
Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

MATCHING LIVE SOURCES WITH PHYSICAL MODELS

Paul Brossier, Mark Sandler, Mark Plumbley

Digital Music Lab.
Dpt. of Electronic Engineering
Queen Mary, Univ. of London

paul.brossier@elec.qmul.ac.uk

ABSTRACT
This paper investigates the use of a physical model template database
as the parameter basis for a MPEG-4 Structured Audio (MP4-SA)
codec. During analysis, the codec attempts to match the closest
corresponding instrument in the database.

In this paper, we emphasize the mechanism enabling this match.
We give an overview of the final front end, including the pitch de-
tection stage, and remaining problems are discussed. A draft im-
plementation, written in the Python language is described.

1. INTRODUCTION

Traditional coding systems for non-speech audio, such as MPEG-
Audio [1] often use transform coding or filterbank methods, ob-
taining reduction in bit-rate by exploiting the masking properties
of the human hearing system. For very low bit rate audio coding,
important where very limited bandwidth is available or bandwidth
is expensive, such transform coding is no longer sufficient. For
example, it is currently not possible to transmit high quality au-
dio in real time over a standard dial-up modem or at bandwidths
normally available to a mobile device.

An alternative approach is to use the concept of object-based
audio coding. The idea here is to encode the audio scene as a
set of audio objects, together with a description of how to render
those objects. This approach is embodied in the recent MPEG4
Structured Audio (MP4-SA) standard [2] which has the potential
to provide a very compact representation of simple audio scenes
[3].

MP4-SA allows any sound to be synthesised by sending a def-
inition of a set of sound-producing objects, followed by instruc-
tions describing when and how those sound-producing objects are
to be played. The orchestra (the sound-producing objects) is sent
in SAOL (Structured Audio Orchestra Language), followed by a
score (playing instructions) in SASL (Structured Audio Score Lan-
guage). MIDI is built into the MP4-SA definition as a special type
of score for convenience. Therefore if we have access to instru-
ment definitions and score (or MIDI) for a musical audio signal,
we can construct a very compact encoding of the signal which will
be rendered by an audio synthesiser at the receiver.

However, if we do not already have the instrument definitions
and score, we must extract this from the audio signal itself. This is
a very difficult task for general musical audio signals, related to the
problems of computational auditory scene analysis and automatic
music transcription [4].

For our research, we are concentrating on real-time delivery
of audio to devices with limited bandwidth and computational ca-
pability, such as mobile or embedded devices. We are therefore

starting with simple audio scenes, considering how these can be
analysed, transmitted and rendered in real time. We assume that
the analysis stage is allowed to be more complex than the render-
ing device, since this would be performed at the content generator,
where more computational capacity will be available.

In a previous paper [5], we reported an approach to object-
based coding based on the extraction of harmonics. This was
a development from the HILN (Harmonic and Individual Lines
plus Noise) coding scheme [6], which has also been proposed for
low bit-rate audio coding. This scheme allows scalable coding,
whereby the number of parameters transmitted and processed can
be adapted to match both the bandwidth required and computing
load at the receiver [5].

For this paper we take an alternative approach. Instead of com-
bining harmonic lines into objects, we will attempt to find the pa-
rameters of a physical instrument model that might have produced
the given audio signal. Perhaps the simplest of this type of model
is the damped sinusoid: a single-pole resonator excited by an im-
pulse [7].

2. PHYSICAL MODELING

Physical models, and more generally source-filter models, have
first been used for voice synthesis. The glottal pulse train, the
source, is exciting the vocal tract, which acts as a filter. Early
works on musical instruments include [8]. The last few years have
seen significant advances in physical model synthesis [9], and in
particular in computationally efficient models of synthesis based
on waveguides. Physical models now offer faithful rendering of
several real instruments and have recently been used in commer-
cial synthesisers. Recent advances brought more interactivity to
the models, allowing a performer to control “virtual acoustic” syn-
thesiser with a high level of expression. Unlike sampling synthe-
sis, object based synthesis models require far less memory, though
more computational power.

Because of their linearity, string instruments are relatively sim-
ple to model. Generally, the wave equation is found as the solution
of the differential equation governing the acoustical instrument.
The direct computing of these equation is often prohibitively ex-
pensive for real-time performance. However, numerous models,
such as string instruments, are accurately modelled with simplified
equations, such as one-dimensional waveguides. Those waveg-
uides are themselves modeled as bidirectional delay-lines with a
very low computational cost.

For instance, the commuted waveguide synthesis algorithm [10,
11] provide an efficient scheme for various strings at a very low
cost. Fig. 1 shows the block diagram of the commuted waveguide

DAFX-1

http://www.elec.qmul.ac.uk/
file:paul.brossier@elec.qmul.ac.uk

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

z−LH(z) F(z)

e(k) y(k)

Figure 1: Commuted waveguide synthesis string model

synthesis algorithm. Its transfer function can be written as:

S(z) =
1

1 + z−LF (z)H(z)

where zL is an integer delay, F (z) a fractional delay and the
loop filter H(z), implemented as a one pole low pass filter:

H(z) = g
1 + a

1 + az−1

In this example, the delay L can be assigned to tune the funda-
mental frequency f0 of the string: we have L = fs/f0 , fs being
the sampling frequency. The fractional delay is used to fine tune
the fundamental frequency. The low-pass filter coefficients a and
g are assigned to match the desired spectral content.

Nowadays, efficient end-user implementations are available
and work in real time. Numerous instruments, such as strings but
also some bow and wind instruments, are already well known and
can be easily implemented. Moreover, physical modeling of musi-
cal instrument has the advantage of giving the synthesis parameters
a musical meaning. In the following sections, we will investigate
how to build such models and extract their parameters from the
analysis of simple monophonic sources.

3. IMPLEMENTATION

3.1. Framework

The MPEG4-SA standards implements two types of clock: sam-
pling and control clocks. The control rate (krate) is typically 40
times smaller then the sampling rate (arate). During the client
initialisation, a template instrument is sent. Its parameters are eval-
uated at kratewhile the result of the instrument execution is then
written at arate to the client output. Thus, after choosing the ap-
propriate model and building the orchestra descriptor, the model
can be re-synthesised at the receiver at arate and controlled by
the server at krate.

3.2. Preliminary analysis

This section describes techniques used in the preliminary analysis
stage. They are based on [12, 13] and have been described in [5]
Extracted parameters, from which we will decide how to build the
model, include :

• onset detection, based on a combination of the derivative
and the log derivative of the input,

• transient components extraction,

• harmonic components, extracted after the transient and based
on the phase

• temporal envelope for each of the peaks, evaluated on a
short time window,

• noise component, as the residual noise left after transient
and steady states removal

3.3. Choosing the database

The model database contains generators and processors. Genera-
tors are simple signals, such as pulse trains, square, sawtooth, sine
waves and noise. Processors are either frequency filter or delay
lines. For instance, we use the lopass and fracdelay on a
wave table to create a simple plucked string model. When they
are not already implemented as such in the SAOL language, they
can all be written as simple functions. Numerous post processing
function, such as spatialisation, are already available to enhance
the final resynthesis.

A source will more likely consist of one generator, eventually
filtered. It will then be sent to an envelope generator, before feed-
ing the model filter. The filter is composed of several processors.

Associated to these modules, a set of predefined templates
must be defined, acting as a set of heuristics. Each of those tem-
plates represents a typical model of a real instrument, made of
sources and filters and typical parameter values. For instance, the
sawtooth-like signal of the bow is associated with the string loop
filter. Both are given appropriate parameters to produce a correct
violin note.

Each of those templates has a mapping associated to. The
mapping translates the SASL MIDI-like data and the SAOL in-
strument parameters to the actual opcodes parameters. This way,
the instrument can be driven by the MIDI score and a small set of
chosen parameters. For instance, the

One of the advantages of such an object base is that it can be
used to create new sounds. New association of units, such as a
bow exciting a wind instrument or lips exciting a cymbal, can be
drawn. Moreover, a mixture of two or more models can be used to
enhance the modelled signal.

3.4. Exploring the model space

Where to start to find the appropriate models ? Out of real time,
one can imagine a system trying new models and learning from
experience which new associations give the desired type of signal.

Within hard real-time, the choice of the model is mainly based
on the harmonic content of the signal and the repartition of the
energy along time and within a note. The closest known model
is chosen with default parameters. Other parameters will then be
tried to enhance the reconstruction of the original sound.

The fundamental frequency f0 is deduced from the harmonic
components and their weighting. This is done by a fast peak pick-
ing algorithm, from which the note pitch is chosen as the maxi-
mum likelihood.

Temporal envelops of each peak and transient shapes are used
to determine the best template.

Onset detection is implemented using a subband hybrid ap-
proach described in [12] and is to be used to control the MIDI
notes and their velocities (amplitude).

Transient extraction [13] is used to model the source estimated
eest(k). Rather than using a Gaussian shaped white noise as the
source input, the energy burst is coloured to match the transient.
Time envelope and frequency content of the transient are used to
control the noise colour. This allows to fit the modeling of each
note’s attack. Noise colouring has been shown to greatly improve
the resynthesis [14].

DAFX-2

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

3.5. Tuning the right parameters

In [15] Raphael describes the use of a Bayesian network for a real
time accompaniment system. The system is learning from experi-
ence, by marking different tries as “hot” or “cold”, depending on
their level of relevance.

A similar method is being implemented in the presented sys-
tem to track the change of non mapped parameters. A few sets
of new parameters are given to the model. The parameter sets are
marked as “hot” if the obtained sound is enhanced, “cold” if the
result is worst. Only relevant “hot”, often as few as two or three,
are kept. The best match is sent to the synthesis engine.

Providing the filter is linear, a way of marking set of param-
eters as “cold” or “hot” is to inverse filter the original note. The
original version of a previously analysed note is inverse filtered
through the chosen filter. This yields to a source signal einv(k).
The commuted waveguide synthesis algorithm has been used in
a similar manner but for audio restoration [16]. Parameters are
marked hot if the error signal einv(k) − efil(k) tend to be min-
imised.

3.6. Issues

Known issues include the build of new instrument templates, and
a way of testing their robustness. The choice of the model during
the first played notes after initialisation is also a key problem to
address.

4. PRELIMINARY RESULTS

A program is being written to produce the MPEG-4 Structured
Audio Orchestra Language [17]. The system is trained on origi-
nal recordings to recognise between three different plucked string
instrument models.

First results showed that the recognition system is able to de-
termine the closest model in most of the cases. Estimation and
following of the parameters gave good synthesis result, and the
learning method provides significative enhancement of the model
timbre.

5. CONCLUSION

A draft system for real time extraction of physical models from
instruments recordings has been presented. This system aims to
gives a very compact description of the signal being analysed, us-
ing source filter models.

Both versatility and robustness of this system need enhance-
ment. Future research will look at extending the databases and
optimising the parameter mapping.

6. ACKNOWLEDGEMENTS

PB is supported by a Department of Electronic Engineering Schol-
arship. This work is also partially supported by grant GR/R54620
from the UK Engineering and Physical Sciences Research Coun-
cil.

7. REFERENCES

[1] K. Brandenburg and M. Bosi, “Overview of MPEG Audio:
Current and future standards for low bit rate audio coding,”
J. Audio Eng Soc., vol. 45, pp. 4–21, 1997.

[2] Eric D. Scheirer, “The MPEG-4 Structured Audio stan-
dard,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP-98), 1998.

[3] B. L. Vercoe, W. G. Gardner, and E. D. Scheirer, “Structured
Audio: Creation, transmission, and rendering of parametric
sound representations,” Proceedings of the IEEE, vol. 86, no.
5, pp. 922–940, May 1998.

[4] M. D. Plumbley, S. A. Abdallah, J. P. Bello, M. E. Davies,
G. Monti, and M. B. Sandler, “Automatic music transcription
and audio source separation,” Cybernetics and Systems, vol.
33, no. 3, pp. 603–627, Sept. 2002.

[5] Paul Brossier, Mark Sandler, and Mark Plumbley, “Real
Time Object Based Coding,” Proc. of the AES 114th Con-
vention, Amsterdam, The Netherlands, 2003.

[6] Bernd Edler and Heiko Purnhagen, “Parametric audio cod-
ing,” in 5th International Conference on Signal Processing
(ICSP 2000), Beijing, Aug. 2000.

[7] M. Goodwin and M. Vetterli, “Atomic decompositions of
audio signals,” in Proc. IEEE Workshop on Audio Signal
Processing, 1997.

[8] James Woodhouse, Physical models of bow instruments :
Applications to the violin, Ph.D. thesis, 1974.

[9] Julius O. Smith, III, “Physical modeling synthesis update,”
Computer Music Journal, vol. 20, no. 2, pp. 44–56, 1996.

[10] Julius O. Smith, III, “Efficient synthesis of stringed musical
instruments,” in Proceedings of the International Computer
Music Conference, ICMC 93, Tokyo, Japan, 1993, pp. 64–71.

[11] M. Karjalainen, V. Välimäki, and Z. Jánosy, “Towards high-
quality sound synthesis of the guitar and string instruments,”
in Proceedings of the International Computer Music Confer-
ence, ICMC 93, Tokyo, Japan, 1993, pp. 56–63.

[12] Christopher Duxbury, Mark Sandler, and Mike Davis, “A
Hybrid Approach to Musical Note Onset Detection,” Proc.
of the DAFx Conference, Hamburg, Germany, 2002.

[13] Christopher Duxbury, Mike Davis, and Mark Sandler, “Sepa-
ration of Transient Information in Musical Audio using Mul-
tiresolution Analysis Techniques,” Proc. of the DAFx Con-
ference, Limerick, Ireland, 2002.

[14] P. A. A. Esquef, L. W. P. Biscainho, and V. Välimäki,
“Restoration and enhancement of solo guitar recordings
based on sound source modeling,” vol. 50, p. 227.

[15] Christopher Raphael, “Can the Computer Learn to Play Mu-
sic expressively?,” Proc. of the 8th Int. Workshop on Artifi-
cial Intelligence and Statistics, Morgan Kaufman, pp. 113–
120, 2001.

[16] P. A. A. Esquef, L. W. P. Biscainho, and V. Välimäki, “Au-
dio restoration using sound source modeling,” in Proc. 2001
Finnish Signal Processing Symp. (FINSIG’01), p. 47.

[17] Eric D. Scheirer, “SAOL: The MPEG-4 Structured Audio
Orchestra Language,” Proc. IEEE, 1998.

DAFX-3

	1 Introduction
	2 Physical Modeling
	3 Implementation
	3.1 Framework
	3.2 Preliminary analysis
	3.3 Choosing the database
	3.4 Exploring the model space
	3.5 Tuning the right parameters
	3.6 Issues

	4 Preliminary Results
	5 Conclusion
	6 Acknowledgements
	7 References

