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ABSTRACT

Polyphonic transcription is specially challenging in piano higher
octaves due to the complexity of the spectrum of notes and there-
fore, chords. Besides the fundamental and second partial com-
ponents, other spectral elements appears. The three peaks related
to the unison as well as the second harmonic of the fundamental
unison can be distinguished in most measures. Furthermore, in-
termodulation components are also present when non-linearity is
high enough. This paper compares several methods to improve the
training process that allows to synthesize the spectral patterns and
masks used in transcription methods.

1. INTRODUCTION

One method for polyphonic transcription is based on matching a
spectral patterns database. The spectral database consists on a set
of spectra. These are called spectral patterns’. Mainly the whole
set of note’s spectrum has to be available. Obtaining the whole set
by recording all the single notes would not be elegant, so it has
to be obtained from a few training notes and an interpolation pro-
cess. One possible interpolation process relies on using a physical
modeling of the instrument, here piano [1].

When identifying single notes, only the spectral patterns are
necessary. To identify polyphonic chords, a spectral subtractive
approach is used. A second spectral database is necessary for this
function. Those are the called spectral masks’. Chords are identi-
fied by iterative detection of the notes that compose them. Every
time a note is detected, its spectral mask is applied to remove the
spectral components of the note away from the analyzed chord.

Obtaining the spectral databases for a given piano requires a
specific training stage. Pianos are enough different regarding their
Inharmonicity and tuning. This make the use of a unique set of
spectral patterns impossible, as previous works have shown [1]

Moreover, the intensity applied when playing a piano is re-
lated to the nonlinear behavior of the vibration. Some studies have
shown that the nonlinear effect can be modeled using the inter-
modulation products (I.M.) [2], which can be easily calculated.
In harmonic vibrations, IM products are coincident to partials so
no effect rather than change of level appears to exist. When the
vibration is inharmonic, the IM products deviate from the par-
tials producing new spectral components. If spectral resolution
is low (as it is the case of lower octaves) these components are not
distinguished and it only appears to be a widening of the partial.
Nevertheless, in higher octaves, the IM products are clearly distin-
guished from the partials. The non-linearity is too high and the IM
products have high levels, sometimes higher than the ones of the
partials.

It is a key factor for subtracting masks not to leave out those
IM associated with its note. If not, those IM can be considered a
different note in the following iterative stage.

Previous results obtained using this transcription algorithm on
piano chords have shown that mistakes take place when attempting
to identify higher octaves chords, specially when they are played
with high force[2].

Therefore, spectral masks for higher octaves need to be syn-
thesized highly accurately, and with even more detail than spectral
patterns, which are used to detect the notes.

The position and width of the meaningful partial for each note
have to be known to synthesize the spectral patterns and masks.
Besides, masks require to know the expected IM products.

The position of partials is obtained from two parameters: the
frequency of the fundamental (f1) and the Inharmonicity coeffi-
cient (B). Any partial’s frequency (fn) is related to the fundamen-
tal by [3]:

fn = n · f1 ·
√

1 + n2 ·B√
1 + B

(1)

The frequency of the fundamental may be specified using the
tuning factor and the well-tempered scale.

f1 = fwt · T (2)

Besides, the effect of the soundboard impedance affects the
definitive position of a partial [4]. This effect can be considered
negligible in higher octaves [5].

The width of the partials is related to either its decay time or
spectral estimation limits (window and data length).

Regarding non-linearity products, the meaningful of each of
them are related to the level of the original partials involved. In
higher octaves, the second harmonic of the fundamental is one of
the more relevant. The products that depend on two partials have
been studied in previous work [2] and their position depends a lot
on the value of B (Inharmonicity coefficient). Specially important
are those obtained from the fundamental and the second partial,
which are the two higher level components.

Higher octaves (sixth and seventh) notes have values of B
greater than 0.002, which lead to IM products clearly distinguish-
able from the partials. It also leads to the second harmonic of the
fundamental to be clearly below the frequency of the second par-
tial.

Moreover, every note is composed by the vibration of three
strings that are slightly deviated in frequency (what is called uni-
son’) [6]. The above explained has to be applied to each string.
It is widely assumed that the non-linearity can be considered to
exist in each string, but not in the unison. This is explained by
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the fact that the main nonlinear process is the hammer excitation
rather than the bridge movement [7].

2. ANALYZING HIGHER OCTAVES

Figure 1 shows the spectrum of note C6 played softly in a Steinway
grand piano. Many other higher octave notes have been recorded
and all of them show the same type of spectrum or with even higher
second harmonic.

Figure 1: Second partial and fundamental segments of the C6 spec-
trum. Note the existence of second harmonic near the second par-
tial. Regarding tuning, the well-tempered frequency of C6 would
be 1046.5 Hz. The effect of inharmonicity on tuning is clear. Take
also into account that the maximum peaks in fundamental and sec-
ond partial segments do not correspond to the same string of the
unison

How can we analyze this note during training to obtain tun-
ing and Inharmonicity coefficients? How must be synthesized the
spectral mask to remove all these components? Two approaches
have been tested and are presented in this paper. The first approach
is the simplest and consists in detecting fundamental and second
partial as the peak with highest level on every segment of the spec-
trum. The second is to detect all the peaks and do a further analysis
to decide which are the fundamentals and the second partials. The
last is carried out taking into account the unison.

The first approach presents a drawback removed from the me-
thod for this paper. Some notes, specially if they are played loudly,
present a second harmonic that has a higher level than the second
partial, leading to a value of zero for the Inharmonicity coefficient.
For this approach, the second harmonic zone has been masked.

The second approach has been carried out using three different
methods to calculate B value.

Once the fundamental and the second partial have been de-
tected, the values of tuning factor and Inharmonicity coefficient
can be obtained, completing the parameter extraction process. The
higher octaves present spectra that contain very little partials, so
only the first two are used for this analysis.

The analyzing task is more challenging that it could seem.
Figure 2 shows the spectrum of G#7 played in a Kawai grand pi-
ano. Effects of non-linearity are clear: higher second harmonic

and more than three peaks around second partial (some IM prod-
uct).

Figure 2: Second partial and fundamental segments of the G#7
spectrum. Note the existence of second harmonic near the second
partial. Its level is even higher than the second partial’s one. Well-
tempered frequency of G#7 would be 3322,5 Hz.

2.1. First approach

The spectrum is segmented around both fundamental and second
partial, and the maximum valued peak is detected in every seg-
ment. These are considered the fundamental and the second par-
tial. The value of parameter B is calculated using the equation:

B =
C2

0 − 4

16− C2
0

(3)

where

C0 =
f2

f1
(4)

The effect of the soundboard impedance can be considered neg-
ligible. If the second harmonic of the fundamental (i.e., 2 · f1)
is detected instead of the second partial, the obtained value for B
would be zero. The spectral segment around the second partial is
corrected so it does not include the second harmonic segment. The
second harmonic segment is calculated using the detected funda-
mental.

2.2. Second approach

The spectrum is segmented, but all the relevant peaks are detected
in every segment, keeping the unison, existing IM products and the
second harmonic. The second harmonic segment is removed using
all the information in the fundamental segment (not only the max-
imum peak). This removal is carried out for the detection of the
second partial, but the second harmonic segment is used for help-
ing validation of the fundamental unison. The remaining peaks in
the second partial segment include the second partial unison and
some IM products. The three more likely peaks to be the unison
are selected using mainly two considerations: Second partial uses
to have higher level than the nearest IM products and the positions
of the IM products can be approximated using an expected value
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of B [2]. Regarding the fundamental, up to four peaks can be de-
tected sometimes (unison plus one IM product), but often only two
or three peaks are detected. This is due to spectral resolution lim-
its. All the unison is present but not all the peaks’ frequency value
are clearly known. Due to this, several methods start at this point.

The first method analyzes the Nx3 matrix that can be obtained
by calculating the value of parameter B using each second detected
partial and each detected fundamental. The theoretically expected
matrixes present a clear behavior regarding their values.

Let us consider the three fundamentals of the unison. The first
one is considered the main or tuning value. The second is deviated
δ1 times and the third is deviated δ2 times from the first one. Both
δ1 and δ2 are higher than unity, and δ2 > δ1 [6].

If the three fundamentals of the unison and the three second
partials of the unison are measured, the following matrix could be
obtained:

0
@ C0 δ1C0 δ2C0

1
δ1

C0 C0
δ2
δ1

C0

1
δ2

C0
δ1
δ2

C0 C0

1
A (5)

Every term in the matrix corresponds to the ratio between a
second partial and a fundamental. Rows order is the fundamen-
tal’s order and column’s order is the second partial’s order. The
main diagonal has the value of C0 repeated three times and will
be called ’C0-diagonal’ in the following discussion. The Inhar-
monicity coefficient B is obtained from that ratio C0 by using the
equation (3). Real matrices are not so easy.

If δ2 is δ2
1 , the unison is symmetrically tuned. This leads to

more repeated values inside the matrix, making more difficult the
identification of the C0-diagonal in a real matrix.

0
@ C0 δ1C0 δ2C0

1
δ1

C0 C0 δ1C0
1
δ2

C0
1
δ1

C0 C0

1
A (6)

Nevertheless, C0 is still the value repeated more times. Still,
this can change if any of the rows are left, as happens when only
two fundamentals are detected.

� 1
δ1

C0 C0 δ1C0
1
δ2

C0
1
δ1

C0 C0

�

(7)�
C0 δ1C0 δ2C0
1
δ2

C0
1
δ1

C0 C0

�
(8)

(9)�
C0 δ1C0 δ2C0
1
δ1

C0 C0 δ1C0

�

Equation (8) shows three possible matrices when only two
fundamentals are detected and unison are symmetrically tuned.
Although in the theoretical matrix is possible to identify the C0-
diagonal, it is not the case if only calculated values are available.
In some cases, we have two diagonals with two repeated values. In
other case there is no repeated value.

The analysis of several cases has to be carried out by the al-
gorithm and some of them lead to an unavoidable error. The algo-
rithm tries to make that error the minimum possible when it detects
one of those cases.

Knowing which is the lost fundamental is not possible. There-
fore, the error cannot be completely corrected.

The second method simplifies the process taking the geometric
mean of all the values in the matrix. Theoretically, calculated ma-
trix values present a clear symmetrical distribution. The geometric
mean of matrix in equation (5) is C0.

The geometric mean is more accurate when all the values of
the unison are present. In actual measures, the lack of fundamen-
tals can lead to an error. For the three matrices of (8) the errors
would be:

6
p

1/(δ1δ2)

6
p

δ2
1/δ2

6
p

δ2
2/δ1.

(10)

These can be clearly lower than the obtained by using the first
approach, which could be as high as δ2.

Furthermore, in spite of the method, the measurement of the
frequency values of fundamentals and second partials is also lim-
ited by the spectral resolution. This further affects to the calculated
matrix values. In some cases, even the main diagonal has not three
repeated values but three very similar ones.

The third method calculates the mean of all the values. In the
case of the 3x3 matrix, this method produce error, but in some of
the cases of 2x3 matrices, it can lead to a lesser error. This mean
values are included in the study for comparison purposes mainly.

2.3. Expected values

To interpolate all the note’s spectra from a few training notes, some
kind of relationship between the values of the parameters for dif-
ferent notes has to exist. The strings for the higher octaves notes
follow several designing rules. Values of B and tuning for a given
piano depend on a few initial designing values. This permits to
expect the values of B and tuning parameter to carry out the inter-
polation. Figure 3 shows the expected B values for several initial
designing values (that is, several different pianos).

Figure 3: Curves of B values calculated using the theoretical equa-
tions of the model. Only four expected curves are shown
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3. RESULTS

The presented results show a comparison of the obtained values of
parameter B using all the three methods plus the expected curve.

Figure 4 shows the results for the three methods of the second
(new) approach. For comparison, figure 5 shows the same plus the
results for the first (maximum peaks) approach and one expected
curve.

Figure 4: Curves of B values calculated by using the second ap-
proach.

Figure 5: Curves of B values calculated by using the second ap-
proach, plus the curve using the first (dotted line) and one possible
expected curve (thick line)

Results show that the new approach has lesser variance respect
to the expected curve, especially in the higher notes of seventh
octave.

4. DISCUSSION

The presented results show the values of the B parameter measured
for all the notes. Then, the training set is the whole set. This is not

actually the definitive training method. For real training, the com-
plete curve has to be interpolated from a few trained notes. Differ-
ent curves can be interpolated depending on the selected training
notes.

Using the more accurate (lesser variance) analysis method for
the training stage is very important. The more accurate might be
the ’Geometric Mean’ method corresponding to the second ap-
proach presented and proposed by the authors.

The first approach presents the highest variance respect to the
expected curve. One reason is that maximum valued peaks are
not related to one specific string in the unison. Moreover, spec-
tral resolution limits makes possible to detect as a maximum the
fundamental of one string and the second partial of other string,
leading to an error in the calculated value of parameter B.

5. CONCLUSIONS

The spectral patterns and masks used in polyphonic transcription
of piano chords can be improved by obtaining better estimation
of the note’s spectral parameters. The presented methods increase
the accuracy of the measurement of training note’s inharmonicity
coefficients.

Results are specially good in the seventh octave, which is the
one that produced more false detections in the transcription tests
[8].
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