b,x:(r0)- y:(r4),b
addr a,b x0,x:(r0)+ b,y1
clr a b,x:(r4)+
tfr y1,b x:(r4)+a a,y0

Triangle and rectangle waveform:

jclr #23,x:(r4)-,_sub
neg b

_sub add b,a
jec _of
neg b y0,x:(r0)-
add b,a y:(r4),b
jpl _inc
move b,x:-(r4)
neg b (r4)+

_inc move b,x:(r0)+ y:(r4)+,y0
move b,x:(r4)-

_of move a,x:(r4)+ y:(r0)+,y0
bclr #6,sr

2.3. Optimizing Non-linear Effect Algorithms

The basic block of non-linear effect algorithms is a transfer block
with non-linear transfer characteristic. In our algorithms we use
the non-linear transfer characteristic according to Fig. 5 (see [6]
for details).

Figure 5. Static transfer characteristic of non-linear system

Signals outside the level range defined by the Threshold1 and
Threshold2 values are limited. Part of the transfer characteristic
between the Threshold1 and Threshold2 values is approximated
by a power polynomial.
Features of the saturation arithmetic of Motorola DSP56k digital
signal processor, which limits numbers greater than 1-2-24 and
less than –1 during the transfer from accumulator to data bus, can
be used for signal limitation. First we make the transfer
characteristic symmetric by adding the coffset constant

( )21 ThresholdTresholdcoffset +−= (16)

and then we transfer this characteristic into the <-1,1) range by
multiplying by the crange constant:

21

2422
ThresholdTreshold

crange −
−=

−
. (17)



 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-6

The modified input signal x’(n) will be

offsetrange cnxcnx −⋅= )()(' . (18)

We divide the multiplication by the crange constant into the
multiplication by a number that is a power of 2 and a number less
than 1. Equation (18) then changes to the form:

offsetrangeF
c cnxcnx rangeP −⋅⋅= )(2)(' . (19)

The calculation of the polynomial that approximates the
characteristic between the Threshold1 and Threshold2 points
follows the input signal modification. The common polynomial
equation is
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Equation (20) can be modified to the form
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If we introduce state variables

10 =v  , 1. −= kk vxv (22)

we can write equation (21) in the form
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We obtain the output signal using the equation

offsetFrange
c ccnyny Prange +⋅= 2

22)(')(  , (24)

where crange2P = -crangeP+1, crange2F = 1/(2.crangeF) and y’(n) is the
modified output signal obtained by calculating the polynomial
from modified input signal x’(n).
We can realize equation (23) on the Motorola DSP56k digital
signal processor using a modulo buffer of length K and the
instructions multiply with accumulate and multiply closed in the
DO cycle. The algorithm computing power is 3K+1 instructions
(without initialization) and the algorithm requires K address
positions in data memory.

Memory usage:
X data memory Y data memory

aK crange2F
: crange2P

a1 x’(n)
a0 crangeP

-coffset ← r0 crangeF ← r4

Input signal modification (y1 contains input sample):

move x:(r0)+,b y:(r4)+,y0
macr y0,y1,b x:(r0)+,a y:(r4)+,x0
rep x0
asl b #2,n4
tfr b,x1 x:(r0)+,x0 b,y:(r4)

Polynomial evaluation:

do #K,_end
mac x0,x1,a y:(r4),x0
mpy x0,x1,b x:(r0)+,x0
move b,x1

_end

Output signal evaluation (at the end, b contains the output
sample):

move x:(r0),b y:(r4+),x0
rep x0
asr a a,y0 y:(r4+n4),y1
mac y0,y1,b (r4)-n4

3. CONCLUSION

This paper presents the usage possibilities of DSP architecture
features to optimize digital musical effect algorithms. The
utilization of the Motorola DSP56k family architecture is shown
on three concrete examples of basic real-time digital musical
effects, which work in the time domain – double Harvard
architecture (up to two parallel moves within an instruction
execution), Arithmetical-Logic Unit (integrated hardware
multiplier and saturation arithmetic), and Address Generation
Unit (modulo buffers and simultaneous work with two data
memories). Such optimized algorithms save the DSP power,
which is then able to process more plug-in effects at the same
time. The DSPs can take on more processing of digital musical
effects in the DAW system and thus save the host PC computing
power for other processes, which run in parallel, for example hard
disc recording, MIDI data processing, etc.
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