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ABSTRACT 

A reformulation of Prior Subspace Analysis (PSA) is presented, 
which restates the problem as that of fitting an undercomplete 
signal dictionary to a spectrogram. Further, a generalization of 
PSA is derived which allows the transcription of polyphonic 
pitched instruments. This involves the translation of a single 
frequency prior subspace of a note to approximate other notes, 
overcoming the problem of needing a separate basis function for 
each note played by an instrument. Examples are then demon-
strated which show the utility of the generalised PSA algorithm 
for the purposes of polyphonic pitch transcription. 

1. INTRODUCTION 

Prior Subspace Analysis (PSA) was first proposed as a technique 
for transcription and sound source separation of drum sounds [1], 
and was found to be successful at tackling the transcription of 
certain types of drum sounds. However, the method was not suit-
able for the transcription of pitched instruments, as it required an 
individual prior subspace for each note of a pitched instrument. 
The remainder of this paper describes a reformulation and exten-
sion of the original PSA algorithm to allow the transcription of 
polyphonic music. Section 2 describes the reformulation of PSA 
in terms of fitting an undercomplete signal dictionary to a time-
frequency representation of a signal, and Section 3 describes an 
extension to this model to allow polyphonic pitched instrument 
transcription. Section 4 shows preliminary results obtained using 
this generalised PSA algorithm.  

2. PRIOR SUBSPACE ANALYSIS - A REFORMULATION 

Given an input signal, PSA assumes that a magnitude spectrogram 
of the signal Y results from the superposition of l unknown spec-
trograms Yj. Further, it is assumed that each of these spectrograms 
can be represented as the outer product of an invariant frequency 
basis function, and an invariant amplitude basis function, in the 
manner of Independent Subspace Analysis [2]. This yields: 
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It is then assumed that there are known frequency basis functions 
or prior subspaces apr that are good approximations to the actual 
subspaces. Substituting for the aj with these prior subspaces 
yields: 
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In matrix notation this becomes: 

sAY pr≈  (3) 

As originally formulated, PSA obtained estimates of s by 
multiplying the overall spectrogram by the pseudo-inverse of the 
frequency basis functions to obtain an intial estimate of s. 
Independent Component Analysis (ICA) [3] then performed to 
yield an improved  estimate of s. 

In recent years, it has been proposed that sound source 
separation can be achieved by means of sparse decomposition in a 
signal dictionary [4]. The signal dictionary used in this research 
consisted of a wavelet packet dictionary. More recently, it has 
been proposed that sound source separation in single channel 
signals can be carried out by fitting an overcomplete signal dic-
tionary to the signal, in conjunction with knowledge of spectral 
cues such as the head related transfer function [5].  

The above research suggests a different view of the 
prior subspaces used in PSA, namely that the prior subspaces are a 
signal dictionary, albeit a very undercomplete signal dictionary. 
The PSA problem can then be stated as follows: given a signal 
dictionary, Apr, and a spectrogram Y, find an estimate of s given 
some suitable criteria. In this case, a suitable criteria would be to 
assume that the data is sparse in nature. Using the pseudo-inverse 
is not suitable as it assumes the data is gaussian in nature. While 
following the use of the pseudo-inverse with ICA goes some way 
to solving this problem, the PSA problem is closer in formulation 
to Non-negative matrix factorisation (NMF) [6] and Non-negative 
Sparse Coding (NNSC) [7].  

Both NMF and NNSC attempt to approximate a non-
negative matrix x of size n x m, such as a spectrogram, by 
decomposing it into a mixing matrix A of size n x r, and a set of 
feature vectors s, of size r x m: 
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where r is the number of basis functions chosen to represent the 
original data. Both methods assume that the input data is sparse in 
nature [7], and have been used for source separation and 
transcription of polyphonic audio [8,9,10]. However, both suffer 
from the problem of choosing a suitable r to give the best 
interpretation of the data, though this is less of a problem for 
NMF. Further, both suffer from permutation ambiguities. Both 
algorithms start by randomly initialising A and s, ensuring that the 
initialisations are non-negative. Both methods use a multiplicative 
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update rule for s, while NNSC updates A via gradient descent, and 
NMF via a multiplicative update. Both A and s are then updated 
sequentially until convergence. 

In the case of PSA, initial estimates of A are available, 
and so it is only necessary to update for s. This results in a new 
formulation for PSA, described below in pseudo-code: 
 
1. Obtain a magnitude spectrogram Y of the input signal. 
2. Randomly initialise s,  where s contains the amplitude 

envelopes of the sources, ensuring that the data is non-
negative. 

3. Update s using either of these update rules 

( ) ( )λ+∗∗∗= sAAYAss pr
T
pr

T
pr */.. (NNSC) 

( )( )( ) OAsAYAss T
prpr

T
pr ∗∗∗∗= /./.. (NMF) 

where Apr are the prior subspaces, T denotes matrix 
transpose, .*    denotes elementwise multiplication, and 
./ denotes elementwise   division. λ is a non-negative 
scalar , and O is an all-ones matrix the same size as Y. 

4. Iterate step 3. to convergence. 
 

In tests the NMF-based update rule was found to give 
better performance than the NNSC-based rule, suggesting that the 
NMF-based rule provides a better fit to the underlying data. Also, 
in most cases 50 iterations was found to give sufficient 
convergence.  Another useful update rule for s is that proposed by 
Abdallah [11]. It should be noted that the use of that update rule 
requires the use of a power spectrogram as opposed to a 
magnitude spectrogram, and that the prior subspaces have to be 
modified in accordance with this. 

It is important to point out at this stage that the new 
PSA algorithm offers significant improvements over the original 
PSA algorithm. Firstly, the use of non-negativity means that the 
results obtained will be more consistent with real world situations, 
where negative amplitudes of sources cannot occur. This was a 
problem with the original PSA algorithm in that the amplitude 
envelopes obtained were sometimes physically implausible. Sec-
ondly, because we are only updating s, and the prior subspaces are 
held constant, there is no longer any permutation and scaling 
ambiguities in the algorithm. This means that the recovered 
sources are directly associated with the prior subspaces, and there 
is no longer any need to identify the sources after processing. 

In the case of using the new PSA algorithm for drum 
transcription of snare, kick drum and hi-hats, this means that the 
assumptions used to identify the sources in the original PSA tran-
scription algorithm are no longer required. These assumptions 
were that the kick drum had a lower spectral centroid than the 
snare, and that the hi-hats occurred more frequently than the snare 
drum. The elimination of these assumptions allows the new algo-
rithm to function in a wider range of circumstances. When tested 
on the same data set as the original PSA algorithm, the perform-
ance improved to a 94.7% success rate, as opposed to the 92.5% 
success rate achieved with the original algorithm. Table 1, below, 
shows the results obtained using the original PSA algorithm, while 
Table 2 shows the results obtained using the reformulated PSA 
algorithm. It can be seen that the performance in transcription of 
snares and hi-hats has improved, while there has been a small 
degradation in the recovery of the kick drum. Nevertheless, it can 
be seen that the new algorithm has outperformed the original PSA 
algorithm. 

It should be noted that a similar reformulation of the 
PSA algorithm described above was arrived at independently by 
Paulus et al [12]. However, for the purposes of pitched instrument 
transcription, both reformulations suffer from the need for  an 
individual prior subspace for each note present. Methods to 
overcome this problem are presented in Section 3. 

 
Type Total Missing Incorrect % 
Snare 21 0 2 90.5 
Kick 33 0 0 100 
Hats 79 2 6 89.9 

Overall 133 2 8 92.5 
Table 1: Drum Transcription Results using the original PSA 

algorithm 
 

Type Total Missing Incorrect % 
Snare 21 0 0 100 
Kick 33 1 1 93.9 
Hats 79 0 5 93.7 

Overall 133 1 6 94.7 
Table 2: Drum Transcription Results using the reformulated 

PSA algorithm. 

3. GENERALISED PRIOR SUBSPACE ANALYSIS 

It can be seen from the above that an extended model is needed to 
reflect the situation where various notes from the same instrument 
occur over the course of a spectrogram. Previous work attempting 
to deal with this includes the non-linear Independent Subspace 
Analysis model proposed by Vincent et al [13].  In this model, 
chord spectra are represented as sums of note power spectra, and 
note spectra are represented as sums of instrument dependant log-
power spectra. Note durations are then modeled using Hidden 
Markov Models. Time-Frequency analysis was carried out using a 
log-frequency scale and successful transcription was obtained for 
two duo recordings. 

A potential way of overcoming the problem of dealing 
with multiple notes belonging to a single source is to assume that 
the notes belonging to a single source consist of translated ver-
sions of a single frequency basis function. This single frequency 
basis function is then taken to represent the typical frequency 
spectrum of any note played on the instrument in question. This is 
a simplified approximation of the real situation, where the fre-
quency spectrum of the note does vary with pitch. Despite this, the 
assumption does represent a valid approximation over a limited 
pitch range. A version of this assumption is used in commercial 
music samplers and synthesisers, where a recorded note of a given 
pitch is used to generate other notes in proximity to the original 
note. It should be noted that the use of this assumption also places 
a further restriction on the type of spectrogram being analysed, 
namely that the frequency resolution of the spectrogram must be 
logarithmic in scale. 

Figure 1, below, shows the frequency spectra of two dif-
ferent notes played on a French horn. It can be clearly seen that 
the spectra of the two notes are very similar, and so the spectrum 
of either note can be approximated by a translation of the other 
note. It is also assumed that no significant information is con-
tained in the extremes of the translated frequency basis function. It 
can be seen that this assumption holds for the spectra shown in 
Figure 1. This assumption also sets limits on how far a given basis 
function can be translated. For example, translating the first of the 

78 - DAFx'05 Proceedings - 78



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFX-05), Madrid, Spain, September 20-22, 2005 
 

  

two spectra shown by more than 20 bins to the left will result in 
part of the first partial to be moved to the end of the frequency 
spectrum, where it is clearly not supposed to occur. 
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Figure 1. Spectra of two notes of a French horn 

To translate a given n x 1 vector, an n x n translation 
matrix can be used. Such a translation matrix can be generated by 
rearranging the columns of the identity matrix. For example, to 
achieve a shift up of one, the translation matrix would be obtained 
from I(:,[n, 1:n-1]) where I denotes the identity matrix, and where 
the ordering of the columns is contained in the square brackets. A 
simple example of a shift up of one, which is obtained by a shift to 
the left of the ones in the identity matrix is given below for a 5 x 1 
matrix. 
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 (5) 

For the transcription of a single instrument playing mul-
tiple notes, the signal model now becomes: 

j

r

j

As∑
=

=
1

jTY  (6) 

where Y is a log-frequency spectrogram of size n x m, A is an n x 
1 vector containing a typical harmonic profile and sj contains the 
amplitude basis function, of size 1 x m associated with translation 
matrix Tj of size n x n. An algorithm which attempts to learn both 
A and sj from an input spectrogram is described in [14]. 

The utility of this signal model can be seen in that a sin-
gle basis function can now be used to model a pitched instrument 
and can be seen as a means of generalising the PSA model to deal 
with pitched instruments, as a single prior subspace of an instru-
ment note can be used to generate other notes from the instrument. 
Suitable prior subspaces for a given instrument can then be ob-
tained via a number of methods. NMF can be performed on a 
single note of an instrument to obtain a harmonic profile, or a 
single frame of a log-frequency spectrogram with a well estab-
lished harmonic profile can be chosen as a basis function.  

For a predefined set of translations and a given instru-
ment prior subspace, the signal model can be rewritten as: 
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where ATj = TjA, and AT is a matrix of size n x r, and s is a matrix 
of size r x m. In other words, the signal model can be collapsed to 
the standard PSA model. Therefore, the same optimisation tech-
niques can be used to obtain s as in the reformulated PSA model. 

The resulting generalised PSA algorithm for the tran-
scription of a pitched instrument can then be summarised as fol-
lows: 
1. Obtain a spectrogram with log-frequency resolution of 

the input signal. 
2. Determine transformation matrices Tj for a given range 

of translations. 
3. Obtain translated versions ATj of prior subspace A from 

ATj = TjA. 
4. Randomly initalise s, ensuring non-negativity. 
5. Update s using the update rule: 

( )( )( ) OAsAYAss T
TT

T
T ∗∗∗∗= /./..  

where T
 denotes matrix transpose, .* denotes elemen-

twise multiplication, and ./ denotes elementwise divi-
sion, and O is an all-ones matrix the same size as Y 

6. Iterate step 5 to convergence. 
 

The NNSC-based update rule was found to be unsuited 
for the purposes of pitched instrument transcription and so is not 
included in the algorithm. Preliminary results obtained using the 
algorithm are detailed in Section 4. 

4. TRANSCRIPTION USING GENERALISED PRIOR 
SUBSPACE ANALYSIS 

To test the effectiveness of the generalised PSA algorithm, a 
number of simple tests were carried out. Firstly, a recording was 
made of a sampled piano playing a C major scale from note C5 to 
note C6. This sampled piano made use of 4 separate piano note 
samples per octave, A prior subspace was obtained for piano note 
G5 from a completely different sampled piano. The results ob-
tained for s are shown in Figure 2 below, in which a shift of one 
corresponds to a pitch change of a semitone. The range of transla-
tions was set to +/- 10, though a greater number could have been 
used without affecting the result. 
 It can be seen that the algorithm has successfully cap-
tured the notes in the input waveform. As the prior subspace was a 
G5 piano note, this note has a shift of 0 in the above plot, and it 
can be seen that the notes played do indeed follow the pattern of a 
major scale. As the translated priors are fixed, the algorithm does 
not suffer from the source ordering problem inherent in blind 
source separation algorithms, and so the recovered amplitude basis 
functions will be presented in the correct order. This means that 
the basis functions can be plotted in a manner similar to a piano 
roll, as shown below in Figure 2. 
 The second test carried out on the algorithm involved 
the transcription of a series of three-note piano chords. The same 
sampled piano was used as in the previous example, and the same 
prior, a piano-note of pitch G5 was used. A pianoroll plot of the 
midifile used to generate the audio signal is shown in Figure 3. 
This was generated using the Miditoolbox [15]. Figure 4 then 
shows the output of the generalised PSA algorithm. Remembering 
that a translation of 0 corresponds to note G5, it can be seen that 
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the algorithm has successfully transcribed the piano chords, with 
the notes clearly distinguishable from any noise in the basis func-
tions. This shows that the algorithm is capable of transcribing 
polyphonic music. 

Figure 2. Outputof algorithm from a piano scale 

 
Figure 3. Pianoroll of 3 note piano chords 

 
Figure 4. Output of algorithm fromaudio signal of piano 

The third test performed on the algorithm was an audio 
signal which contained a trumpet and a french horn playing sepa-
rate melody lines. Both were created from an orchestral samples 

library, with 4 samples per octave. The translation range was set to 
+/- 25, and the pitch range of the actual signal was from D5 to E4. 
The piano prior from the previous examples was used in an at-
tempt to see if a single harmonic prior was capable of transcribing 
more than a single instrument. The midi-file used to create the 
audio signal is shown in Figure 5. In this figure the trumpet, is 
represented by black, and the french horn, on channel 2, is repre-
sented by grey. 

 
Figure 5. Pianoroll of trumpet and French horn. 

Figure 6. Output of algorithm from trumpet and french horn 
example  

Figure 6 then shows the output of the generalised PSA 
algorithm. It can be seen that the notes have been successfully 
recovered by the algorithm. This suggests that a generalised har-
monic profile has the potential to be able to successfully transcribe 
a wide range of instruments. For transcription purposes, this can 
be considered a strength, in that it would not be necessary to have 
a different prior for each instrument in order for successful tran-
scription to occur. However, for the purposes of sound source 
separation, this would not be useful.  
 Finally, the algorithm was applied to a recording of a 
grand piano, recorded in a small theater in reverberant conditions 
to see how the algorithm would deal with real-world audio. Fur-
ther, to see if a synthetic harmonic prior could be used for tran-
scription, a harmonic prior was generated from a sum of 7 sinu-
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soids, with each partial having half the amplitude of the previous 
partial. The prior used corresponded to the pitch of middle C 
(261.63 Hz). The output of the generalised PSA algorithm is 
shown in Figure 7, below. 
 When compared by hand to the recording, the algorithm 
was found to successfully recover the vast majority (93%) of the 
notes played, with the exception of a small number of low ampli-
tude notes. This was after thresholding and elimination of short 
duration activations of s. It is possible that some form of percep-
tual weighting as described in [16] on the input spectrogram may 
be of use in recovering these notes. The success of this test shows 
that the algorithm can function on real-world signals, and that a 
synthetic prior can be used to attempt transcription of a real in-
strument. It also demonstrates that a single prior can function over 
a wide pitch range, in this case dealing successfully with a range 
of two octaves. 

 

Figure 7. Output of algorithm from grand piano recording 

5. CONCLUSIONS 

A reformulation of PSA as a signal dictionary fitting problem has 
been presented. Following on from this, a generalisation of the 
PSA algorithm was derived which uses translations of a single 
freuquency basis functions to represent different notes. The effec-
tiveness of the generalised PSA algorithm as a method for poly-
phonic music transcription was then demonstated using both midi-
generated and real-world signals. It also demonstrates that a well 
chosen undercomplete signal dictionary, in this case a single 
dictionary element and translations thereof, can be used to extract 
much meaningful information from audio signals. Future work 
will concentrate on identifying accurately the performance of the 
algorithm for transcription of polyphonic music in a wide range of 
situations, and on attempting to improve performance through the 
use of perceptual weighting. It is also intendend to attempt to 
transcribe both pitched instruments and percussive instruments 
simultaneously by appending a set of percussion priors to the set 
of translated pitch priors. 
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