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ABSTRACT

We propose in this paper a spectral synthesis model to generate
noisy sounds with independent control parameters for spectral den-
sity and spectral envelope. Algorithms defining in a efficient way
these spectral properties from the statistical parameters of the mo-
del are presented in details. Real-time implementation is com-
posed of many methods which can be sequenced.

1. INTRODUCTION

1.1. Background

The existing models to synthesize noisy sounds are temporal or
spectral models. Temporal models generate noises by randomly
drawing samples using a standard distribution (uniform, normal,
. . . ). Then they may be filtered (subtractive synthesis). The coeffi-
cients of this filter are the only control parameters. They are related
to the color of the noise. The smoother the spectral envelope is de-
fined, the more complicated the calculus of the coefficients is. In
the same way, spectral models (for example [1]) are based on the
Inverse-Fourier Transform and therefore propose only to modify
spectral envelope.

We are interested particularly in spectral models to be homo-
geneous with other spectral models for harmonic sounds [2]. But
we want to define other parameters than spectral envelope to con-
trol noisy sounds.

1.2. Spectral and statistic model

We introduce in this paper a synthesis model with statistical pa-
rameters in order to be able to modify other perceptually relevant
properties like spectral density (defined as the ratio between the
number of sinusoidal components N and the frequency bandwidth
�F [3]).

We propose in [4] a statistical and spectral model. Sounds
(sample rate Fe) are considered as random processes X . Each
frequency component fi is a random variable with fixed amplitude
ai and uniformly distributed phases �i:

Xk =

NX

i=0

ai sin(2�fi
k

Fe
+ �i) (1)

where the frequencies fi are distributed in a band whose width is
�F (Hz).

1.3. Parameters

Signal is defined from successive frames. Each frame is a sequence
of parameters. The following statistical parameters are used to
control the frequency distribution [5]:

� N is the number of frequencies which are randomly chosen
in a band.

� �F = FM � Fm is the bandwidth (Hz).

� M is the number of bins. Each bin length is �F

M
. No more

than one frequency can be drawn in each bin (N �M ).

� L is the width of the uniform distribution (0:0 � L � 1:0)
in each bin.

2. NOISE CONTROLS

With this statistical parameters, users can control:

Bandwidth: By choosing Fm and FM values, users can set the
bandwidth of the synthesized noise. The band can be trans-
lated, broadened or narrowed.

Spectral density: The two parameters N and M allow the con-
trol of the spectral density of the sound [5]. N

�F
has a max-

imum value over which no audible discrimination can be
done (white noise). But if N decreases, our model leads to
sounds which are perceptually different from usual filtered
white noises.

M is also related to spectral density. If �F is small, in-
creasing M increases intensity fluctuations. If �F is large,
it improves the random characteristics of synthesized sounds.
If M = 1, synthesized sounds will be perceived as less
dense, even if the number of sinusoidal components has not
decreased.

Harmonicity: L is related to the harmonicity of the synthesized
sound. If L is near 0, synthesized noise is quasi-harmonic
(machine noises) because sinusoidal components are equal-
ly spaced. At the opposite, choosing L near 1 leads to liq-
uid-like noises. This perceptual parameter cannot be modi-
fied using synthesis models based on filtered white noise.

Spectral envelope: Like the usual spectral models [2], spectral
envelope can be directly controlled to modify the color of
the synthesized noises.
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3. IMPLEMENTATION

In order to test the real-time capabilities of the model, it was plan-
ned to implement it on one of the existing free software for real-
time audio. The objective was to control all the synthesis parame-
ters as fast as possible, while the sound is rendered. The first target
was jMax ([6]) because we already had good experience with it and
another sound model called SAS ([2]).

First of all, we needed to implement the model itself, indepen-
dently of any other software. In other words, we needed a library.
A name had to be found, and it became CNSS, for Colored Noise
by Sums of Sinusoids. The library was named libcnss after it.

Eventually, the library had to be written so that it could be
possible to wrap it with many other audio software (clients), be
they real-time or non real-time. From the library point of view, the
difference between these two kinds of clients essentially lie in the
number of samples they want in a given amount of time. While a
typical non real-time client would ask for a huge amount of sam-
ples (for instance, 10 seconds of samples) then never ask again,
a real-time client asks for small amounts (say, 64 samples, which
means 1:45ms at a rate of 44kHz), and often does that repeatedly.

To consider both kinds of clients means that we had to take
care of the constraints of the most demanding, namely the real-
time ones. These clients need efficient algorithms where most of
the time spent should be spent on sample computation. Indeed, it
is always good practice to develop efficient algorithms when pos-
sible, whatever the context. In our context, we already had fast
synthesis algorithms inherited from the SAS model. These algo-
rithms are able to compute sine incrementally with no memory
access and very few processor instructions ([7]). It was straight-
forward to reuse them in the new library.

The experimental aspects of the model were also considered.
The model can be viewed as several small components with dif-
ferent roles, bound together to produce noise. Some components
deal with the size of the synthesis windows, while some others
deal with the stochastic nature of frequencies or phases of the si-
nusoids. From time to time, new components were introduced to
verify the audio consequences of new mathematical experiments.
This was (and still is) challenging in a software engineering con-
text where we want modular architectures that are clear and easy
to extend.

In the current library, the following solution was adopted. All
components are available to the client as CNSS methods. Table 1
enumerates the current available methods with short descriptions.
Each method has its own synthesis parameters that can be con-
trolled in real-time by the client. The client can build CNSS sound
sources made of sequences of such methods. Thus, a sound source
can be made with the sequence [bins winsize nooffset ola]. On that
occasion, the parameters that the client can control are the ones
offered by the methods in the sequence. For example, the bins
method offers 6 parameters, among which we can find the num-
ber of bins that the frequency interval is split into, thus permitting
to change this number during the real-time synthesis of the sound
source.

4. DESCRIPTION OF METHODS AND ALGORITHMS

In this section we present the synthesis algorithms of the CNSS
methods.

CNSS method Description

uniform Generates a set of sinusoids. All sinusoids
have the same amplitude. Their frequencies
are uniformly randomly drawn out of a fre-
quency interval.

bins Same as uniform, but frequencies are ran-
domly drawn out of bins that split the fre-
quency interval.

winsize Sets the number of samples in the synthesis
window.

dl Randomly sets the number of samples in the
synthesis window.

nooffset Fills the synthesis window with samples
computed by the forward synthesis of the
set of sinusoids. Each sinusoid starts at the
beginning of the synthesis window.

offset Same as nooffset, but each sinusoid starts at
a random offset from the beginning of the
synthesis window, and is applied a triangu-
lar envelope.

ola Overlaps consecutive synthesis windows,
with fade-in and fade-out linear envelopes.

olasinus Same as ola, but envelopes are sinusoidal.
phi Randomly draws the phases of sinusoids..
silence Fills the synthesis window with silence.
synchro Setups the phases of sinusoids so that to-

gether they are at a maximum at a given
percentage of the synthesis window’s size.
Eventually, they can also be randomly un-
synchronized.

Table 1: Current Implemented CNSS Methods

4.1. Determination of frequencies

Frequency values of the sinusoidal components of each window
have to be computed from the statistical parameters. Two methods
are then proposed: uniform and bins.

4.1.1. Uniform distribution

In the uniform method, the number of bins is considered as infinite
(M = 1). Only the number of sinusoidal components and the
width of the probability density function are input values and can
be controlled. There is no need to choose any bin. Indeed the bin
width is then null. Frequency are therefore drawn according to a
uniform distribution between Fm and FM :

fi = Wmin + rand(FM � Fm) (2)

where rand represents the classical random function which re-
turns a pseudo-random real between 0 and the parameter of the
function.

4.1.2. Drawing in bins

The bins method has three input values: the number of sinusoidal
components N , the number of bins M and the width L of the
probability density function.
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The first step consists in defining M bins (denoted Bi) from
the bandwidth values:

Bi = [i
FM � Fm

M
; (i+ 1)

FM � Fm

M
[ (3)

Then N frequencies are determined from these M bins. N

bins have to be drawn from the M possibilities. A statistically
correct algorithm to choose these bins is the classic algorithm to
randomly define a permutation. One bin i is randomly drawn, then
binsM�1 and i are interchanged. Another bin is randomly chosen
from the M � 1 last bins. This algorithm repeats until all N bins
are chosen.

This algorithm has a cost ifM is large compared to N because
one large array has to be initialized and manipulated in each frame.
But experiments show that defining M more than 1000 times N
amounts to the uniform method previously described. So users
would better use this one if M reaches a too large value in order to
synthesize the perceptually same sound with less calculation time.

We could consider the special case where there is the same
number of frequency bins than sinusoids (N = M ). The calcu-
lus would be more efficient in that case, because we could directly
associate sinusoid i with bin Bi (i 2 f0; ::; N � 1g. But the fact
that frequencies are stored in random order is important for other
methods like offset (see section 4.5.5). So we don’t consider that
special case here. Furthermore, we believe that most of the time
spent in libcnss is spent in partial synthesis, so improving the
algorithm for that special case may not pay well enough.

Once the bins have been chosen, frequency values have to be
determined from the parameter L. Another uniform draw is made
in a band which is defined by the upper bound of the bin Bj (j 2
f0; ::;M � 1g) and whose length is L multiplied by the bin length
FM�Fm

M
(see algorithm 1). :

fi = Fm + (j + 1:0� rand(L))
FM � Fm

M
(4)

Data : Frame parameters
begin

for each frame do
Define an array b of integers f0; ::;M � 1g for n 2
0; : : : ; N � 1 do

Draw an integer k from the last M � n;
Draw a real r in [0;L];
Calculate fn = Fm+((1�r)+b[k])� FM+Fm

M
;

b[k] = b[M � n� 1];

end
end

end

Algorithm 1: general algorithm for determination of frequency
values using the bins method.

4.2. Determination of phases

The model of thermal noise described in [8] imposes on each com-
ponent a phase to be uniformly distributed. At the opposite, noise
synthesized with sinusoidal components with equal phases will re-
sult in noise with peaks of intensity. These peaks can be periodic
depending on the length of the synthesis window. Such noises are

described as impulsive noises. By changing the width of the prob-
ability density function of phases, users can control the amplitude
of these peaks. By changing the length of the window size, users
can modify the periodicity of these impulsions.

That’s why we present in this section two methods to define
the initial phases of each sinusoidal component and to take into
account these properties.

4.2.1. Random phases

The phi method proposes to control the relative width P (P 2 R,
0 � P � 1) of the probability density function of the phase:

�i =
�

2
+ rand(2�P ) (5)

If P = 0 all component’s phases equal �
2

. Thus all component’s
amplitudes sum together at the beginning of each temporal frame.
If P = 1 all phases are uniformly distributed between 0 and 2�,
so no intensity peak occur.

It is important to note that the intensity peak occurs at the
beginning of each window. This implies that if users choose an
overlap-add synthesis, this method becomes useless. Indeed the
multiplication by the weighting window will reset the peak. That’s
why we propose another method giving users the choice of the
time in the frame when the intensity peak occurs.

4.2.2. Synchronized random phases

The synchro method needs two parameters. The first one is the
same as just above: the width P (P 2 R) of the probability density
function of the phases. The second one is a relative value Tp (Tp 2
R and 0 � Tp � 1) which represents the instant in the window
where the intensity peak occurs. Let P = 0: if Tp = 0 the peak
is at the beginning of the synthesis window, if Tp = 1 the peak is
at its end. Here is the equation to calculate the time � from Tp and
the synthesis window size Ws (Ws 2 N):

� = Tp �Ws (6)

This method must always be executed after the uniform or the
bins method to use the frequency of the sinusoidal component.
This frequency and the instant of the peak are thus known for each
window. Each phase value are calculated from the equation:

�i =
�

2
+ rand(2�P )�

2�fi�

Fe
(7)

4.3. Determination of the amplitude of sinusoidal components

The amplitudes are simply defined from the frequency values and
the spectral envelope. These parameters are the same as in the SAS
model [2]. For now, it has not been implemented yet, but it will be
in the next few weeks.

At the moment all sinusoidal components have the same am-
plitude. To avoid saturation each amplitude equals 1

N
. This value

implies that general volume decreases when the number of compo-
nents N decreases. Other solutions are now experimented to keep
the volume independent of this number.
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4.4. Additive synthesis

Once the frequency, amplitude and phase values are calculated,
temporal samples are generated with additive synthesis. An effi-
cient algorithm is presented in [7]. This algorithm can generate ap-
proximatively 2 partials per sample for each MHz of clock speed.

The algorithms we presented are being implemented to cre-
ate a real-time sound synthesizer. The most CPU consumption is
in the case of white noise (or filtered white noise). Synthesizing
sounds with more sinusoidal components is useless, because no
more difference can be heard by increasing N . That’s why we
define a maximum value for N depending on the synthesis win-
dow size. N cannot be greater than half of the synthesis window
size (K in samples). This limit corresponds to the Inverse Fourier
Transform technique:

N �
K

2
(8)

For example, 128 sinusoidal components are needed to syn-
thesize a 256 long white noise window. Furthermore the use of the
OLA technique permits to diminish this number. As the OLA rate
is always 0:5 to preserve the spectral density properties (the same
number of components must compose sounds every sample), N
can be divided by two. No more than 64 sinusoidal components
have to be calculated to synthesize a white noise, which is very
reasonable considering the speed of computers.

It is also important to observe that all other noises need less
sinusoidal components and therefore less computation time.

4.5. Successive synthesis windows

We propose five methods to synthesize the successive windows.
They are illustrated in figure 1. Some of them are efficient but
may introduce distortion or clicks depending on the type of sounds
produced. All the effects of these methods are detailed in [9].

4.5.1. No overlapped windows

The first method is the most trivial, but gives poor results. It con-
sists in setting the window size constant and synthesizing succes-
sively one window after the other. This method is the most efficient
but may lead to audible artifacts in the synthesized sounds at the
boundaries of each window. One can hear periodic distortions.

4.5.2. Variation of the length of the synthesis window

The dl method proposes to vary the length of the synthesis window
size Ws to avoid the periodic clicks. An input parameter �l (�l 2

Rand0 � �l � 1) gives the percentage of random size. The
second input parameter is the mean size Ws (Ws 2 N). If �l = 0
the window size ws is constant (ws = Ws), whereas if Deltal =
1 the window size ws is randomly drawn according to a uniform
distribution between 0 and Ws:

ws = Ws ��l � (1:0� rand(2:0))�Ws (9)

These variations improve the quality of sound by avoiding the pe-
riodicity due to the clicks.

4.5.3. Overlap-add

The ola method uses the classical overlap-add method. Each suc-
cessive window is multiplied by a weighting window w. The OLA

(b)

(c)

(a)

(d)

time

(e)

Figure 1: Illustration of proposed additive methods: (a) constant
synthesis window size (b) random window size (c) synthesis with
overlap-and-add (Bartlett window) (d) olasinus (e) offset

window is the Bartlett one (triangular). The resulting signal can be
written as:

x[n] =

L�1X

l=0

sl[n� lH]w[n� lH] (10)

where L is the number of frames sl (0 � l < L) and H is the hop
size (or the time advance).

The input parameter of this method is the relative size of the
overlapped region 1�H

Ws
. It is limited to [0; 0:5]. In the worst case

(H = Ws

2
) this method may need to synthesize two times more

windows than the previous ones.
We show in [9] that this usual OLA technique cannot some-

times be used for our synthesis method. Indeed multiplying each
frame by a weighting window modifies the statistical properties of
the resulting signal. That’s why we propose two other methods to
adapt the OLA technique to noise synthesis.

4.5.4. Sinusoidal window

The olasinus method is based on the overlap-add synthesis. But
it differs from the previous one by using a sinusoidal weighting
window. This window is defined as, for n 2 [0;Ws[:

w[n] = sin(
2�n

Ws � 1
) (11)

There is no input parameter because the hop size H is set to
0:5. Other values are useless because they may imply distortions
in the synthesized sounds.
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4.5.5. Component offset

The offset method consists in time shifting each sinusoidal com-
ponent in every window:

x
0(n) =

L�1X

l=0

N�1X

k=0

s
k

l (n� lH � dk)w(n� lH � dk) (12)

Experiments show that the time offset can always be the same
for each sinusoidal component and does not have to be drawn or
calculated for each frame. However this method needs more calcu-
lations because each partial has to be independently multiplied by
a weighting window before being added to the sound. That implies
one more multiplication per partial and per sample. The window
is a Bartlett one.

This method takes into account properties of phases. Random
phases �0i are phases at the beginning of windows. New phases
are computed with offset values:

�i = �
0

i +
2�fidi
Fe

(13)

5. SOFTWARE DESCRIPTION AND EXAMPLES OF
METHOD SEQUENCES

As said above, we chose jMax as our first client for the library.
An extension of jMax, cnss4jmax, has been developed to wrap
some of the data types found in the library to the following object
types on the jMax side:

� cnss-methods: objects of this type are able to output a
list of the available methods in the library, as well as de-
scribe each of these methods in terms of functionality and
controllable parameters.

� cnss-frame: objects of this type are placeholders for
synthesis parameters related to sequences of CNSS meth-
ods.

� cnss-source˜: objects of this type are CNSS sound
renderers, meaning that they synthesize the samples accord-
ing to their sequence of methods and the incoming frames
containing synthesis parameters.

Figure 2 is a snapshot of a jMax patch containing CNSS objects.
In this figure, we can see that a cnss-frame related to a CNSS
method sequence [bins dl] permits the control of 8 parameters.
The frame is connected to a single cnss-source˜ with method
sequence [bins dl nooffset ola], thus controlling the algorithm used
in the synthesis of the source. The source itself is connected to a
dac˜ object that represents the left and right outputs of the sound
card.

The order in the sequence is very important. A permutation
in a sequence may cancel some methods. For example, the se-
quence [bins winsize synchro nooffset] synthesizes sound with si-
nusoidal components whose frequencies are randomly chosen and
whose phases can be calculated to produce an intensity peak in the
temporal window. But if the synchro and the winsize method are
permuted, the phase cannot be synchronized. Indeed the synchro
method needs the synthesis window size.

Here are some other examples of sequence of methods to syn-
thesize sounds:

Figure 2: Snapshot of a jMax Patch with CNSS Objects

� [uniform phi winsize nooffset]:
This example is a basic sequence. Random sinusoidal com-
ponents are synthesized in successive windows. The only
parameters are the number of components , the width of the
probability density function of the phase and the window
size.

� [bins winsize dl synchro nooffset ola]:
This example shows that two synthesis methods can be as-
sociated. Here windows are overlapped and their lengths
are randomly chosen. However all synthesis methods can-
not be used together, for example offset and ola method.

� [bins winsize dl synchro offset] and [bins winsize dl synchro
nooffset olasinus]:
These two methods are the most useful ones to synthesize
noise. They permit to control 9 parameters and thus lead to
noise with many different properties.

6. FUTURE WORK

At that point, the implementation is fast enough to experiment ef-
fective real-time synthesis of many sounds in the model. On an
“old-class” pentium III 500Mhz running GNU/Linux and jMax,
we had no problem in the control and real-time synthesis of a few
hundreds of sinusoidal components and relatively small synthesis
windows. Our future experiments will lead us to several sound
sources on different frequency ranges, probably requiring the syn-
thesis of more than 500 sinusoidal components in real-time. But
this certainly can be already achieved with up-to-date computers.

Anyway, this is still work in progress. While the algorithms
computing the sinusoids are fast enough, it is quite obvious that
other parts of the library could be improved to better suit the con-
straints of real-time audio software. And the fact that we want to
control more than one frequency range with different parameters
is a sign that the model has to be extended in new directions. The
future will tell.
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This implementation is mainly a research tool. Polyphony can
be used to synthesize noises composed with different bands and
different spectral properties. It may permit us to make psychoa-
coustic studies about the perception of bands of noise with differ-
ent spectral densities.

The libcnss library and its jMax extension are free software
developed on the GNU/Linux platform. They are (or soon will be)
available on the website of the SCRIME ([10]). The code is cur-
rently in heavy development. It is likely that the available methods
have been improved since the writing of this paper.

7. ACKNOWLEDGMENTS

This research was carried out in the context of the SCRIME1 pro-
ject which is funded by the DMDTS of the French Culture Min-
istry, the Aquitaine Regional Council, the General Council of the
Gironde Department and IDDAC of the Gironde Department.

SCRIME project is the result of a cooperation convention be-
tween the Conservatoire National de Région of Bordeaux, EN-
SEIRB (school of electronic and computer scientist engineers) and
the University of Sciences of Bordeaux. It is composed of electroa-
coustic music composers and scientific researchers. It is managed
by the LaBRI (laboratory of computer science of Bordeaux). Its
main missions are research and creation, diffusion and pedagogy
thus extending its influence.

8. REFERENCES

[1] X. Serra and J. Smith, “Spectral modeling synthesis: a
sound analysis/synthesis system based on a deterministic
plus stochastic decomposition,” Computer Music Journal,
vol. 14, no. 4, pp. 12–24, 1990.

[2] S. Marchand, Sound models for computer music: analysis,
transformation, synthesis of musical sound, Ph.D Thesis,
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