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ABSTRACT

This paper addresses the link between the size of the dictionary
in overcomplete decompositions of signals and the rate-distortion
properties when such decompositions are used for audio coding.
We have performed several experiments with sets of nested dictio-
naries showing that very redundant shift-invariant and multi-scale
dictionaries have a clear benefit at low bit-rates ; however for very
low distortion a lot of atoms have to be encoded, in these cases
orthogonal transforms such as the MDCT give better results.

1. INTRODUCTION

In the past few years, research has been very active in the area of
sparse signal representation in overcomplete dictionaries [1, 2, 3].
These techniques have been found to give successful results for
a lot of signal processing problems, including source separation,
denoising, detection, classification and compression.

Coding is one of the great application of interest, in particular
very low bit-rate image coding (see for ex. the work from EPFL
signal processing institute [4]). However, comparable work for the
compression of audio signals is quite limited. Matching-pursuit
[1] based techniques are used for sinusoidal modeling of audio
signals and parametric audio coding in e.g. [5, 6], but the analysis-
synthesis is performed on a frame-by-frame basis and thus does
not exploit the long-term structure of audio signals. Other works,
including [7] consider an audio signal as a whole and represent it
using an overcomplete dictionary composed by cosine and wavelet
functions, exploiting the structure of the coefficients; however, the
described hybrid audio coder is rudimentary, and relies only on a
weakly redundant dictionary.

In this paper, we also perform a global analysis of the signal,
using a matching-pursuit based algorithm, and study the perfor-
mance of a coder based on such sparse representation techniques.
Particularly, we investigate the link between the degree of redun-
dancy of the dictionary and the Rate-Distortion (R-D) performance
of the coder. This is done by using nested dictionaries, with dif-
ferent nesting strategies, and studying the obtained rate-distortion
curves on various artificial and natural signals.

The remaining of the paper is as follows: in section 2, we
present sparse approximation techniques and how they relate to
coding; in section 3, we describe our audio coder; and finally in
section 4, we present experiments and results.

2. AUDIO CODING AND SPARSE REPRESENTATIONS

A signal x ∈ <N is decomposed as a weighted sum of functions
gγ ∈ <N which form the set of functions D = {gγ , γ ∈ Γ}.

x =
X
γ∈Γ

αγgγ (1)

The ensemble D is called a dictionary and the functions gγ are
called atoms. The representation is exact-sparse (resp. approximate-
sparse) if a large number of the coefficients αγ are zeros (resp. ap-
proximately zeros) i.e. the energy of the signal is concentrated on
a small number of coefficients.

In the case when D has the same dimension as the signal and
the functions gγ form an orthogonal base of <N , the decomposi-
tion is unique and equivalent to an orthogonal transform. In state-
of-the-art audio coders (e.g. AAC, [8]), an orthogonal transform
based on local cosine functions is used, the Modified Discrete Co-
sine Transform (MDCT). The atoms corresponding to the MDCT
transform of a signal of length N = PL and a frame size of 2L,
are defined as:
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with n = 0, .., N − 1, k = 0, .., L− 1 and p = 0, .., P − 1. w is
a window which is complementary in energy i.e. verifies:

w2(n) + w2(n + L) = 1, n = 0, .., L− 1 (3)

However, when the dimension of D is superior to the dimen-
sion of the signal, i.e. when the dictionary is overcomplete, the
decomposition is not unique anymore. Hence, one can choose
amongst all these decompositions one which is optimal or nearly-
optimal with respect to some pre-defined criteria. Several algo-
rithms with different complexities have been proposed in the lit-
terature to find such decompositions (see e.g. [1, 2, 3]). We use
in our case the matching pursuit algorithm [1], which is a fast sub-
optimal iterative algorithm. At each iteration, Matching Pursuit
chooses the atom in the dictionary most correlated with the signal,
subtracts it, and iterates until some stopping condition is met.

A drawback of the MDCT for the representation of audio is
that it does not carry explicitly phase information. Alternatively,
one can use the Modulated Complex Lapped Transform (MCLT
[9]), which is a complex extension of the MDCT that has the pro-
priety of phase-invariance [10], at the cost of a 2× increase in the
number of (real) coefficients (i.e. a 2× overcompleteness). In this
case, both atoms and coefficients are complex ; consequently the
standard matching pursuit cannot be used; instead, we use a two-
dimensional matching pursuit using the projection of the signal in
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the subspace composed by the complex atoms and their conjugates
as described in [11].

There are two ways to further increase the redundancy of our
dictionary. First, we use a generalized MDCT/MCLT transform
where the resolution in frequency is increased. Second, we also
use overcomplete dictionaries composed by an union of several
transforms with different frame sizes. In a given experiment, in
order to ensure a meaningful comparison on the influence of the
redundancy factor on the R-D performance, we ensure that the dic-
tionaries are always nested, i.e. lowest-redundant dictionaries are
always included in highest-redundant ones.

3. OVERVIEW OF OUR AUDIO CODER

3.1. Analysis

We have used a fast implementation of the matching pursuit al-
gorithm : the Matching Pursuit ToolKit (MPTK [12]). Thirteen
dictionaries are tested: standard MDCT with a frame size of 2048
samples, standard MCLT with a frame size of 2048, four dictionar-
ies composed by a generalized MCLT with a frame size of 2048
and a FFT size of respectively 4096, 6144 and 8192 frequency
bins; seven dictionaries composed by a union of respectively 2,..,8
standard MDCT with frame sizes 128, 256, 512,1024, 2048, 4096,
8192,16384 samples.

3.2. Quantization and entropy coding

For real coefficients (MDCT), the DPCM-based quantization sche-
me as described in [13] is used. For complex coefficients (MCLT),
an extended version of this scheme which quantizes the phase with
Unrestricted Polar Quantization (UPQ, [14]) is used.

Adaptive arithmetic coding [15] is used to encode the output of
the quantizers and the indexes of the coefficients in the dictionary.

4. EXPERIMENTAL RESULTS

We compare the Rate-Distortion (R-D) curves for different sets of
dictionaries (for each figure, Rate is in Kbps and Distortion in dB).
First we compare the standard MDCT with the standard MCLT;
then, we study the influence of the frequency resolution for a gen-
eralized MCLT; and finally, several dictionaries using a concate-
nation of MDCT with different scales are tested. The signals used
for the experiments are: a white noise; a synthetic signal of bell
composed by a sum of damped sinusoids; and a real signal of a
pop music recording (from MPEG SQAM test database).

4.1. MDCT vs. MCLT

The first idea is to use the MCLT which can be seen as a 2× over-
complete dictionary. This redundant dictionary needs fewer atoms
than the orthogonal MDCT to reach the same target SNR; and thus
it needs fewer bits to code the indexes and the norm of the coeffi-
cients. However, with the MCLT, there is an additional number of
bits needed to code the phase information where the MDCT needs
only one bit for the sign of each coefficient. Consequently, the ad-
ditional number of bits needed by the phase counterbalances the
bits gained by the smaller number of atoms; and thus, depending
on the number of atoms selected by the coder (and thus the target
bit rate), the MCLT gives better or worse distortion-rate perfor-
mance than the MDCT.

Figures 1 to 3 compare the R-D curves for the MDCT and
the MCLT obtained with the three test signals. As expected, the
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Figure 1: R-D curve for white noise: MDCT vs MCLT (x: rate in
Kbps; y: distortion in dB).
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Figure 2: R-D curve for synthetic bell signal: MDCT vs. MCLT
(x: rate in Kbps; y: distortion in dB).
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Figure 3: R-D curve for pop music: MDCT vs. MCLT (x: rate in
Kbps; y: distortion in dB).
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MDCT performs better at high rates whereas the MCLT gives bet-
ter performance at low rates (this crossover would appear on fig.
2 at a highest rate than displayed; this is due to the fact that this
signal is very tonal by nature).

4.2. Influence of frequency oversampling for the MCLT

The second idea is to increase the redundancy of the MCLT dictio-
nary by increasing the size of the FFT i.e. increasing the precision
for the frequency localization of the atoms. In the following fig-
ures, the standard MCLT uses the same size for the FFT and the
frame, 2048 samples. For the generalized MCLT, the FFT is zero-
padded using respectively 4096, 6144 and 8192 samples resulting
a degree of redundancy of respectively 4, 6, 8.

By doing that, we hope to better estimate the sinusoidal com-
ponents of the signal. As an audio signal can be modeled simply
by a sum of sinusoids, such dictionaries should give better rate-
distortion performance. However, the following figures show that
the gain due to the better representation is lost due to the increased
number of bits needed to code the indexes. And thus, for any rates,
a simple MCLT performs better than the generalized MCLT.

4.3. Influence of the scale for the MDCT

The last idea is to use an overcomplete dictionary composed by
a concatenation of several MDCT with different scales. The size
of the frames are 128, 256, 512, 1024, 2048, 4096, 8192, 16384
samples. The nested dictionaries are obtained by adding one scale
alternatively higher and lower, i.e.
D1 = {mdct(2048)},
D2 = {mdct(1024)}

S
{mdct(2048)},

D3 = {mdct(1024)}
S
{mdct(2048)}

S
{mdct(4096)}, etc.

Figs. 7 to 9 show the R-D curves obtained with the three test
signals. These show that at high rate MDCT gives better rate-
distortion performance whereas at low rate the most redundant dic-
tionary performs better. However, it also shows there is no com-
promise between an orthogonal transform and a highly redundant
dictionary at mid rate.

5. CONCLUSIONS

This study attempts at clarifying the role of overcompleteness in
sparse representations of audio signals, in the framework of au-
dio coding. We have shown that, at high bitrates, the orthogo-
nal MDCT is always better in terms of rate-distortion. However,
at low bitrates, introducing redundancy improves the R-D perfor-
mance. Indeed, one can see parametric coders (or more generally
sinusoidal models) as very redundant systems with strong signal
priors. Furthermore, our findings suggest that increasing the num-
ber of scales in the dictionary is a more efficient strategy than in-
creasing the precision of the frequency (e.g. with zero-padding).

In order to broaden these conclusions, these preliminary tests
have now to be conducted on a much wider variety of sounds: al-
though general trends are usually similar, details of the R-D be-
havior is very signal-dependent. Furthermore, it would be desir-
able to use perceptual measures of distortion instead of the simple
quadratic error. Indeed, at crossover points when the MDCT wins
over redundant transforms the SNR usually reaches around 30-40
dB, which is the same order of magnitude as the SNR of MDCT-
based coders operating at “transparent” qualities. Through such
studies, our ultimate goal is to offer a single paradigm for audio
coding, encompassing transform and parametric coding.
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Figure 4: R-D curve for white noise: influence of the frequency
resolution for the MCLT (x: rate in Kbps; y: distortion in dB).
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Figure 5: R-D curve for synthetic bell signal: influence of the fre-
quency resolution for the MCLT (x: rate in Kbps; y: distortion in
dB).
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Figure 6: R-D curve for pop music: influence of the frequency
resolution for the MCLT (x: rate in Kbps; y: distortion in dB).
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Figure 7: R-D curve for white noise: influence of the scale for the
MDCT (x: rate in Kbps; y: distortion in dB).
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Figure 8: R-D curve for synthetic bell signal: influence of the scale
for the MDCT (x: rate in Kbps; y: distortion in dB).

Figure 9: R-D curve for pop music: influence of the scale for the
MDCT (x: rate in Kbps; y: distortion in dB).
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