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ABSTRACT

We investigate the notion of “sparse decompositions” of audio sig-
nals in overcomplete spaces, ie when the number of basis functions
is greater than the number of signal samples. We show that, with
a low degree of overcompleteness (typically 2 or 3 times), it is
possible to get good approximation of the signal that are sparse,
provided that some “structural” information is taken into account,
ie the localization of significant coefficients that appears to form
clusters. This is illustrated with decompositions on a union of lo-
cal cosines (MDCT) and discrete wavelets (DWT), that are shown
to perform well on percussive signals, a class of signals that is
difficult to sparsely represent on pure (local) Fourier bases. Fi-
nally, the obtained clusters of individuals atoms are shown to carry
higher levels of information, such as a parametrization of partials
or attacks, and this is potentially useful in an information retrieval
context.

1. INTRODUCTION

Sparse decompositions of audio signals are extremely useful in
many signal processing applications : compression, noise reduc-
tion, source separation, detection, etc. The goal is to decompose
the signal onto a small number of basis functions, called “atoms”
(typically time-frequency atoms, such as Gabor atoms or local
cosines; or time-scale atoms, such as wavelets). The fundamental
problem : the bigger your set of atoms (i.e. the more redundant),
the more likely you will have a good match between your signal
and the atoms, but the larger your set of possible solutions. The
difficulty is to find the ”optimal” (whatever that means) solution
amongst them, usually a problem of high algorithmic complexity.

The work presented here tries to tackle this problem with prac-
tical, however suboptimal, methods. Optimality is here defined
in terms of compression, i.e. bitrate vs. quality of approxima-
tion. Our space of representation is limited to the union of a basis
of local cosines (MDCT) and a basis of dyadic discrete wavelets
(DWT). This choice of basis is relevant for audio signals, espe-
cially for percussive sounds where the well-defined attacks are
difficult to capture with purely Fourier-based approaches ; and
where assumptions of harmonicity of the partials are not always
verified. Based on the observation that significant coefficients are
not randomly distributed across the time-frequency (-scale) plane
but rather tend to form clusters, we do not select individual large
atoms as significant, but groups of neighboring large atoms, called
“molecules” or sound “micro-objects”. In the MDCT domain,
these form spectral lines; in the DWT domain, these form sub-

trees located around transient parts of the signal. Besides a sig-
nificant reduction in the algorithmic complexity, ”micro-objects”
are more meaningful from an analysis point of view than isolated
coefficients, and are cheap to encode. In short, this work presents
a tentative framework for the unification of two developments that
have emerged independently in recent years : sparse representa-
tions in overcomplete spaces [1], and structured representations
(such as SPIHT [2] in image coding).

This paper is organized as follows : after a short introduction
to sparse representations (part 2), we will detail how this can be
implemented within the framework of sparse representations (part
3). Finally, the conclusion (part 4) will discuss potential applica-
tions for information processing or musical purposes.

2. SPARSE OVERCOMPLETE DECOMPOSITIONS

2.1. What does “sparse” mean ?

There are many definitions of sparsity for representations of sig-
nals. Here, we work in the context of representations (projections)
of the signal on a set of pre-defined functions or ”atoms”{bn}, and
the signal is simply “represented” by the set of mixing coefficients
{αn}n=0...N−1.

x(t) =

N−1X
n=0

αnbn(t) (1)

A given representation is said to be sparse if the number of non-
zero coefficients is small compared to the dimensionN of the
space (the total number of samples in the signal). Mathematically
speaking, this corresponds to a so-calledL0 measure of sparsity,
that counts the amount of non-zero coefficients in a given set.

This definition can be generalized, and we can define a num-
ber ofLp sparsity measures, withp > 0, that represent how the
“energy” is concentrated on a small number of coefficients :

Lp({αn}) =

N−1X
n=0

|αn|p (2)

Amongst these, theL1 measure is a popular choice since some
algorithms can be implemented with linear programming tech-
niques. Note thatL2 is just a the standard measure of signal en-
ergy, and is invariant if the space of representation is an orthonor-
mal basis, or a union thereof. Note that recent results [3] show
that, if a given signal admits a ”very sparse” representation un-
der a given norm, then this representation is also the sparsest with
respect to allLp sparsity measures,0 ≤ p ≤ 1.

DAFX-1

 

 

 

 

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —

04DAFx

22 22



Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

Also commonly used are sparsity measures based in the nor-
malized information measure:

Lip({αn}) = (
|αn|
A

)p
N−1X
n=0

log(
|αn|
A

)p (3)

whereA is theL2-norm of theα’s.

2.2. Sparse approximations

In this study, we are going to relax the above constraints: we do
not look for strictly sparse representations of signals, but forap-
proximationsof the signals that are sparse. More specifically, we
assume that our signal is the sum of a signal that admits a sparse
representation and a small noise component :

x(t) =

N−1X
n=0

αnbn(t) + γ(t) (4)

whereγ is our approximation error that is assumed to be small.
In the context of audio compression, the tradeoff between quality
of approximation and sparsity can be formalized by way of rate-
distorsion curves.

2.3. Approximations in overcomplete spaces

In general, decompositions on othonormal spaces do not provide
sparse representations: it is indeed very unlikely that everywhere
the signal locally resembles the basis functions. Actually, the basis
functions have by themselves little to do with the signal -neither do
they sound like the signal - , and it it the union of (usually a large
number of) them that allow a good approximation. Figure 1 shows
a few of this indivudual atoms, taken from two popular choices
of orthonormal basis : the Modified Discrete Cosine Transform
(MDCT), and the Dyadic Wavelet Transform (DWT).

Figure 1: Individual atoms : top: three time-frequency (MDCT)
atoms; bottom : four time-scale (DWT) atoms.

Therefore, it is usually preferable to use overcomplete spaces
of approximation, ie. spaces with a number of basis functions that
is greater than the dimension of the space. One may for instance

choose Gabor frames [4], which can be seen as a set of discretized
windowed Fourier atoms.

The problem with overcompleteness is that one loses the nice
orthogonality principle that grants us the uniqueness of the decom-
position : indeed, for a given signal there is an infinity of possi-
ble decompositions. The problem here is to find, amongst these
decompositions, the one that is the most sparse, or that admits a
sparse approximation, according to one of the above definition of
sparsity.

2.4. Previous approaches

The above problem is in general not tractable, since its algorith-
mic complexity is huge (they belong to the NP-complete class of
problems). However, there are approaches that give practical so-
lutions, at a cost of suboptimality. Amongst these, let us mention
the approach of Matching Pursuits [5] and Basis Pursuits [6]. The
main drawback of these methods that their algorithmic complexity
is still too high to be used on high-dimension signals such as audio
signals.

3. STRUCTURED DECOMPOSITIONS

The method proposed here relies on the observation that large (ie
significant) coefficients are not randomly located, but form struc-
tures, or clusters, in the parameter plane. Here we restrict our-
selves to spaces with a small degree of overcompleteness, typically
2 times or 3 times ; and this allows for good visualization of the
clusters. For the simplicity of the decompositions, we will choose
the union of 2 (or 3) orthonormal bases. Preliminary results in-
dicate that, if the bases are sufficiently different from each other,
there is little to gain in choosing higher degrees of overcomplete-
ness.

Our choice of basis will be the union of a basis of Modified
Discrete Cosine Transform (MDCT) and a basis of Dyadic (dis-
crete) Wavelet Transform (DWT). The MDCT is a popular choice
in the audio coding community, since it is similar to a windowed
Fourier transform while keeping the orthogonality for real signals.
It is well adapted to the representation of locally tonal signals. The
DWT, with short wavelets, is well known for its capacity to analyze
transient portions of the signal, such as the attacks of percussive
sounds.

With these notations our problem may be restated as follows.
For a given signalx find the best overcomplete MDCT / DWT
approximation ofx :

x(t) =
X
n∈A

αnan(t) +
X

m∈B

βmbm(t) + γ(t) (5)

where thean (resp. bm) are the MDCT (resp. DWT) basis func-
tions, andA andB the set of significant coefficients. Here, ”best”
means that the set of significant coefficients{αn}n∈A

S
{βm}m∈B

is sparse according to our sparsity measure.

3.1. Tonal structures

In the MDCT time-frequency plane, large coefficients form tonal
structures that appear along the spectral lines, as in Figure 2. On
a practical point of view, tonal structures are detected as places
where the MDCT pseudo-spectrum (a smoothed near-shift-invariant
version of the MDCT spectrum|βm|, described in [7]) is strongly
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correlated across time. A tonal structure is then described as a set
of MDCT coefficients with a width of 3 frequency bins, extending
over a number of adjacent windows (seeFigure 2).

Figure 2:Top: MDCT spectrogram of a typical percussive signal.
Bottom: detail of the structure of significant tonal coefficients for
the partial framed on the top figure.

Figure 3: “Tonal molecule” corresponding to the coefficients in
the bottom plot  of  Figure 2, centered around the frequency bin 98.
Note that the selected molecule has connected separate groups of
significant coefficients (the gaps in time frames 32 and 45 corre-
sponds to interference processes in the decomposition and do not
bear a physical meaning).

Figure 4 represents the MDCT spectrogram of a glockenspiel
recording, and Figure 5 shows the detected tonal structures on the
same file. Although some partials are not detected, the obtained
pattern can be seen as a signature of the original sound, and indeed
it is very close to it from a perceptive point of view, except at the
onset of the notes.

Figure 4:Time-frequency MDCT spectrogram of a glockenspiel.

Figure 5: Time-frequency MDCT spectrogram of the tonal
molecules selected by the algorithm, same soundfile as Figure 4.

3.2. Transient structures

Here, we work on the residual of the previous tonal extraction, that
appears to contain mainly the transient sequences at the onsets of
the notes. These will be represented as structures in the Dyadic
Wavelet Transform (DWT) domain, which is organized in a dyadic
tree structure in the time-scale plane. We use compact wavelet with
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short support, such as Haar or Daubechies-4, since they provide
good time localization properties [8].

Here, transient structures will be defined as “trees” in the time-
scale dyadic plane where large coefficients are correlatedacross
scales [9], as shown in Figure 6.  When a tree is selected, we prune
out the small coefficients with a top-down search, that ensures that
the remaining trees are connected and fully connected to the largest
scale, ie. the root of the dyadic tree. For very percussive signals,
we observe that the selected structures correspond to the sharp at-
tack transients of the sounds.

Figure 6:In the dyadic time-scale plane, large wavelet coefficients
cluster around branches of sparse trees.

Figure 7: Top : Pruned tree of selected wavelet atoms. Bottom :
corresponding waveform.

4. CONCLUSION AND PERSPECTIVES

This article has shown the capabilities of a new decomposition
algorithm for sparse decompositions of signals in overcomplete
spaces. The strength of this algorithm lies in the fact the structural
information, through the localization of significant coefficients, is
taken into account. This ensures that the obtained decompositions

are intrinsically sparse. The algorithm is computationally very ef-
ficient, as compared to the original Matching Pursuit a large num-
ber of coefficients (typically between 5 and 50) is selected at every
iteration. Furthermore, at every iteration we only need to update
half of the scalar products between the signal and the basis, since
we work on a union of two orthonormal basis. Higher degrees of
overcompleteness give little improvement in the sparsity, with a
large penalty in computational efficiency. In our model, the only
improvement was noted when using in addition a basis of Modi-
fied Discrete Sines (MDST), that provides shift-invariance to our
tonal part.

We have tested this algorithm on a number of signals. Pre-
liminary results indicate that the best results are obtained on the
sounds that are difficult to represent on classical Fourier-based
spaces, namely the percussive signals. The main characteristics
of these signals is that they are not harmonic (previous models ex-
tending Matching Pursuits have assumed harmonicity [10]) , and
they are strongly non-stationary at their attacks (hence requiring a
large number of Fourier coefficients). Although this model is very
general, the sparsity of the decompositions degrades quickly when
the local frequencies of the tonal partials is not constant, e.g. in
the case of a frequency chirp or vibrato. More complex tonal de-
compositions can be implemented to account for these classes of
signals.

Furthermore, one of the main drawbacks of the algorithm at
present is that one needsa priori estimate of the relative tonal /
transient importance. Future improvements will offer a simulta-
neous rather than sequential estimation of these two components,
through a modified version of the Matching Pursuit [11]. How-
ever, this is expected to induce a significant increase in the compu-
tational requirements.

It is also interesting to note that the reconstructed signals from
the obtained structures are meaningful from an auditive point of
view (whereas individual atoms were not). Tonal structures sound
like individual partials, and transient structures sound like the at-
tacks of each note. This may be seen as intermediate level of rep-
resentations, between the low-level time-frequency (/scale) planes,
and the (relatively) high-level MIDI-like representation as indi-
vidual notes (see Figure 8).  The difficulty of automatic transcrip-
tion of audio files makes these intermediate levels (called “micro-
objects”) an attractive option. This could also be useful for audio
indexation purposes, used in information retrieval systems (for in-
stance these objects bear information about the structure of the
timbre, that is lost in the MIDI information).

Finally, one may wonder whether musical applications of this
techniques are sensible. The author believes that this may be the
case, since structures can be manipulated (sound transformations
/ effects) or completely created as reorganizations of molecules
from different (possibly natural) sounds (this can be seen as an
extension to the widely-used granular synthesis).
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Figure 8: Structured elements (”micro-objects”) are seen as intermediate levels of representation between the time-frequency (or time-
scale) spaces, and the individual notes.
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