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ABSTRACT

We propose efficient implementations of a glass harmonica and a
Tibetan bowl using circular digital waveguide networks. Circular
networks provide a physically meaningful representation of bowl
resonators. Just like the real instruments, both models can be either
struck or rubbed using a hard mallet, a violin bow, or a wet finger.

1. INTRODUCTION

Glass harmonicas and singing bowls are instruments with strongly
similar acoustical characteristics. Moreover, they can be excited
in the same way, i.e., either rubbed, hit by a hard mallet, or even
bowed using a violin bow [1]. From a sound synthesis point of
view, it is therefore interesting to reproduce these instruments us-
ing the same approach.

In this paper we propose a physically based model of a Ti-
betan bowl and a crystal wineglass based on digital waveguide net-
works. Our model consists of circular waveguide networks. The
idea behind circular waveguide networks is the desire to have a
physically meanful representation of the wavetrains propagating
along the rim of the instruments, together with an efficient synthe-
sis technique that allows our models to run in real-time. Section 2
describes history, acoustics and recordings of the instruments, sec-
tion 3 and 4 propose our modeling approach, section 5 and 6 show
results and implementation.

2. DESCRIPTION OF THE INSTRUMENTS

2.1. The glass harmonica

Glass harmonicas are instruments that come in two forms. The
first, invented by Benjamin Franklin in 1757, adopts glass bowls
turned on their horizontal axis so that one side of the bowl dips
into a trough of water. The second one, which is the one we are
interested in, is a combination of wineglasses of different sizes, as
shown in figure 1.

Different melodies can be played on a set of tuned glasses
(filled with appropriate amounts of water or carefully selected by
size), simply by rubbing the edge of the glass with a moist finger.

2.2. The Tibetan bowl

Oral tradition dates the singing bowl back to 560-180 B.C. in Tibet.
These bowls have been found in temples, monasteries, and medita-
tion halls throughout the world. Singing bowls are said to be made
out of five to seven metals such as gold, silver, mercury, copper,
iron, metal and tin, each representing a celestial body. Each of
these metals is said to produce an individual sound, including par-
tials, and together these sounds produce the exceptional singing

Figure 1: Combination of wineglasses played by rubbing the edge
of the glasses.

sound of the bowl. Each bowl is hand hammered round to produce
beautiful harmonic tones and vibrations. Today they are used in
music, relaxation, meditation, and healing.

The bowl we used during the recordings is shown in figure 2.

Figure 2: The Tibetan singing bowl used for the recordings.

2.3. Acoustics of the instruments

The vibrational modes of wine glasses and singing bowls resemble
those of a large church bell. Tapping the instruments excites a
number of “bell modes”, while rubbing it excites mainly the lowest
mode, i.e., the (2; 0) mode and its harmonics. As in the case of the
bowed string, rubbing the rim of the glass with a wet finger excites
vibrations in the glass through a stick-slip process. Moving the
finger around the rim creates a pulsation of about 4 to 8 beats per
second, depending on the speed of the player’s finger.

Figure 3 shows the spectra relative to a wine glass of 6.7 and
6.0 cm of diameter in the steady-state portion of the sound.
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Figure 3: Spectrum of a small wine glass. Horizontal axis: fre-
quency, vertical axis: Amplitude (dB). Top: impulse response, cen-
ter: bowing with a cello bow. Bottom: rubbing with a wet finger.

A microphone was positioned at about 1 m from the glasses.
The glasses were tapped with an impulse hammer, rubbed with a
wet finger and bowed with a cello bow.

The spectra obtained are consistent with those published by
Rossing [1].

Figure 4: A crystal wine glass used in the recordings.

From a perceptual point of view, the sound of a Tibetan bowl
has two main characteristics: long sustained partials and a strong
characteristic beating. Beatings are due to the slight asymme-
tries of the shape of the bowl. Without these asymmetries, a phe-
nomenon called degeneracy would appear, i.e., a phenomenon in
which different modes i have the same frequency.

Wine glasses have a shorter decay time. However, crystal
wineglasses with a bell-like shape, such as the one shown in figure
4, have a stronger resonance of the (2; 0) mode, which makes them
easier to resonate rubbing their rim with a wet finger.

2.4. Analysis of the recordings

Figure 6 shows the analysis and synthesis steps performed in or-
der to model the two instruments. From the recorded impulse re-
sponse, we extracted the frequencies of the main resonances of the
instruments, together with their damping factors, using spectral
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Figure 5: Frequency response of the bowl hit at different positions.

analysis. Figure 8 shows the results of the peak detection algo-
rithm in the case of the Tibetan bowl. The impulse response of the
instrument was analyzed performing a short time FFT [2] in the
sustained portion of the tone. The signal was windowed using a
Hamming window of 2048 points. The step size was 256 points.
On the top of the plot the two modes at lowest frequency are dis-
played. Note the slower decay time of the three main modes, which
is evident also from the sonogram of Figure 7. Note also how the
pitch detection algorithm is able to identify the characteristic beat-
ing of the instrument.

The fundamental frequency of each mode was extracted in or-
der to build the late time response of the digital waveguide net-
work, each digital waveguide representing one mode. Moreover,
the decay time of each mode was used to build the low-pass filters
that model the overall decay characteristics of each mode. Each
mode was used to build the digital waveguide network.
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Figure 6: Analysis and synthesis steps to obtain the bowl and wine-
glass models.

3. DIGITAL WAVEGUIDES VERSUS MODAL
SYNTHESIS

We are interested in an efficient synthesis technique that allows
us to reproduce the sonorities of the instruments while maintain-
ing the possibility to play and vary their parameters in real-time.
Looking at the frequency domain content of the instruments, it is
immediately noticeable how they both present few strongly inhar-
monic modes. In these situations, usually an implementation based
on modal synthesis [3] is preferred.

Modal synthesis, however, does not conventionally retain any
spatial information about the wavetrains that propagate along a res-
onating object. As figure 9 shows, this is particularly relevant in
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Figure 7: Spectrogram of the Tibetan bowl after the sustained tone
is achieved. Note how the three modes at the lowest frequency
show a very long decay time.
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Figure 8: Results of the peak detection algorithm on the Tibetan
bowl’s spectrogram. Note how the algorithm correctly detects the
beatings.

the case of circular resonators, where waves propagate from the
excitation point along the two sides of the rim.

Maintaining both a spatial and spectral representation of the
modes allows us to achieve a higher quality synthesis.

Let’s consider the interpretation of modal synthesis that con-
sists on the parallel connection of several second order resonant
filter of the form:

y(n) = 2R cos �y(n� 1)�R

2
y(n� 2) + x(n) (1)

where R = e
�d=FS , � = !=FS, where d is the damping factor,

! = 2�f is the frequency of the mode, and FS is the sampling
rate.

For a single mode excited by a unitary impulse, the corre-
sponding sonogram is shown in figure 10. This sonogram was
obtained using equation 1 with f = 186Hz and a decay time
d = 38. This does provide an adequate model of the late time
response of a single mode. As expected, a single strong resonance
appears in the spectrum.

In [4], the modal synthesis approach is extended using banded
waveguides. The idea behind banded waveguides is the parallel
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Figure 9: Waves propagating around the circular resonator.

connection of several digital waveguides in which each mode is
bandlimited using a filter such as the one of equation 1.

Banded waveguides can be seen as a specific case of a digi-
tal waveguide network, in which losses are lumped into bandpass
filters, that isolate a single specific mode.

Figure 10: Sonogram of a bandpass filter excited by a unitary im-
pulse. Note the strong resonance of the fundamental frequency.

Figure 11: Sonogram of a banded waveguide excited by a unitary
impulse. Note how many harmonics are present in the spectrum.

In figure 11 the sonogram of a banded waveguide with the
same parameters as before is displayed. Notice how many quasi-
harmonic modes are summed together and decaying away. The
contribution from the harmonics is due to the waves that reflect at
the extremities of the waveguide.

Considering the more accurate physical interpretation of banded
waveguides, which provides also better results in the quality of the
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synthesis, we used therefore a network of circular banded waveg-
uides (CBW), each waveguide being tuned to the fundamental fre-
quency of the corresponding mode. As Figure 12 shows, a CBW
is a connection of two waveguides bandlimited by a bandpass fil-
ter. The output of each waveguide is connected to the input of the
other waveguide in a loop, as Figure 12 shows.
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Figure 12: Digital waveguide network structure of the bowl res-
onator. Representation of one mode. Each bi-directional delay
line contains the waves propagating in the two sides of the bowl.
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Figure 13: Complete model, connecting the exciter and the res-
onator. Each mode is modeled as shown in figure 12. The dotted
connection between the source and the resonator is due to the fact
that they can be connected with either a feedback or a feed-forward
loop.

In this case, the idea behind CBW is to model the waves trav-
eling around the rim of the circular resonators. Each waveguide
represents waves propagating from the excitation point to a side of
the bowl.

This means that, once a wave has reached the end of one side
of the rim, it enters in the delay line corresponding to the other side
and so on, as shown in Figure 9.

In the case of the singing bowl, the asymmetry of its shape
requires two delay lines slightly detuned if length N1 and N2 re-
spectively. This detuning allows a reproduction of the characteris-
tic beating of the instrument.

For each mode n, let vil(n) and vir(n) denote the incoming
velocities at the excitation point, arriving from the left and right
side of the excitation respectively, and let vol(n) and vor(n) de-
note the outgoing velocities, as shown in Figure 9. At the exci-
tation point we need to solve the coupling between the nonlinear
excitation and the linear resonator. This is done by summing the
contributions of the waves coming from the left and right side, and
solving the following system of equations:

�
f = 2 Z (v � vh)
f = � (v � ve)

(2)

where vh =
P

n
vil(n) + vir(n), � represents the nonlin-

ear interaction, v is the velocity of the waves propagating at the
contact point, ve is the excitation velocity and f is the contact
force. Once this coupling is solved, we calculate the outgoing left
and right velocities from the excitation point for each mode, i.e.

vol(n) = vir(n) + f=(2Z), where Z is the impedance of the res-
onator. This model is similar to the one commonly used for model-
ing a bowed strings. However, one difference is the fact that at the
excitation point contributions for all modes are summed. Another
important difference is the way waves propagate at the extremities.
Since our physical object is circular, we cannot properly talk about
extremities. However, we can still consider as extremity the end of
the delay line.

Assuming that the resonator is completely lossless, following
the notation of Figure 9, using Kirchoff’s law of continuity of ve-
locities at a junction, we have: voxl(n) = vixr(n), and voxr(n)
= vixl(n), where voxl(n), vixl(n), voxr(n) and vixr(n) repre-
sents respectively the left and right outgoing and incoming veloc-
ity waves at the extremities.

This ensures continuity of velocities for the extremities of the
bowl. What are still missing is propagation losses. As Figure 12
shows, given the linearity of the resonator we can lump all losses
at the extremities using the bandpass filter of Equation 1.

As in classic source-filters models, all modes are connected
together as Figure 13 shows, and are coupled to the excitation in a
feedback or feed-forward loop, according to the kind of excitation,
as described in details in the following section.

4. MODELING THE SOURCE

We are now ready to describe how to model the excitation, which
consists of rubbing or tapping the instruments, which gives a sus-
tained and transient excitation respectively.

4.1. Modeling the transient excitation

In order to obtain a model of the transient excitation, we first ex-
perimented with different impact models, such as 1�cos(2�t=�),
where � is the total duration of the contact, and the one proposed
in [5] and adapted in [6].

However we noticed that these models were not able to repro-
duce faithfully the strenght of the impact between hard surfaces
such as a metal and a hard mallet, as in the case of the bowl.

We therefore decided to extract the residual from the record-
ings using inverse filtering of the main modes of the bowl and the
wine glasses while struck at different positions and with different
excitation forces.

The residual obtained was modified through a filtering proce-
dure in the synthesis step according to the input parameters, i.e.
the excitation force and position.

The transient excitation was fed into the resonator in a feed-
forward loop, as shown in figure 13.

4.2. A physical model of the sustained excitation

Rubbing a moistened finger around the rim of a wineglass excites
vibrations through a “stick-slip” process that is similar to the one
of a violin bow exciting a string [1].

Rubbing a glass tends to excite the (2; 0) mode and its har-
monics, which is the one that couples in a stable way with the
motion of the finger.

The same principles apply to the bowl when it is rubbed using
a hard mallet. The pure tone obtained by rubbing the bowl is due
to the excitation of the (2; 0) mode.

The frictional interaction between dry surfaces is a phenomenon
that interests different fields of engineering. Usually friction is an
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unpleasant source of noise that needs to be removed. In the past,
simple velocity dependent friction curve have used.

Recently, more complex friction models have been proposed
[7].

In this paper we use the velocity dependent friction curve:

� = �d +
(�s � �d)v0
v0 + vrel

(3)

where �d and �s are the static and dynamic friction coefficients
respectively, v0 is the initial velocity of the excitation, while vrel
represents the relative velocity between the exciter and the res-
onator. The values of the friction coefficients, that depend on the
characteristics of the materials in contact, are taken from [8]. De-
spite its simplicity, this model gives satisfying results from a per-
ceptual point of view. The waveguide resonator is coupled to the
friction excitation in a feedback loop as shown in figure 12.

5. SIMULATION RESULTS

Figure 14 shows the time and frequency domain representation of
the synthetic singing bowl. Note how the strong beatings are really
noticeable both in time and frequency domain. Note also how the
long decay time is faithfully reproduced by the model.
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Figure 14: Top: Time domain representation of the synthetic
singing bowl. Bottom: spectrogram of the synthetic singing bowl.

6. IMPLEMENTATION

The Tibetan bowl and the wineglass models have been implemented
as extensions to Pure Data 1 and Max/MSP 2. The input control pa-
rameters for these instruments are the fundamental frequency, the
excitation force, velocity.

7. APPLICATIONS

Digital waveguide networks are an efficient and accurate synthe-
sis technique that allows both a time and frequency domain con-
trol of acoustic resonators. Using waveguide networks we were

1http://www.puredata.org
2www.cycling74.com

able to obtain realistic models of Tibetan bowls and glass harmon-
icas. These models have been used together with the Mutha rub-
board controller ([9]) and in the pieces Prayer for John Pierce by
Matthew Burtner and Requiem Moksa - (for 12 vocalists and 4-
channel tape) by Ching-Wen Chao .
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