Proc. of the 9™ Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

USING FAUST FOR FPGA PROGRAMMING

Robert Trausmuth, Christian Dusek

Dept. of Computer Engineering
University of Applied Science
Wiener Neustadt, Austria
trausmuth@fhwn.ac.at

ABSTRACT

In this paper we show the possibility of using FAUST (a program-
ming language for function based block oriented programming) to
create a fast audio processor in a single chip FPGA environment.
The produced VHDL code is embedded in the on-chip processor
system and utilizes the FPGA fabric for parallel processing.

For the purpose of implementing and testing the code a com-
plete System-On-Chip framework has been created. We use a Dig-
ilent board with a XILINX Virtex 2 Pro FPGA. The chip has a
PowerPC 405 core and the framework uses the on chip peripheral
bus to interface the core.

The content of this paper presents a proof-of-concept imple-
mentation using a simple two pole IIR filter. The produced code
is working, although more work has to be done for implementing
complex arithmetic operations support.

1. INTRODUCTION

Modern FPGAs (Field Programmable Gate Arrays) allow the sys-
tem engineer to design full systems in one chip by defining the
desired logical functionality of the chip using a hardware descrip-
tion language. The inherent parallelism of the FPGA logic can be
of advantage once it comes to heavy calculation tasks or to prob-
lems which use many parallel processes. Our motivation for this
project was to create a system on chip design tool which can be
used for audio signal processing. Although there are commercial
products available, this implementation is part of an open source
project and thus can be used and developed further by interested
partners.

To ease the programming task we chose the Functional AUdio
STream programming language FAUST, developed at GRAME
Centre National de Creation Musicale, Lyon, France. This lan-
guage is based on a block-diagram algebra [1]]. All program ele-
ments are described as building blocks, the final system consists
of a hierarchy of those blocks. Each block has a defined inter-
face (input and output). Once the desired signal processing al-
gorithm is programmed using the FAUST syntax it gets compiled
into VHDL logic. VHDL stands for Very high speed integrated
circuit Hardware Description Language, a programming language
to develop on-chip logic designs. These designs are the input to
the chip synthesis tool.

The FAUST compiler originally creates C++ code which can
be put into a framework and later be used as plugin for a series
of wellknown (software) audio processing programs. Our addi-
tion to the system is the possibility to generate on-chip logic to do
the task and use the processor on chip for slow control and user
interface. With this we are close to the current developments of

Yann Orlarey

GRAME
centre national de creation musicale
Lyon, France
orlarey@grame.fr

hardware/software co-design tools (for a prominent example see
[2).

The choice of the target platform was quite easy because of the
experiences with the POWERWAVE synthesizer [3]. The board
uses an AC’97 compatible audio codec with 48 kHz sampling rate
and 20 bits resolution. The XILINX Virtex 2 Pro has two Pow-
erPC 405 processors on chip running at 300 MHz. One of those
is used for implementing the slow control and user interface. The
VHDL building blocks are embedded in an OPB module. The
On-chip Peripheral Bus is an IBM standard bus intended to con-
nect hardware extensions to the on-chip processor. This bus runs
at 100 MHz. The framework implements several dual port RAMs
for exchanging parameter data with the audio processor, granting
parallel access for parallel running blocks.

2. FAUST EXTENSIONS

The FAUST compiler produces optimized C++ code. The opti-
mization tries to find out what has to be computed and omits all
unnecessary parts. For the purpose of FPGA programming we
need VHDL modules. Since the implementation of logic on FP-
GAs has different needs, there are some alterations and extensions
needed for the original FAUST compiler. The compiler works in
several stages shown in figure[T}

Yoy

parse &
evaluate

¥
box
expression

propagate &
normalize

¥
signal
expression

—{ -

code VHDL
C++ code .
generation code

Figure 1: The stages of the FAUST compiler.

The role of the compiler is to translate from FAUST to C++ or
from FAUST to VHDL, while preserving the mathematical seman-
tic. To do that, the compiler must first discover the mathematical

DAFX-287

mailto:trausmuth@fhwn.ac.at
mailto:orlarey@grame.fr

Proc. of the 9™ Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

semantic of a FAUST program. This is the propagation phase of
the compiler. It translates box expressions into normalized signal
expressions that express the semantic of the box expressions. In
theory (and in practice to some extent) two very different FAUST
programs which actually compute the same thing from a mathe-
matical point of view should result in the same signal expression
after the propagation phase.

The code generation phase operates on signal expressions,
not on box expressions. The current C++ generator translates these
signal expressions into equivalent C++ code. It tries to generate
the most efficient C++ code while preserving the mathematical se-
mantic. The VHDL generator should do the same: it should op-
erate on signal expressions and generate the most efficient VHDL
code while preserving the semantic of the computation.

One of our main goals is keeping the VHDL code generation
totally transparent to the end user. The final version of the com-
piler should work on any FAUST program (almost) without alter-
ations on the code itself. So any considerations concerning the
extensions of the FAUST compiler have to take into account this
required transparency.

2.1. Fixed point number representation

The C/C++ code uses floating point number representation. Al-
though VHDL suports floating point numbers, this floating point
capability is not easily synthesizable to the chip logic. Therefore
we need to implement the capability of fixed point number calcu-
lation, which implies a few extensions concerning the VHDL code
generator. Fixed point numbers have a total width and a defined
binary point. Each fixed point building block produces an output
which can be of the same width or even larger. Due to signal prop-
agation times on the chip, there are some limitations concerning
the total width of adders and multipliers which also have to be
taken into account.

Usually there is a need for truncating the big fixed point num-
bers after a calculation block. This will be done by a special prim-
itive which incorporates stochastic rounding [4]. This well known
method is used in DSPs and helps reduce the quantization error
which might be a problem when several stages are calculated one
after the other.

To grant transparency to the user all necessary parameters like
bit width of the signals, the number of memory and MAC blocks
and the VHDL default blocks are predefined by the compiler. How-
ever, there is the possibility to include a definition file into the
FAUST code to overwrite those default settings.

2.2. Calculation costs

VHDL blocks are usually implemented in a synchronous manner,
which implies that it takes at least one clock cycle to evaluate each
block. Some blocks may have longer delays, especially if they
consist of several other blocks. Since we have a defined timeframe
for the signal calculation - roughly 2000 clock cycles in our case -
the design has to be checked against this boundary condition.
Each design block is afflicted with the clock cycles it takes to
evaluate the block logic. If several processes run in parallel and
meet at some point, the design has to assure that the following
block gets the input values it expects. After the FAUST code has
been processed, the internal signal model is evaluated and a Gantt
chart is created to find the critical path through the model. This
path determines the total signal propagation time of the VHDL

unit. At the merge points of the FAUST model the implementation
model has to assure the synchronity of the temporary calculation
results.

2.3. VHDL base blocks

The VHDL result is based on VHDL base building blocks, which
have predefined calculation costs. Every junction adds to the total
calculation cost. The base cost is part of the VHDL model library.
If user specific VHDL blocks are added (like external C functions
can be added at the moment), this cost value has to be stated in
the VHDL model. The FAUST compiler creates a timing report
showing all signal propagation times and the defined fixed point
interfaces.

The VHDL top level interface block is called "process" and
contains the interface to the framework. All other VHDL mod-
ules are logically contained in this toplevel module. Addition-
ally, a C++ header file is produced containing the synonyms and
addresses for all the registers of the design. This header file al-
lows the interface implementation running on the PPC to access
the proper memory locations for the parameters.

IBM CoreConnect OnChip Peripheral Bus

K 2 S

OPB IPIF
OPB - PLB UART
MAC
ib FAUST_FW L
RS 232
@ 300 MHz 100 M bit
Ethernet
ib FAUST IP AC97
“ 0 >
OnChip process Control Stereo Audio
RAM 48 kHz
[
Program &
Data

Figure 2: Block diagram of the FAUST VHDL framework.

The number of dual-port RAM blocks actually defines the
maximum number of parallel data and address busses which can
be used by the calculation cells. The number of parallel calculation
cells (each one comparable to a small ALU with a command set
optimized for DSP operations, see section [2.4) can also be speci-
fied.

Special care has to be taken concerning the width of the data
bus as well as the duration and space cost of different block im-
plementations. Although the bus width is set to 20 bits by default,
this bus width can be changed. If

the 20 by 20 bit multiplier is too large to fit into the FPGA, an-
other version (20 by 4 bits) is provided, which takes 5 clock cycles
to calculate the result but only 1/4th of the FPGA fabric. Divi-
sions on the FPGA logic are very costly and therefore not part of
this implementation. Divisions by constants can be implemented
using multiplications and reciprocal values.

A typical calculation step takes at least 6 clock cycles. The
necessary operations are executed in a pipelined mode: the first 4
clock cycles are generally needed to fill the local registers with the

DAFX-288

Proc. of the 9™ Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

ALU command | mathematics execution time
madd R1 R2 A=A+ R1xR2 | 1(+4)
msub R1 R2 A=A—-R1xR2 | 1(+4)
madd4 R1 R2 A=A+ R1xR2 |54
msub4 R1 R2 A=A—-R1xR2 | 5(+4)
rounda A =rnd(A) 1

clra A=0 1
mova R1 Rl1=A 1

sra R1 A=A> Rl 1(+3)
srl R1 A=A> Rl 1(+3)
slaR1 A=AKRI1 1(+3)
sll R1 A=AKRI1 1(+3)
and R1 A= A&R1 1(+3)
or R1 A= AlR1 1(+3)
xor R1 A=A"RI1 1(+3)
not R1 A="A 1

Table 1: ALU command set

needed values, although register reuse and optimization can drop
those steps. Then the ALU block takes at least one cycle to do
the real calculations. After this another cycle may be necessary
to store the ALU accumulator back to a local register. The ALU
commands are explained in the next section.

2.4. ALU command set

All the FAUST calculations are finally done by a special ALU
block which supports a few calculation operations. Since mem-
ory operations are handled by special bus controller processes, the
ALU only needs the calculation commands shown in table[I] Log-
ical decisions which are needed for branching during the execution
of the program are not part of the language and therefore not part
of the calculation units.

Execution times for the ALU commands are given in clock
cycles, the additional values show the clock cycles used for loading
the needed values into local registers, if necessary. The special
multiplication used by the madd4 and msub4 commands uses less
logic cells on the FPGA but takes longer to calculate. The use of
these commands can be defined by a global setting in the FAUST
program.

2.5. Code generation strategy

The FAUST compiler parses the process model and produces a
tree of signal expressions optimized to the mathematical semantic.
The VHDL code generator first takes these signal expressions and
translates them into a Gantt chart. This chart reflects all memory
and calculation tasks in a linear manner in the beginning.

‘Dual Port RAM "H ‘ 1/0 registers ‘
\

L

ALU

local registers

Figure 3: VHDL architecture block diagram.

The optimizer knows how many memory busses and ALU
units are available and compacts the linear Gantt chart into a com-
pact execution plan similar to the one shown in table 2] The opti-
mizer determines the final number of local registers.

Each memory bus and ALU cell is then coded into one sep-
arate VHDL state machine, all being part of the FAUST IP "pro-
cess" module. Figure[3]shows the block diagram of the synthesized
architecture.

Each calculation is triggered by the AC97 module after receiv-
ing the next audio sample. This is the only synchronisation point
in the design. After the start pulse all state machines run in parallel
as designed by the optimizer. The optimizer has the responsibil-
ity to take care about execution times and synchronisation points
throughout the VHDL design.

—(+) { » b0 +
I(z) ¢ } 0(2)
1/z
+ -al > bl +
Y y y
1/z
-a2 < I =y/

Figure 4: block diagram of the 2 pole IIR filter used as reference
design

3. THE FRAMEWORK

The host for the FAUST VHDL module is a XILINX Virtex 2 Pro
30 with roughly 30.000 logic cells. The two PowerPC 405 CPUs
use several chip busses to connect to the FPGA logic. Figure [2]
shows the block diagram of the FPGA framework.

The VHDL module FAUST_FW is connected to the OPB bus.
On the controller runs a small C program, so the user can talk to
the system using ethernet or — in our first implementation — the
serial RS 232 line. The OPB module provides the interface for
the FAUST IP "process" module and also takes care of the audio
codec. The AC’97 codec is initialized by the FPGA logic. Each
sample is passed to the FAUST IP module using a simple hand-
shake protocol. The FAUST module works on the audio data and
provides the result for the next codec cycle.

There is an alternative operating mode (if we want to use block
processing) in which 512 samples are stored in memory before the
processing is called. In this case block operations can be used to
calculate FFT or other block based algorithms. The block is shifted
by 64 samples between two calls so the values keep overlapping.
In this mode the recalculation is triggered every 64 samples, thus
leaving 130000 cycles (or 1,3 ms) for one calculation run. The FFT
algorithm as well as a few other block based signal algorithms will
be one of the next extensions to the VHDL primitive library.

Parameters are stored in a dual port RAM section on chip. The
FAUST module can access the parameters as needed and operates
asynchronously to the PPC 405 control program. Several memory
blocks can be used in parallel. In the default application, up to
4 busses can be used, each memory block containing 2 kbytes in
32 bit data width (512 parameter words). The FAUST optimizer

DAFX-289

Proc. of the 9™ Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

takes care of parallel execution of the calculations. The master
chip clock runs at 100 MHz, which gives about 2000 cycles per
audio sample (still leaving 83 cycles for protocol handling between
the process IP and the FAUST_FW IP).

4. THE IMPLEMENTATION

To show the implementation of the VHDL code generator we will
use a simple example, the two pole IIR filter. This is used only as
reference design in this paper, a detailed discussion can be found
in [5]). The filter uses five parameters b0, b1, b2, al and a2 as well
as two memory blocks. Figure @] shows the block diagram.

The FAUST code to create this filter looks like this:

al
a2
b0
bl
b2

1.73;
1;
1
1

.25;
.73;
1;

filter (b0,bl,b2,al,a2) = + ~ conv2 : conv3
with
{
conv2 (x)
conv3 (x)

bi

0 - alxx - a2*x’;
bOxx + blxx’ + b2+x'7;

process = filter(b0O,bl,b2,al,a2);

This code is parsed and normalized by the FAUST compiler
to give a very short representation in C++. Basically, a few copy
operations and the two additions in the main blocks conv2 and
conv3 are left.

virtual void compute (int count,
float** input, floatxx output)
{
float* input0 __attribute__ ((aligned(16)));
float* output0 __attribute_ ((aligned(16)));
input0 = input([0];
output0 = output[0];
for (int 1=0; i<count; i++)
{
float TO = MO;
MO = RO_O0;
RO_0 = (inputO[i] - (TO +
(1.730000f * RO_0)));
float Tl = M1;
M1 = RO_O;
float T2 = M2;
M2 = T1;
outputO[i] = (T2 + ((1.730000f * T1) +
(1.250000f * RO_0)));

The translation into assembly code results in 54 CPU clock
cycles for computing one filter cycle on a standard CPU (not on a
DSP). The VHDL code makes use of parallel register loading and
calculating and the calculations are done one per clock cycle. The
total calculation time of the VHDL module is 11 clock cycles.

Putting the resulting VHDL code here would exceed the limits
of this paper. However, table [2] displays the idea of the parallel
processing used in the FPGA VHDL code.

The simple VHDL implementation uses one 42 bit MAC unit,
one memory/bus controller and four 20 bit registers. The calcula-

Reg0 Regl Reg2 Reg3 MAC
load z—2 0
load z~1 +input
load ag
load a1 —agz"2
loadby | —aiz™?!
round
copy MAC load by 0
load bg +boz 2
store as z 2 +b1z7 1L
+bo * Reg0
store as z~1 round

Table 2: execution plan for the IIR VHDL implementation

tion and the memory access are done in parallel, thus saving time.
Each row corresponds to one clock cycle, the result of each op-
eration is available after one cycle. This result is comparable to
an implementation on a modern DSP. However, when it comes to
multiple filters in parallel, the FPGA gains advantage due to the
parallel capabilities.

If we put three IIR filters in parallel and use three MAC units
and also three bus/memory units, the whole calculation will be
done in 15 clock cycles.

5. CONCLUSIONS

The FAUST to VHDL compiler works for very simple problems
where only basic mathematic functions are needed. If we want to
use trigonometric functions, additional building blocks have to be
provided in VHDL.

Complex mathematical calculations like the FFT algorithm
can be implemented in VHDL as IP blocks and therefore improve
the data throughput of the design. These IP blocks as well as the
trigonometric function blocks will be provided in the future as ex-
ternal library blocks.

Since this is a proof-of-concept we are very positive that future
work will produce a general purpose VHDL code generator.

6. REFERENCES

[1] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and semantical
aspects of Faust,” Soft Computing, vol. 8, no. 9, pp. 623-632,
Sep. 2004.

[2] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp,
M. Finley, and R. Sass, “hthreads: A hardware/software co-
designed multithreaded RTOS kernel,” in /0th IEEE Int. Conf.
on Emerging Technologies and Factory Automation, Catania,
Italy, Sep. 2005.

[3] R. Trausmuth and A. Huovilainen, “POWERWAVE - a high
performance single chip interpolating wavetable synthesizer,”
in Proc. Int. Conf. on Digital Audio Effects (DAFx-05),
Madrid, Spain, Sep. 2005.

[4] C. Maxfield, How Computers Do Math. John Wiley & Sons,
2005.

[5] U.Zbélzer, DAFX — Digital Audio Effects. John Wiley & Sons,
2002.

DAFX-290

	1 Introduction
	2 FAUST extensions
	2.1 Fixed point number representation
	2.2 Calculation costs
	2.3 VHDL base blocks
	2.4 ALU command set
	2.5 Code generation strategy

	3 The Framework
	4 The Implementation
	5 Conclusions
	6 References

