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ABSTRACT

In this paper, a simple finite difference scheme for a rect-
angular dynamic nonlinear plate, under free boundary con-
ditions is presented. The algorithm is straightforward to
program, and is capable of reproducing, to a first approx-
imation, the behaviour of various percussion instruments
whose timbre depends crucially on nonlinear effects (due
to high-speed strikes), including transient pitch glides and
the buildup of high-frequency energy. Though computa-
tionally intensive, algorithms such as that presented here
promise more faithful sound synthesis and, as with all phys-
ical model inspired synthesis algorithms, require the specifi-
cation of only a few, physically meaningful parameters. Full
details of the algorithm, including the setting of boundary
conditions and computational demands are provided. Nu-
merical simulation results are presented.

1. INTRODUCTION

In recent years, it has become possible to perform direct nu-
merical simulations of increasingly complex mechanical sys-
tems in order to generate synthetic sound. For distributed
nonlinear systems, traditional approaches such as modal
synthesis [1] or digital waveguides [2] are difficult to apply
(with some exceptions), and a direct approach would ap-
pear to be the only reliable way of capturing the complex
dynamics of such systems.

Several percussion instruments, such as gongs, tam-tams
and cymbals create sounds whose timbres are inextricably
linked to nonlinear elastic vibration effects [3]. Though,
strictly speaking, all these instruments are correctly mod-
elled as shells [4] (i.e., plates with some curvature), a flat
rectangular plate model is a fairly good starting point in
the first instance, and can serve as the basis for more de-
tailed instrument simulations. Such a model, as will be
shown, is straightforward to program, and yields many ef-
fects which are characteristic of strongly nonlinear systems,
including pitch glides, as well as an initial rapid buildup of
high-frequency components.

In Section 2, the basic dynamic equation of a thin non-
linear plate is presented, and in Section 3, a difference
scheme is developed. Particular attention is paid to the
problem of setting boundary conditions, as this can be prob-
lematic under free edge conditions, and a simple necessary
stability condition is presented, as well as a discussion of
computational costs. Numerical simulation results are pre-
sented in Section 4.

2. NONLINEAR PLATE MODELS

A model for nonlinear plate dynamics, suitable for vibration
of moderate amplitude of a thin plate (such as those which
occur in musical instruments such as gongs), is the so-called
dynamic analogue of the system of von Karman [5, 6]:

1
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Here w(x,y,t) is the transverse plate deflection, defined
over the rectangular region x € [0, L], y € [0, Ly] and for
time ¢ > 0. V2 is the Laplacian, and V2V? the biharmonic
operator. The stiffness parameter x? is defined by
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where E, h, p and v are Young’s modulus, plate thickness,
density and Poisson’s ratio, respectively for the plate (as-
sumed constant here). There are three extra linear terms
which, though they are not often encountered in the lit-
erature, are of special interest in musical applications: the
term involving the parameter ¢, with dimensions of velocity,
represents a contribution to the dynamics due to constant
applied tension, the term of coefficient o controls the gross
decay rate of plate oscillation, and that with coefficient
b1 allows for higher rates of loss at high frequencies (i.e.,
frequency-dependent damping). The function F' is related
to w, the plate deflection, by the so-called compatibility
equation,

VIVRE — fgL[w,w] )

where the action of the operator L[-,:] which appears in
both (1) and (2) is defined by
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Without the term in F, equation (1) is the equation
of motion of a linear plate of Kirchhoff type, accompanied
by the various axtra terms mentioned above, and can be
thought of the 2D generalization of the equation for a stiff
string or bar, such as that presented by Bensa et al. [7],
and related to that of Chaigne and Askenfelt [8] and Ruiz
[9]. The system of von Karman in polar coordinates has
been used for the analysis of cymbal vibrations by Touze
et al. [10], and it is worth noting that it is itself a simpli-
fied version of a more complex system for which in-plane
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displacements are not neglected [11, 12]. There also ex-
ists an even more simplified form due to Berger [13, 6], for
which the nonlinearity is modelled as an integral over the
state of the plate, and which can be thought of as an exten-
sion to 2D of string or bar models of the Kirchhoff-Carrier
type[14, 15]—such a model is undeniably much simpler to
analyze and program, but it does not capture perceptually
significant effects (though the important pitch-gliding effect
is indeed well-reproduced).

We also note that we will discuss only the initial value
problem in this paper (i.e., we model struck or “plucked”
plates, and not those driven by an external forcing function,
though it is straightforward to do so by adding an extra
term of the form f(xz,t) on the right-hand side of (1)).

2.1. Initial and Boundary Conditions

The second order time-dependent PDE (1) requires two ini-
tial conditions, i.e.,

ou
’LL(CL’7y70) Iuo(:c,y) E(xﬁ%o) =vo(x,y)
It also requires the specification of two conditions for w at
any boundary; in this paper, we consider boundary condi-
tions of the free type [4](as are most common in musical

instruments based on plate vibration, such as gongs):
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where 882 and 2 907 represents second spatial partial deriva-

tives in directions normal to and tangential to a given bound-
ary (in this case, rectangular).

Two boundary conditions for F' must also be supplied;
these can be written as

o*F  O°F

=0 (5)

It has been noted by Thomas et al. [16] that these condi-
tions can be reduced to simpler conditions of the form

oF

F = o 0 (6)
due, apparently, to the fact that F' is a potential function.
Note that only the second spatial derivatives of F' appear
in (1), so the dynamics are undisturbed under the addition
of any bilinear function in z and y to F'—such a bilinear
function may be used to obtain the simplified conditions
found above.

In the case of the rectangular plate under free boundary
conditions, it is also possible to show [5] that due to the
absence of so-called “corner forces,” it must also be true
that at any corner, ,
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This condition is of special importance with regard to a
finite difference approximation which takes a grid point at
the corner (see Section 3.4).

3. FINITE DIFFERENCE SCHEMES

Finite difference schemes for plate equations have a long
history, and are well summarized in the linear case by Szi-
lard [5]. Though in the industrial world, they have long
since been superseded by finite element methods, which are
ideal for modelling materials of complex geometry, it is true
that many percussion instruments are of a relatively simple
geometry, and can thus be dealt with rather elegantly in
regular coordinate systems using straightforward difference
methods. Though a simple finite difference scheme is pre-
sented here, it should be kept in mind that there are other
methods which are well-suited to simple geometric configu-
rations, most notably pseudospectral methods [17, 18]; such
methods were applied to the dynamic von Karman equa-
tions by Kirby et al. [12].

3.1. Grid Functions and Difference Operators

In order to solve (1) numerically, we can make use of a finite
difference approximation, first defining a grid function u;';
representing an approximation to a continuously variable
function wu(z,y,t) at coordinates x = A, y = jA, and
t = nT (u, in this case, stands for either of F' or w, the
two variables which must be approximated in Equations
(1) and (2)). Here, A is the grid spacing in the z and
y directions, respectively, and T is the time step (1/7 is
the sample rate). (It is possible to set different values of
A in the two coordinate directions, but for simplicity, it is
assumed that they are equal.)

Standard approximations to the first and second time
differential operators are given by
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The first and second operators above are centered and second-
order accurate; the third, a backward difference operator,
is first-order accurate. Second-order centered difference ap-
proximations to first and second derivatives in the x and y
directions are given by
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The mixed derivative, Laplacian and biharmonic operators
can be approximated by

82
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3.2. A Nonlinear Finite Difference Scheme

At this point, we may substitute the above operators for
their continuous time/space counterparts in (1) and (2), to
get the following explicit finite difference scheme:

6,5211) = 7525i6iw+025iw — 205tow+b15t,5_2,_w+ %L[F, w)
9)
with
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Now, the operator L[-, -] is defined in terms of its operation
on two grid functions a and 3 by
Llo, 8] = (6:0)(6,8) + (6,0 (629) — 2(8a08y0a) (8r00y0/9)
Difference equation (9) can be rewritten as an explicit
recursion in the grid function w;';, where an interior point

in the domain (we will define this presently) is updated
according to
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The updating of scheme (11) also requires access to Fy;.
But F}?; may be computed from previously calculated values
of w}; through (10); this, however, requires the inversion
of the operator §4d;, subject to boundary conditions on F'
(this will be discussed further in Section 3.4). As such, the
inversion of the biharmonic constitutes the most compu-
tationally costly step in the algorithm, which is otherwise
completely explicit.

Difference scheme (9) accompanied by (10) is formally
second order accurate in space and first-order accurate in
time, due to the use of the operator d;—, necessary in order
to obtain an explicit algorithm. Since the term involving
d¢— is in general a small perturbation, we do not expect
such a term to have a deleterious effect on accuracy as a
whole.

3.3. Stability

A full stability analysis of the above finite difference scheme
is complicated by the nonlinearity (though it may be pos-
sible to use energetic principles in order to derive a similar
scheme with global stability, as has been done in the case
of the nonlinear string [19]). As such, it it is important to
at least ensure stability for the linear problem (i.e., (9) in
the absence of the final nonlinear term). Through simple
von Neumann analysis [20, 21], it is possible to show that
such a condition can be phrased in terms of the time step
T and the grid spacing A by

A? > 20T 4 PT% 4+ /(201 T + 2T2)% + 16x2T2  (12)

In practice, for audio simulation, the time step T is fixed
by the sample rate, and thus A must be chosen so as not
to violate (12).

It is important to note that the finite difference scheme
(9) does become unstable under very large amplitude vi-
bration (i.e., when the amplitude of the vibration becomes
greater than the plate thickness). In effect, this instabil-
ity reflects the limited validity of the von Karman model
itself, which is intended to deal with moderately large am-
plitude vibration (which is indeed the case for most musical
instruments).

3.4. Boundary Conditions

Scheme (9) holds at interior points in the domain, i.e., those
which are located at least two grid points away from a
boundary. Updating scheme (9) at points near the bound-
ary requires access to so-called “image” points beyond the
boundary at the previous time step—the values at these
points may be set in the standard way, using approxima-
tions to (4) at grid points along the edge:

lw4viiw = 0 (13a)

Snolaw + (2 — V)dnodow = 0 (13b)

where again, n and s refer to coordinates normal to and
tangential to the boundary. Taking, for instance, a center

point on the western boundary of the plate, at location
1 =20, j (see Figure 1), these may be rewritten as

—v(wg j41 — 2wy ; +wg 1) (14a)
2’LU21J‘ - 2w7117] + ’LU;LJ‘ (14b)
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Referring to Figure 1, one may proceed as follows. First set
the values of points labelled A, through an application of
condition (14a). Then, in order to set the grid variables at
points B, note that boundary condition (14a) centered at
the corner implies that both é2w and 62w are zero at the
boundary, so that these values may be set using only values
of the grid function directly on the edge. In order set the
value at the point with coordinates ¢ = —1, j = 0, one may
write, then,

wzl,o = 2w8,0 - w?,o (15)
Once the values at points A and B have been set, the values
at points C may be then set through an application of the
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discrete boundary condition corresponding to (7), using the
discrete mixed derivative defined by (8). At the point with
coordinates i = —1, j = —1, one may then write

n n n n
woy,1=—witwy 1 +wg; (16)

Finally, one may then directly set the values at points D
through a direct application of (14b), which refers to inte-
rior points as well as values set at points A, B and C.

It is worth noting that although it is not necessary to
store grid variables at the image locations (normally, one
simply reflects their set values back into the interior, thus
modifying the behavior of any differential operator acing
in the vicinity of the boundary), it may be useful to do so
for debugging purposes, and also because explicit storage
of such values allows for an efficient application of 2D con-
volution in order to avoid specialized boundary schemes).

Solving for F}’; is a matter of writing a matrix equa-
tion for (10), and solving the linear system in terms of the
already computed vales of w;’;. As F}"; is assumed to be
zero on the boundaries, the problem is restricted to solving
for F}"; strictly in the interior. As the discrete biharmonic
difference operator requires access to points which are at
most two steps away in either the x or y directions, in or-
der to write its form subject to the boundary conditions,
a single layer of image points adjacent to the edge will be
necessary, and may be set in accord with the second con-
dition of Equation 6, e.g., one may write Fi'; = F”; ; at
points adjacent to the western boundary.

Y
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©®6 66
ONCHONEG)
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j=-1

Figure 1: Bottom left-hand corner of a computational grid.
Unlabelled circles represent interior grid points, and those
labelled A to D are image points required in order to update
scheme (9) in the interior.

It is important to mention that under free boundary
conditions, the plate is able to undergo rigid body motion;
though such motion is inaudible (if one takes the deflec-
tion of the plate at a given point as an audio output), it
leads to significant “DC” drift, which can be problematic
in fixed point arithmetic. A simple solution is to apply a
DC-blocking filter to the output soundfile (or a high-pass
filter), taking care not to remove any of the low-frequency
audible energy generated as subharmonics (which consti-

tute yet another interesting perceptual effect replicated un-
der this model).

3.5. Computational Considerations

The computational requirements for such a simulation de-
pend on the sample rate, plate dimensions, and material
parameters (primarily the stiffness). For a plate of dimen-
sions L, Ly, there will be approximately L,L,/A? grid
points to be updated each time step. If A has been cho-
sen at its minimum value according to (12) (and assuming,
for simplicity, that ¢ = by = 0), then the total number
of points will be LyL,/(4kT). The linear part of the up-
date (i.e., the difference scheme (11), without the nonlinear
term), requires approximately six multiplies per point, per
time step, giving a total operation count of 3L, L, /(2T?)
operations per second. Solving the nonlinear part, how-
ever, from (10), if implemented directly as a matrix multi-
ply (the inverse of the biharmonic may be computed offline
and stored) will require LiLi/(16/12T3) operations per sec-
ond, and is clearly the dominant factor. For a 0.5 m x 0.5
m steel plate, of thickness 0.005 m, and at a sample rate
of 44.1 kHz, approximately 6 billion operations per second
will be required—this is out of real time for most desktop
computers, but not by a large factor. Reducing the sample
rate, as well as the plate size can have a dramatic effect on
computational cost, as should be clear from the expression
given above. Also, given that the biharmonic difference
operator, as defined here, is extremely sparse, and has a
good deal of structure (e.g., it is nearly of Toeplitz-block-
Toeplitz form), faster methods for linear system solution,
perhaps based on the matrix inversion lemma [22] and the
FFT, should be applicable.

4. NUMERICAL RESULTS

The most musically important effect which distinguishes
this nonlinear plate model from a linear one is the gener-
ation of high-frequency components given an initial exci-
tation which does not possess them; such is the cause of
the characteristic “shimmer” or gong sounds, for instance.
As an illustration of this effect, we have run a simulation
of a steel plate (E = 2 x 10** N/m?, p = 7.86 x 10°
kg/m® v = 0.3), of thickness h = 0.005 m, and of di-
mensions L, = Ly, = 0.4 m. In order to best illustrate
the buildup of high-frequency components, the plate has
been excited by an initial velocity distribution in the form
of wo sin(nz/L,)? sin(my/Ly)?, which, although it only ap-
proximately satisfies the boundary conditions, is of simple
form and gives rise to primarily low-order components (at
least in the linear case). The sample rate is 44.1 kHz. In
Figure 2 are shown spectrograms of 1.0 s of the resulting
synthesis output (read from the plate center), under lin-
ear conditions (top panel), under a moderate velocity of
vo = 20 m/s and a high velocity of vg = 70 m/s. Notice
in particular, the frequency-dependent decay (due to the
term of coefficient b1 in (1)), and in the final plot, the rapid
buildup of harmonics in the initial 50 ms.

The characteristic buildup time of the upper partials is
perceptually relevant, and is captured by this simple nonlin-
ear plate model; in general, the larger the plate, the longer
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the buildup time. In Figure 3 are shown spectrograms of
the first 300 ms of synthetic sounds, generated under the
same conditions as the previous example, except for plate
size (0.5 m x 0.5 m in the left-hand panel, and 1.5 m x 1.5
m in the right-hand panel), and sample rate (18 kHz).

Frequency

Frequency

Frequency

0.5 0.6 0.7 0.8 0.9

Time

Figure 2: Spectrograms for synthetic struck plate sounds,
under linear conditions (top), low velocity striking (middle)
and high velocity striking (bottom,).

Another interesting phenomenon, that of downwards
pitch glide, is exhibited in the spectrogram shown in Figure
4. In this case, the plate is again made of steel, and is of
the same thickness is the same as in the previous examples,
but of dimensions 0.15 m x 0.15 m (chosen small so that
individual partials may be easily seen in spectral plots), and
is struck with an initial velocity distribution in the form of
a raised 2D cosine, of radius one-quarter of the plate side
length (in order provide initial energy immediately to the
upper partials). The sample rate is chosen as 44.1 kHz.
Under extreme initial velocity conditions (here, 350 m/s),
a noticeable pitch descent of perhaps a full tone is observed
in the upper partials over the first half second. It is diffi-
cult to determine the nature of the initial wavering of the
upper partials, but a good guess would be that these indi-
cate the onset of numerical stability (indeed, for velocities
higher than 350 m/s, the algorithm becomes unstable).
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Figure 3: Spectrograms for initial segments of synthetic
struck plate sounds, for small plate (left) and a large one
(right).

4
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Figure 4: Spectrogram for a synthetic struck plate sound,
showing initial wavering of partial frequencies, as well as
downward glides.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper, a simple finite difference scheme for sound
synthesis based on nonlinear plate vibration has been de-
scribed, and simulation results have been presented. Though
computationally intensive, the sounds generated are ex-
tremely rich, and the algorithm is able to replicate many
subtle effects, including initial pitch glides and upper har-
monic generation, which are not captured by simpler linear
models.

The main problems, in the opinion of this author, are
computational expense, and numerical stability issues. The
first of these concerns is of a fundamental nature, and is dif-
ficult to avoid—though there are certainly opportunities for
efficiency gains (by, say, fast linear system inversion tech-
niques mentioned in Section 3.5), any true simulation of a
complex physical system of this nature will be costly. It is
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perhaps better, then, to simply accept this cost, and wait
for future improvement in computational speeds. Numeri-
cal stability, for nonlinear systems such as the von Karman
plate, is a more delicate matter. Though, upon familiarizing
oneself with the algorithm presented here, one can develop
some intuition for conditions under which the algorithm
becomes unstable (relating mainly to the size of the initial
conditions), there is no general stability condition that can
be applied. To this end, a future direction of this author
will be towards the development of difference schemes for
plates via the energy method [23, 24], for which convenient
stability conditions may be expressed purely in terms of the
Courant number—this has been accomplished in the case
of nonlinear strings [19]. This would appear to be an im-
portant step that must be taken before an algorithm such
as this can be of use to a musician.

There are, of course, many different directions in which
the algorithm presented here can be generalized: to plates of
variable thickness (as is the case for gong-like instruments
with a raised central dome), to plates of circular geome-
try, and, most importantly, to nonlinear shells, in order to
capture the effects of curved gong rims, as well as cymbals.
Further important steps, namely the development of param-
eterized software modules and also specialized hardware are
also currently being undertaken.
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