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ABSTRACT

This paper gives an example of an auto-regressive (AR) spectral
analysis on transient musical sounds. The attack part of many mu-
sical sounds is mostly too short to be analysed by a short-time
Fourier analysis, whereas this short period of time is long enough
for several AR-methods. The AR-spectra obtained from short seg-
ments of signals with attack transients have a sufficiently high fre-
quency resolution. These spectra contain more information about
the evolution of a sound than a fast Fourier transform made over a
small amount of samples.

1. INTRODUCTION

It is well known that in sounds of many musical instruments at-
tack transients are essential as far as discrimination and identifica-
tion of various instruments by listeners is concerned. Transients
are of interest also from an acoustical point of view since they re-
flect the vibrational behavior of particular instruments. In many
cases, normal modes of vibration are unstable as regards vibra-
tional frequency and/or amplitude during the transient portion of
a sound radiated from an instrument. Reasons for such behavior
are manifold. For example, in idiophones such as bells, gongs, xy-
lophones etc. which are struck with clappers, mallets etc. energy
is transferred by means of an impact causing a sudden deforma-
tion of the shape of shells, plates, and bars, respectively. Due
to strong impacts, in solids such as bars, plates and shells many
modes are elicited which belong to distinct types of vibration (lon-
gitudinal, transversal, axial, torsional) and are often found to inter-
act in a complex pattern. In wind instruments, plucked and bowed
strings, transients in general occur before a stable regime of stand-
ing waves due to resonance is established.

Transients typically include noisy components which can be
attributed to the interaction of solids (clapper: bell, mallet: gong),
the contact between plectrum and string or hammer and string, or
the hiss which comes from blowing and the air flow through valves
and tubes in wind instruments.

Attack transients have been investigated in sounds recorded
from many instruments (e.g., harpsichords, pianos, guitars, organ
flute and reed pipes) with the aid of various techniques. Besides
tools widely used such as short-time FFT and wavelet analysis,
also autoregressive spectrum analysis (AR) has been employed in
the study of piano attack transients [1] as well as in non-western
idiophone sounds [2, 3]. The reason to make use of AR techniques
simply is that the attack portion in many sounds spans only a few
milliseconds (in general, 3 ms < t < 80 ms) whereby it is often
difficult to obtain spectra with sufficient resolution from short-time
FFT. The aim of a sonological analysis of attack transients is to

yield high resolution frequency spectra from rather short segments
of the sound signal, and to possibly trace shifts in frequency which
are typical of partials during attack.

2. AUTO-REGRESSIVE (AR) MODELLING

An Auto-Regressive (AR) Model can be described by the transfer
function

H(z) =
1

1 −
p∑

k=1

akz−k

. (1)

The magnitude |H(ejΩ)| models the spectrum of the analyzed sig-
nal. This model is commonly used in linear predictive coding
(LPC) [4]. AR-models are also called all-pole models since the
transfer function has only poles (in addition to zeros at z = 0),
thus, it is a pure IIR-model. In Equation (1) p denotes the model
order. The coefficients ak (k = 1, . . . , p) are calculated from a
block of N samples of the input signal.

There exist several methods to compute the coefficients ak

as: Burg algorithm, autocorrelation method, modified covariance
(modcov) method [5]. In this paper we focus on the Burg al-
gorithm and the modified covariance method. Both methods are
based on the minimization of the sum of forward and backward
prediction error energies. The modified covariance uses a direct
(transversal) filter structure and results in a linear equation sys-
tem (normal equation). The Burg method is based on a lattice
filter structure and calculates recursively the filter coefficients of
successive orders. The modified covariance method may compute
unstable synthesis filters H(z) while the Burg method is guaran-
teed to compute stable filters. This fact is not of interest for the
considered task since we are only interested in the spectrum.

Since the prediction order is one of the most important param-
eters, the restrictions of both methods should be mentioned. The
maximum prediction order p depending on the block length N for
both methods are given in Equations (2) and (3).

pmax,modcov =
2

3
N, (2)

pmax,Burg = N − 1. (3)

For stationary signals with fundamental frequency f1 sampled
at fS normally a block length N = fS/f1 corresponding to the
period length is sufficient. The restrictions for the maximum pre-
diction order sometimes require a higher block length in order to
get a satisfying AR spectrum.
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3. DERIVATIVE ALGORITHM

In order to have a comparison with the FFT approach, the sounds
are also analyzed with the derivative algorithm [6, 7].This method
computes the FFT of the input signal and a second FFT from the
derivative of the input signal and results in improved values of
frequency and amplitude of the peaks in the magnitude FFT spec-
trum. It provides a better detection of sinusoidal components.

The results in [6] showed that the derivative FFT requires a
certain frequency difference

∆f = 2
fS

NFFT
(4)

between two frequency components to be able to detect them sep-
arately1, where fS denotes the sampling frequency and NFFT is the
FFT block length. Table 1 lists the frequency detection thresholds
for different FFT block lengths at fS = 48 kHz.

NFFT (in samples) 1024 2048 4096
∆f in Hz 93.7 46.8 23.4

Table 1: Frequency detection thresholds of the derivative algo-
rithm for different FFT block lengths at fS = 48 kHz.

4. ANALYSIS

In this section the AR methods are considered for some synthetic
signals before we concentrate on the analysis of different natural
sounds. All used sounds (synthetic and natural) are represented
with a 16 bit resolution at the sampling frequency fS = 48 kHz.

4.1. Synthetic Signals

In order to understand the behavior of the AR models, a compari-
son between the Burg method and the modified covariance method
with synthetic test signals is made.

4.1.1. Stable Sinusoidal

The first example is a pure sinusoid with a single frequency com-
ponent at f0 = 1000 Hz. The period of the time-discrete signal is
48 samples. An analysis with both AR methods is made with the
block length N = 50 and the prediction order p = 10. Since one
resonance frequency (formant) of the AR model spectral envelope
requires two complex conjugate poles, p = 2 would be sufficient
for the analysis of the single sinusoidal. But the frequency spec-
tra for p = 10 are overestimated. Figure 1 shows the resulting
AR spectra and pole planes with the Burg (top) and modcov (bot-
tom) methods zoomed to the interesting region. In the pole planes
the dotted line corresponds to the unit circle while the straight line
points to the position of the used sine frequency. The Burg method
results into two poles very close to 1000 Hz. The AR spectrum
has therefore two peaks around 1000 Hz where only a single peak
should be present. This effect is called spectral line splitting [5].
This effect cannot be seen at the frequency spectrum of the modi-
fied covariance method.

1Although the frequency resolution is fS/NFFT, two local maxima in
the FFT magnitude must have the distance ∆f .
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Figure 1: A zoom-in into the spectra and pole planes of the Burg
and the modcov methods with N = 50 and p = 10.

4.1.2. Vibrato Sinusoidal

Another effect can be seen at the analysis of a synthetic vibrato sig-
nal with a center frequency of f0 = 500 Hz, a frequency depth of
∆f = 50 Hz and a vibrato frequency of 10 Hz. The multisegment
spectra2 of the Burg method can be seen in Figure 2(a). These
spectra show a frequency shift over the vibrato character which is
caused by the initial phase of the signal [5]. The detected peaks
are shifted in terms of a sinusoidal function.
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Figure 2: A zoom-in into the multisegment spectra with N = 100
and p = 2 for the Burg (a) and modcov (b) methods.

2This is a diagram type showing subsequent frequency spectra plotted
after another.
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This effect cannot be seen at the multisegment spectra of the
modified covariance method depicted in Figure 2(b). The method
can track the frequency of the vibrato signal properly. Therefore,
the modcov method is more suitable for analyzing natural sounds.

4.2. Natural Sounds

4.2.1. A Carillon Bell From Ghent

A bell sound recorded from one of the finest extant historical car-
illon bells (cast by Pieter Hemony in Ghent around 1660) will be
analyzed first. The bell is the second largest in the Ghent carillon
comprising 52 bells. The sound (48 kHz/16 bit) was recorded to
DAT with a condenser microphone put at a distance of appr. 100
cm to the bell’s rim. Figure 3 shows the first 50 ms (2400 samples)
of the time signal. The FFT spectrum calculated for the first 8192
samples from onset yields a pattern of partials which is typical for
minor-third bells. The frequencies of the strongest partials up to
1.2 kHz which were obtained from estimation of spectral peaks by
means of parabolic interpolation3 are listed in Table 2.

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

time in ms

A
m

pl
itu

de

Figure 3: The first 50 ms of the Ghent Bell time signal.

Partial no. i Freq. fi in Hz Ampl. in dB Ratio fi/f1

1 106.89 -32.5 1.0000
2 214.21 -31.1 2.0040
3 255.60 -22.6 2.3912
4 426.76 -22.6 3.9925
5 481.74 -46.7 4.5068
6 552.51 -32.4 5.1689
7a 597.51 -43.7 5.5899
7b 609.07 -47.3 5.6981
8 639.61 -25.7 5.9838
9 698.57 -45.8 6.5354
10 732.71 -57.3 6.8547
11 791.03 -51.8 7.4004
12 884.29 -27.7 8.2728
13 908.35 -54.8 8.4979
14 927.27 -49.3 8.6749
15a 971.90 -55.0 9.0924
15b 980.45 -57.1 9.1725
16 994.22 -59.1 9.3012
17 1010.36 -50.8 9.4523
18 1035.36 -54.6 9.6861
19 1060.63 -65.4 9.9225
20 1116.45 -64.4 10.4447
21 1152.29 -43.3 10.7800

Table 2: Significant spectral peaks (0–1.2 kHz) of Ghent bell no. 2
calculated by FFT with NFFT = 8192 and parabolic interpolation.

3Calculated with the ”Spectro” program from CCRMA, Stanford. Sim-
ilar results are obtained with the derivative algorithm.

Frequency ratios between some of the partials are harmonic
(or nearly so). However, The spectrum contains also inharmonic
components the number of which increases within the third and
fourth octaves above the fundamental. Because of spectral inhar-
monicity, the time function of the sound is complex. Frequency
pairs 7a/b and 15a/b denote degenerate pairs of eigenmodes due to
small deviations from the axisymmetrical mass distribution of the
bell [8].

The vibrational behavior of a bell and the spectral composi-
tion of bell sounds depends largely on the impact force which is
transmitted to the bell by means of a clapper (contact time 1 ms
≤ t < 5 ms). The temporal evolution of bell sound spectra can
be studied using STFT technique, however, with a frequency res-
olution defined by fS/NFFT, the time window in many cases will
need at least a block length of 2048 or even 4096 samples. As an
alternative, AR-models offer a better temporal resolution.

To find most of the stronger partials, an AR analysis based
on the modcov method with a block length of N = 1024 and a
prediction order of p = 510 is sufficient, see results in Tab. 3. The
period length of the sound is NT = fS · 9.36 ms ≈ 449 samples.

The modcov results show that the spectrum of the bell builds
up quite rapidly due to the impact. The time series of N = 1024
samples already contains the partials also found in a much longer
FFT window (Table 2). Deviations in frequency between the FFT
analysis with NFFT = 8192 listed in Table 2 and the modcov anal-
ysis listed in Table 3 may in part be attributed to slight glides in
partial frequencies often found at the onset of idiophone sounds.

Partial no. i Freq. f̃i in Hz Ratio f̃i/f̃1 Ratio f̃i/f1

1 109.62 1.0000 1.0255
2 214.84 1.9599 2.0099
3 254.62 2.3228 2.3821
4 415.12 3.7869 3.8836
5 451.72 4.1208 4.2260
6 564.29 5.1477 5.2792
7 648.39 5.9149 6.0660
8 821.76 7.4964 7.6879
9 882.71 8.0525 8.2581

10 966.70 8.8186 9.0439
11 1116.54 10.1856 10.4457

Table 3: Spectral peaks (0–1.2 kHz) of Ghent carillon bell no. 2
from modcov AR spectrum with N = 1024 and p = 510.

4.2.2. Plucked String of a Harpsichord

In harpsichords, depressing a key leads to raising the respective
jack which carries a small plectrum. This plucks the string which
is first raised, and then slips from the tip of the plectrum. Be-
sides transversal motion of the string, longitudinal modes can be
expected if the excitation is strong enough. Also, some torsional
motion may occur due to the string slipping from the plectrum
which itself is bending downwards.

As an example, a sound from a Kirkman harpsichord built in
1766 will be analyzed. We played the A1 string tuned to appr. f1 =
51 Hz leading to the period T ≈ 19.6 ms (941 samples).

In the time function of sounds recorded from single notes
played on a harpsichord, typically three or four segments can be
distinguished (see Figure 4): segment (A) covers the time needed
to put the plectrum against the string and to raise the string before
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it slips from the plectrum; (B) is the time immediately after the
string has been released from the plectrum; during (C), the first
quasi-period of length T ≈ 1/f1 reflecting the fundamental fre-
quency the string is tuned to emerges; finally, (D) begins where
periodic motion of the string is established.
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Figure 4: Time signal of the Kirkman harpsichord with segments
A–D.

The sound during (A) is noisy since it is produced by mechan-
ical interaction of the key, jack, plectrum, and string. In (B), the
sound is transient because periodic motion of the string is not yet
established. In (C), quasi-periodic motion of the string produces
likewise a time function which already resembles a ”true” period
which will be found later in D with only small variation in pe-
riod length. Whereas (A) shows a noise-like structure, the spectral
composition of, in particular, (B) is difficult to investigate due to
the transient, non-periodic nature of this sound segment which in
many cases spans only a few microseconds (depending mainly on
the fundamental frequency of the string). From (C) on, periodicity
appears in the signal which in (D) becomes more stable.

To investigate (A), (B) as well as the beginning of (C), nor-
mal STFT will not work very well since the sound segments are
typically too short to allow a FFT window of length N = 2048
(or longer) which will provide sufficient frequency resolution. We
therefore have applied the AR modcov method to study the tem-
poral and spectral evolution of harpsichord sounds. The analysis
results are shown in Figure 5. The shown FFT spectra were com-
puted with a block length NFFT = 2048. The middle of the FFT
and AR blocks were identical.

5. CONCLUSION

Depending on the prediction order and the block length, an AR
analysis can locate the peaks of a short-time signal block more
accurately than an FFT analysis of the same short length. Using
shorter block lengths, a better time resolution can be obtained and
variations of frequency components can be detected. This major
advantage of the AR approach over the FFT can be taken when
the behavior of various AR methods are known and the appropri-
ate prediction order and block length for the sound signal can be
estimated.

With synthetic signals the Burg algorithm shows some inaccu-
racies which do not occur with the modified covariance (modcov)
method. Since there is always a possibility that the AR-spectrum
may be overestimated, one should also consider for comparison
the short-time FFT with different block lengths and the results of
the derivative algorithm. These results can be combined with the
AR results for analyzing natural sounds.
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