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ABSTRACT

Dynamic time warping finds the optimal alignment of two time
series, but it is not suitable for on-line applications because it re-
quires complete knowledge of both series before the alignment can
be computed. Further, the quadratic time and space requirements
are limiting factors even for off-line systems. We present a novel
on-line time warping algorithm which has linear time and space
costs, and performs incremental alignment of two series as one is
received in real time. This algorithm is applied to the alignment of
audio signals in order to follow musical performances of arbitrary
length. Each frame of audio is represented by a positive spectral
difference vector, emphasising note onsets. The system was tested
on various test sets, including recordings of 22 pianists playing
music by Chopin, where the average alignment error was 59ms
(median 20ms). We demonstrate one application of the system:
the analysis and visualisation of musical expression in real time.

1. INTRODUCTION

Dynamic time warping (DTW) is a technique for aligning time
series which has been well known in the speech recognition com-
munity for three decades [1, 2] and has been applied successfully
to many other fields ranging from bioinformatics [3] to data min-
ing [4]. DTW has been superseded in speech research by hidden
Markov models (HMMs), a related method which uses training
data to learn optimal parameter settings.

The DTW algorithm has a time and space complexity which
is quadratic in the lengths of the sequences, and this limits its use-
fulness for matching long sequences. Although simple path con-
straints can be applied to create a linear time and space algorithm,
the resulting solutions are not guaranteed to be optimal with re-
spect to the given cost function. In practice, these solutions are
often closer to the desired solution, because they avoid the patho-
logical solutions which can arise as artifacts of imperfect cost func-
tions. However, the use of global path constraints assumes com-
plete knowledge of both sequences, which an on-line algorithm
does not have.

Although efficiency and real-time concerns of DTW have been
addressed [5], we do not know of any work in which the real-
time constraint involves a streamed sequence, so that the align-
ment must be calculated incrementally, in the forward direction,
while one of the sequences is not known in entirety. In section
3 we present our solution to this problem, an on-line time warp-
ing algorithm which is able to perform incremental alignment of
arbitrarily long sequences in real time.

One challenging application area for on-line time warping is
the alignment of audio streams for such tasks as interactive musi-
cal performance and visualisation of performance parameters. In

section 4, we demonstrate the on-line time warping algorithm in
an application for following a musical performance in real time,
in which a live performance of a piece of music is aligned to an
audio recording of the same piece. This application extracts, anal-
yses and displays parameters reflecting the expression in the per-
formance. Such a system could be used in a concert setting for
enhancing the listening experience, or in teaching or rehearsal for
providing feedback to the performer.

2. DYNAMIC TIME WARPING

Before presenting our on-line time warping algorithm, we briefly
review the standard DTW algorithm, in order to introduce notation
and draw attention to some important design choices. A tutorial
presentation of DTW can be found in [6]. We present the algo-
rithms in their most general forms in sections 2 and 3, and then
in section 4 we apply the on-line algorithm to the specific task of
real-time audio alignment.

DTW aligns time seriesU = u1, ..., um andV = v1, ..., vn

by finding a minimum cost pathW = W1, ..., Wl, where each
Wk is an ordered pair(ik, jk), such that(i, j) ∈ W means that
the pointsui andvj are aligned. The alignment is assessed with
respect to a local cost functiondU,V (i, j), usually represented as
an m × n matrix, which assigns a match cost for aligning each
pair (ui, vj). The cost is 0 for a perfect match, and is otherwise
positive. The path costD(W ) is the sum of the local match costs
along the path:

D(W ) =

lX
k=1

dU,V (ik, jk) (1)

Several constraints are placed onW , namely that the path is
bounded by the ends of both sequences, and it is monotonic and
continuous. Formally:

Bounds: W1 = (1, 1)
Wl = (m, n)

Monotonicity: ik+1 ≥ ik for all k ∈ [1, m− 1]
jk+1 ≥ jk for all k ∈ [1, n− 1]

Continuity: ik+1 ≤ ik + 1 for all k ∈ [1, m− 1]
jk+1 ≤ jk + 1 for all k ∈ [1, n− 1]

Other local path constraints are also common, which alter the
monotonicity and continuity constraints to allow increments of up
to two or three steps in either direction and/or require a minimum
of at least one step in each direction. Additionally, global path
constraints are often used, such as the Sakoe-Chiba bound [7],
which constrains the path to lie within a fixed distance of the di-
agonal (typically 10% of the total length of the time series), or the
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Itakura parallelogram [1], which bounds the path with a parallelo-
gram whose long diagonal coincides with the diagonal of the cost
matrix. By limiting the slope of the path, either globally or lo-
cally, these constraints prevent pathological solutions and reduce
the search space.

The minimum cost path can be calculated in quadratic time by
dynamic programming, using the recursion:

D(i, j) = d(i, j) + min

8<: D(i, j − 1)
D(i− 1, j)
D(i− 1, j − 1)

9=; (2)

whereD(i, j) is the cost of the minimum cost path from(1, 1)
to (i, j), andD(1, 1) = d(1, 1). The path itself is obtained by
tracing the recursion backwards fromD(m, n).

Some formulations introduce various biases in addition to the
slope constraints, by multiplyingd(i, j) by a weight which is de-
pendent on the direction of the movement. In fact, the above for-
mulation is biased towards diagonal steps: the greater the number
of diagonal steps, the shorter the total path length [8, p.177]. We
follow Sakoe and Chiba [7] in using a weight of 2 for diagonal
steps so that there is no bias for any particular direction:

D(i, j) = min

8<: D(i, j − 1) + d(i, j)
D(i− 1, j) + d(i, j)
D(i− 1, j − 1) + 2d(i, j)

9=; (3)

3. ON-LINE TIME WARPING

The quadratic time and space cost is often cited as a limiting fac-
tor for the use of DTW with long sequences, but the widely used
global path constraints can be trivially modified to create a linear
time and space algorithm. For instance, if the width of the Sakoe-
Chiba bound is set to a constant rather than a fraction of the total
length, the number of calculations becomes linear in the length
of the sequences. The danger with this approach is that it is not
known how close to the diagonal the optimal solution is, so the
desired solution might be excluded by a band around the diagonal
which is too narrow.

However, in the case of on-line alignment of a known time se-
ries with a partially unknown series, several changes must be made
to the DTW algorithm. In standard DTW, the lengths of the se-
quences provide one of the boundary conditions for the search; in
the on-line case, this boundary condition must be estimated along
with the optimal path. A consequence of this is that the diagonal
of the cost matrix is unknown, so the global path constraints can-
not be directly implemented. Another change is that we require an
incremental solution, so the minimum cost path must be calculated
in the forward direction. Further, in order to run in real time with
arbitrarily long series, the complete algorithm must be linear in the
length of the series, so that the incremental step is bounded by a
constant.

Using the notation from section 2, supposeU is the partially
unknown sequence. Then at each timet (measured in integer units
corresponding to the indices ofU ), we seek the best alignment of
the sequenceu1, ..., ut to some initial subsequence ofV . Our so-
lution fulfilling the above conditions is the on-line time warping
algorithm given in Figure 1. It has one parameter,c, which de-
termines the width of the search band. The variablest andj are
pointers to the current positions in seriesU andV respectively,
which are initialised to point to the start of each series.

The main loop of the algorithm calculates a partial row or col-
umn of the path cost matrix. The calculation of the path cost uses
the standard DTW recursion formula, restricted to use only the ma-
trix entries which have already been calculated. The path cost is
normalised by the path length, so that paths of varying lengths can
be compared in the functionGetInc. The number of cells calcu-
lated is given by the parameterc. If a new row is being calculated,
the row number is incremented, and the cells in the lastc columns
up to and including the current column are calculated. Figure 2
illustrates a sequence of row and column calculations.

The functionGetInc selects whether to calculate a row, col-
umn, or both. If less thanc elements of each series have been
processed, new rows and columns are alternately calculated (Fig-
ure 2, steps 1–7). If one sequence has been incremented succes-
sively MaxRunCount times, the other sequence is incremented

ALGORITHM On-Line Time Warping
t := 1; j := 1
previous := None
INPUT u(t)
EvaluatePathCost(t,j)
LOOP

IF GetInc(t,j) != Column
t := t + 1
INPUT u(t)
FOR k := j - c + 1 TO j

IF k > 0
EvaluatePathCost(t,k)

IF GetInc(t,j) != Row
j := j + 1
FOR k := t - c + 1 TO t

IF k > 0
EvaluatePathCost(k,j)

IF GetInc(t,j) == previous
runCount := runCount + 1

ELSE
runCount := 1

IF GetInc(t,j) != Both
previous := GetInc(t,j)

END LOOP

FUNCTION GetInc(t,j)
IF (t < c)

return Both
IF runCount > MaxRunCount

IF previous == Row
return Column

ELSE
return Row

(x,y) := argmin(pathCost(k,l)), where
(k == t) or (l == j)

IF x < t
return Row

ELSE IF y < j
return Column

ELSE
return Both

Figure 1:The on-line time warping algorithm. See text for expla-
nations.

93 - DAFx'05 Proceedings - 93



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

1 2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18 19

20

21

Figure 2:An example of the on-line time warping algorithm with
search windowc = 4, showing the order of evaluation for a partic-
ular sequence of row and column increments. The axes represent
the variablest and j (see Figure 1) respectively. All calculated
cells are framed in bold, and the optimal path is coloured grey.

(step 12). Otherwise the minimum path cost for each cell in the
current row and column is found. If this occurs in the current po-
sition (t, j), then both the row and column counts are incremented
(e.g., steps 20–21); if it occurs elsewhere in rowj, then the row
count is incremented (e.g., step 10), otherwise the column count
t is incremented (e.g., step 19). This enables dynamic tracking of
the minimum cost path using a small fixed width band around a
varying “diagonal”.

Since the on-line time warping algorithm cannot look into the
future, its alignment path must be calculated in the forward direc-
tion. In the algorithm above, the functionGetInc calculates the
current optimal path as ending at the point(x, y), which we call
the current alignment point. Now, if thekth alignment point is
(xk, yk), there is no way of knowing if this point will lie on the
optimal path fork′ > k. Further, there is no guarantee of continu-
ity between the paths of lengthk− 1 andk, nor in the sequence of
alignment points(x1, y1), (x2, y2), ..., (xk, yk).

Two approaches can be taken to address this problem. First, if
the application allows a certain amount of latency, then the choice
of alignment points can be based on a limited view into the fu-
ture. That is, for path lengthk + δ, we output the point(x′k, y′k),
the kth point on the optimal path to(xk+δ, yk+δ), which might
be different to the point(xk, yk) calculated for path lengthk. For
increasing values ofδ, the path becomes increasingly smooth and
closer to the global optimum computed by the reverse path algo-
rithm of DTW. The second approach applies smoothing directly to
the sequence of alignment points. This requires no future informa-
tion, but it still builds an effective latency into the system. (If the
smoothing function is interpreted as a filter, the latency is equal to
its group delay.) In the system described in section 4, neither ap-
proach was deemed necessary, since if the forward path estimation
is correct, no retrospective adjustment of the path is necessary, and
the path consisting of the current alignment points is continuous.

3.1. Efficiency and Correctness

For each new row or column, the on-line time warping algorithm
calculates up toc cells and makes less than2c + MaxRunCount
comparisons. We are specifically interested in the behaviour with
respect to the arrival of a new elementut. As long as the slope of
the sequence of increments is bounded (i.e. byMaxRunCount),
then the number of calculations to be performed for each timet is
bounded by a constant.

The correctness of the algorithm (in terms of finding the glob-
ally minimal path) cannot be guaranteed without calculating the
complete distance matrix. Thus, any path constraint immediately
denies this sense of optimality, but as stated previously, minimum
cost paths with large singularities are usually undesired artifacts
of an imperfect cost function. For each incoming data pointut,
the minimum cost path calculated at timet is the same as that
calculated by DTW, assuming the same path constraints. The ad-
vantage of the on-line algorithm is that the centre of the search
band is adaptively adjusted to follow the best match, which allows
a smaller search band than the standard bands around a fixed diag-
onal.

4. TRACKING OF MUSICAL EXPRESSION

In music performance, high level information such as structure
and emotion is communicated by the performer through a range
of different parameters, such as tempo, dynamics, articulation and
vibrato. These parameters vary within a musical piece, between
musical pieces and between performers. An important step to-
wards modelling of this phenomenon is the measurement of the
expression parameters in human musical performance, which is a
far from trivial task [9, 10]. Since we do not anticipate that the
great musicians would perform with sensors attached to their fin-
gers or instruments (!), we wish to extract this information directly
from the audio signal.

State of the art audio analysis algorithms are unable to reliably
extract precise performance information, so a hand-correction step
is often employed to complement the automatic steps. This step
is labour intensive, error-prone, and only suitable for off-line pro-
cessing, so we propose using automatic alignment of different per-
formances of the same piece of music as a key step in extracting
performance parameters. In the off-line case, automatic alignment
enables comparative studies of musical interpretation directly from
audio recordings [11]. If one performance is already matched to
the score, it can then be used as a reference piece for the extrac-
tion of absolute measurements from other performances. Further,
one could synthesise a performance directly from the score, and
avoid the initial manual matching of score and performance en-
tirely. Of particular interest in this paper is the on-line case, the
live tracking and visualisation of expressive parameters during a
performance. This could be used to complement the listening ex-
perience of concert-goers, to provide feedback to teachers and stu-
dents, and to implement interactive performance and automatic ac-
companiment systems. In this section we describe the implemen-
tation of a real-time performance alignment system using on-line
time warping, concluding with an example of an application for
tracking and visualising musical expression.

4.1. Cost Function

The alignment of audio files is based on a cost function which as-
sesses the similarity of frames of audio data. We use a low level
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spectral representation of the audio data, generated from a win-
dowed FFT of the signal. A Hamming window with a default size
of 46ms (2048 points) is used, with a hop size of 20ms. The spec-
tral representation was chosen over a higher level symbolic repre-
sentation of the music in order to avoid a pitch recognition step,
which is notoriously unreliable in the case of polyphonic music.
The frequency axis was mapped to a scale which is linear at low
frequencies and logarithmic at high frequencies. This achieved
a significant data reduction without loss of useful information, at
the same time mimicking the linear-log frequency sensitivity of
the human auditory system. The lowest 34 FFT bins (up to 370Hz,
or F]4) were mapped linearly to the first 34 elements of the new
scale. The bins from 370Hz – 12.5kHz were mapped onto a log-
arithmic scale with semitone spacing by summing energy in each
bin into the nearest semitone element. Finally, the remaining bins
above 12.5kHz (G9) were summed into the last element of the new
scale. The resulting vector contained a total of 84 points instead of
the original 2048.

The most important factor for alignment is the timing of the
onsets of tones. The subsequent evolution of the tone gives little
information about the timing and is difficult to align using energy
features, which change relatively slowly over time within a note.
Therefore the final audio frame representation uses a half-wave
rectified first order difference, so that only the increases in energy
in each frequency bin are taken into account, and these positive
spectral difference vectors are compared using the Euclidean dis-
tance:

d(i, j) =

vuut 84X
b=1

(E′
u(b, i)− E′

v(b, j))2 (4)

whereE′
x(f, t) represents the increase in energyEx(f, t) of the

signalx(t) in frequency binf at time framet:

E′
x(f, t) = max(Ex(f, t)− Ex(f, t− 1), 0) (5)

4.2. Implementation Details

For performance alignment, the slope of the path represents the
relative tempo of the two pieces. Since musical performances are
not arbitrarily fast, it is reasonable to constrain the slope to a range
between1

3
and 3(MaxRunCount = 3), which allows for large

but not arbitrary differences in tempo. The on-line time warping
algorithm uses a search width of 10 seconds (c = 500 frames). This
is much larger than any error we have encountered in testing, but
it still runs comfortably in real time on a 3GHz PC. The software
is implemented in Java, and in off-line tests with the above pa-
rameters it aligned each minute of music in about 5 seconds. The
software can be downloaded from:

http://www.ofai.at/˜simon.dixon/match

4.3. Quantitative Evaluation

It is not possible to perform quantitative testing on a live perfor-
mance without a reference alignment, so we present quantitative
results from off-line tests; the results would be the same with live
data. While there is an almost endless supply of professional mu-
sical recordings, it is extremely rare to find precise measurements
of every played note, which is what we require to assess the accu-
racy of the alignment. Since manual labelling of a large corpus of
music is neither feasible nor accurate, we chose a moderately sized
database of piano recordings which were made on a grand piano

Error≤ Cumulative error counts
Frames Seconds On-line Off-line

Notes Percent Notes Percent
0 0.00 18774 22.4% 38655 46.1%
1 0.02 45822 54.7% 72934 87.1%
2 0.04 61019 72.8% 79126 94.5%
3 0.06 68380 81.6% 80540 96.2%
5 0.10 74325 88.7% 81343 97.1%
10 0.20 79001 94.3% 82325 98.3%
25 0.50 82486 98.5% 83292 99.4%
50 1.00 83581 99.8% 83658 99.9%

Table 1: Results for pairwise alignment of 22 performances of 2
Chopin piano pieces, shown as cumulative counts and percentages
of notes with an error up to the given value (see text).

(Bösendorfer SE290) fitted with infrared sensors which measure
precisely the times and velocities of all notes, so that we had audio
recordings, discrete measurements of each note and the musical
score. The recordings consist of 22 pianists playing 2 excerpts
of solo piano music by Chopin (Etude in E Major, Op.10, no.3,
bars 1–21; and Ballade Op.38, bars 1–45) [12]. The pianists were
students or professors at the Vienna Music University. The Etude
performances ranged from 70.1 to 94.4 seconds duration, and the
Ballade ranged from 112.2 to 151.5 seconds. Such significant dif-
ferences in tempo would not be compatible with the use of global
path constraints.

The results were calculated as follows. For each chord (set of
simultaneous notes according to the musical notation), the aver-
age onset time was calculated, and the corresponding chords in the
two performances were aligned using the symbolic data. This gave
a set of points through which the time warping path should pass.
The error for each point was calculated as the Manhattan distance
(sum of horizontal and vertical displacements) of the nearest point
on the time warping path. In Table 1, we show the error counts for
errors less than or equal to 0,1,2,3,5,10,25 and 50 frames across
the 462 (= 2 × 22×21

2
) pairs of performances. For comparison,

the results using the off-line version of the algorithm are included
in the table [11]. The average error was 59ms for the on-line algo-
rithm and 23ms for the off-line version; the worst errors were 3.16s
(on-line) and 2.82s (off-line). The off-line algorithm performs bet-
ter because it has the advantage of knowing the future evolution of
the signal when calculating the alignment at a given point. These
results are comparable with human ability: the human temporal
order threshold (the ability to distinguish the order of two sounds
occurring closely in time) is approximately 40ms, and can be much
worse in the context of annotating musical recordings [13]. Fur-
ther test results for the off-line system are presented in [11].

4.4. Live Visualisation of Musical Expression

One application of the alignment algorithm is to provide live anal-
ysis of expression in musical performance. At the conference we
can demonstrate the system tracking tempo and dynamics in a live
performance and displaying the data with an animation designed
by musicologists for off-line performance visualisation [14], as
shown in Figure 3. This system could be used in a concert setting,
for enhancing the audience’s understanding of the musician’s in-
terpretation of the music, in comparative studies of interpretation,
or in teaching or private rehearsal.
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Figure 3: The Performance Worm is an animation of some of the
expressive parameters of a musical performance. The position of
the head of the worm gives the current tempo (horizontal axis)
and loudness level (vertical axis). The figure shows the display at
bar 30 of Rachmaninov’s Prelude op.23 no.6 played by Vladimir
Ashkenazy.

5. DISCUSSION AND CONCLUSION

We presented a new on-line time warping algorithm, which aligns
a sequence arriving in real time with a stored sequence of arbitrary
length. DTW finds a path through a cost matrix which is optimal
with respect to the sum of the match costs along the path. We
modified the DTW algorithm to calculate the optimal path incre-
mentally in real time as one of the sequences is received. We are
not aware of any other time warping algorithm which has these
properties; some similar ideas are found in the overlap matching
algorithm outlined in [3, pp. 26–27] and the longest common sub-
sequence dynamic programming method used in [15]. At each
time frame, the calculated path is optimal with respect to the data
computed up to that time, but this might not correspond to the op-
timal path calculated by an off-line algorithm with full knowledge
of both sequences.

The on-line time warping algorithm was used in implement-
ing a musical performance alignment system. Tests with several
hundred pairs of performances of two piano pieces confirmed that
the method is suitable for this type of real-time application.

The performance alignment system uses a low-level represen-
tation for music. An alternative would be to use a pitch extraction
algorithm to enable matching to be performed on the level of musi-
cal symbols. However, pitch extraction for polyphonic music (and
particularly for multiple instruments) is still too unreliable in this
context, and large errors would occur when notes were missed.
Also, the main advantage of a high-level representation is that it
affords a data reduction of several orders of magnitude, but we
have shown that it is possible to write an efficient time warping
system based on a low level representation.

The cost function was based on derivative spectral features,
in order to emphasise tone onsets. Derivative features have been
used in speech recognition [7], are advocated generally by Keogh
and Pazzani [16], and they have been used in score following [17].
Other authors propose the use of a chromogram [18], which re-
duces the frequency scale to twelve pitch classes, independent of
octave. This might be suitable for retrieval by similarity, where
absolute identity of matching musical pieces is not assumed, and
a large number of comparisons must be performed in a short time,

but it discards much more information than is necessary for real-
time alignment. Whether this results in a loss of accuracy remains
to be shown. Other features such as Mel frequency cepstral coef-
ficients (MFCCs) are often used in speech and audio research, but
they capture the spectral shape (reflecting the timbre of the instru-
ment) rather than the pitch (reflecting the notes that were played).

In the music field, DTW has been used for score-performance
alignment [17, 19, 20] and query by humming applications [21, 22]
which do not use on-line algorithms. The earliest score following
systems used dynamic programming [15], based on a high-level
symbolic representation of the performance which was only us-
able with monophonic audio. Alternative approaches use hidden
Markov models [23, 24] and hybrid graphical models [25], which
both require training data for each piece. The test data used in this
paper is somewhat exceptional; in general, we will not have access
to multiple labelled performances.

The test results gave an average accuracy of 59ms (median
20ms), which is sufficient for most purposes. The largest errors oc-
curred at the beginnings of the pieces, where there is not yet suffi-
cient data for alignment, and at phrase boundaries, where there are
large variations in tempo (i.e., discontinuities in timing). The for-
ward path calculation produces a path that is less smooth than that
produced by DTW. However, experiments with smoothing (e.g.,
using a least squares fit) did not increase the accuracy at the note
level, since most of the unsmoothness occurs between note onsets,
and thus is irrelevant to the assessment of accuracy, which only
considers note onset times.

The test recordings were all made under consistent recording
conditions (same piano, microphone and room), making alignment
easier. Further tests have been performed recently, using other
pieces, recording conditions and instruments (including orchestral
and popular music). The alignment was successful in over 99% of
test cases, but the errors were higher (median error 80ms for the
on-line algorithm, compared with 20ms for the off-line version)
[11].

One limitation of the on-line alignment algorithm is that it
does not allow for structural differences, such as insertions, dele-
tions or repetitions of sections or phrases. These changes would go
beyond the boundaries of the search window in the current imple-
mentation. A possible solution would be to implement a method
for dealing with alternate paths, such as directed networks [8, ch.
10], but this would not function within the current real-time con-
straints without limiting the lengths of pieces and reducing the tim-
ing resolution.

The alignment system can be used off-line for relative compar-
isons of performance interpretation, using unlabelled audio record-
ings. One application is a media player plug-in which, given a po-
sition in one audio file, automatically finds the corresponding po-
sition in other audio files of the same piece of music [11]. Such an
innovation would be welcomed by music performance researchers
and classical music lovers.

Another application is an automatic accompaniment system.
In the case where no score is available but an audio file exists with
the soloist and accompaniment on separate tracks (which would
be easy for record companies to produce), alignment could be per-
formed on the solo track while the accompaniment track could be
played back with corresponding accommodation of the dynamic
and timing changes of the soloist. One possible scenario is a vir-
tual karaoke system, such as in [26]. Currently planned extensions
to this work include a score following system and a range of visu-
alisation tools for use in concerts, teaching and private rehearsal.
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