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ABSTRACT

Locating singing voice segments is essential for convenient index-
ing, browsing and retrieval large music archives and catalogues.
Furthermore, it is beneficial for automatic music transcription and
annotations. The approach described in this paper uses Mel-Frequency
Cepstral Coefficients in conjunction with Gaussian Mixture Mod-
els for discriminating two classes of data (instrumental music and
singing voice with music background). Due to imperfect classifi-
cation behavior, the categorization without additional post-processing
tends to alternate within a very short time span, whereas singing
voice tends to be continuous for several frames. Thus, various
tests have been performed to identify a suitable decision function
and corresponding smoothing methods. Results are reported by
comparing the performance of straightforward likelihood based
classifications vs. postprocessing with an autoregressive moving
average filtering method.

1. INTRODUCTION

The availability of digital music material to end users is continu-
ally increasing through new media and content distribution meth-
ods. As a result, there is a growing need to automatically catego-
rize and annotate the large amount of data. This allows the user to
locate music that fits his or her personal preferences. It’s now com-
mon sense that semantically meaningful descriptions (e.g. genre,
tempo and musical key) of audio content are a suitable means to
achieve that goal.

Therefore, active research has been conducted in the field of
Music Information Retrieval (MIR) during recent years. Discrim-
ination between vocal and non-vocal parts of popular music has
been identified as an importand base technology for further high-
level analysis. This information can be used for example in artist
identification [1] and singing language recognition [2]. It has fur-
thermore much relevance in lyrics synchronization [3]. One of the
early approaches of vocal/non-vocal detection in popular music
has been derived from speech/music discrimination and introduced
by Berenzweig and Ellis [4]. They performed experiments using
several low-level descriptors and Hidden Markov Models (HMM)
for discriminating between two classes of a previously annotated
and trained database. The reported results vary between 55,2%
and 81,2%, depending on the utilized features. Tzanetakis [5] per-
formed experiments with different low-level features and a multi-
tude of classifiers. The reported results range between 61% and
75%. Maddage et al. [6] introduced an approach for vocal/non-
vocal detection without a previously trained classifier. They per-
formed a Fourier transform on the subbands of the spectrum of the
signal. Thereafter they decided if the signal is music or vocal based

on simple thresholding. They reported an accuracy of 84%. Unfor-
tunately all these approaches are not directly comparable, because
all publications are based on a different test set, varying in musical
content and size.

One of the base approaches that is relatively straightforward
to implement uses Mel-Frequency Cepstral Coefficients (MFCCs)
and a Gaussian Mixture Model (GMM) classifier. This technique
has been used in artist detection, singing language detection and
lyrics synchronization [1], [2], [3] and it exhibits performance
comparable to more complex systems.

With the combination of MFCCs and GMMs one often en-
counters rapidly alternating output, that is semantically meaning-
less for the target application. Therefore, a smoothing function for
decimation of outliers has been introduced in [7], where Tsai et
al. accumulated the log likelihoods of single frames over a certain
time span in order to achieve more reliable results. Thus, we de-
cided to pursue this approach and concentrate on postprocessing of
intermediate classification results. We identified that the instability
in classifying depends on factors like model quality, generality of
training data and complexity of test material. Since the influence
of the above mentioned factors can only be reduced to a certain
extent we investigated into finding a suitable smoothing algorithm.
This paper introduces a novel method for deriving a bounded de-
cision function and appropriate smoothing with an Autoregressive
Moving Average (ARMA) filter [8].

The structure of the paper is organized as follows. The next
two chapters describe feature vector extraction and GMMs. Sec-
tion 4 presents our decision function, the subsequent ARMA filter-
ing and additional smoothing. Thereafter the audio data set used
in the evaluation is described. Section 6 depicts the details of the
experiment and the corresponding results. Finally section 7 con-
cludes this work and provides some perspectives for future direc-
tions.

2. FEATURE VECTOR EXTRACTION

From the multitude of features that have been suggested for MIR
applications we have chosen to utilize MFCCs. MFCCs and derivates
have found multiple successful applications in the field of speech
recognition and speaker identification and has proved to be well-
suited for MIR, for example in singer and artist identification [1],
[2], [3]. The term cepstral originates from fundamental research
of Bogert [9]. The main point is the implicit decomposition of a
periodic signal into excitation and filter. The most straightforward
way to compute MFCC is the summation of FFT bins weighted
by the Mel-Filterbank passbands, taking the natural logarithm and
subsequent discrete cosine transform.

The coefficients computed by that method can be thought of as
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weighting factors for different periodic characteristics in the log-
arithmic distribution of energy in the Mel-bands. The very first
coefficient equals the overall energy and should be omitted for
classification purposes to be prone against different amplification
factors. The succeeding coefficients represent a more detailed de-
scription of the energy distribution in Mel-bands. Therefore, the
number of coefficients is limited to D in order to generalize the
properties of the current audio frame whilst omitting subtile dy-
namic aspects. Furthermore, the implicit orthogonality of MFCCs
simplifies the theoretical background of statistical modeling.

3. GAUSSIAN MIXTURE MODELS

Our main interest is targeted towards discrimination of the two
classes: music and music plus singing voice (further denoted as
MUS and VOX respectively). For each of the above mentioned
classes one particular Gaussian mixture model represents the dis-
tribution of the raw data in D-dimensional feature space as linear
combination of several D-dimensional Gaussian probability den-
sity functions (PDF). These two Gaussian mixture models are fur-
ther denoted as MUS GMM and VOX GMM. The parameters of
the component densities are estimated with the well-known ex-
pectation maximization (EM) algorithm [10] [11]. The linearly
weighted combination of Gaussian basis functions is expected to
generalize the collected features forming smooth approximations
of their arbitrarily shaped PDFs. Equation 1 gives the definition
of a GMM defined as a weighted sum of M component PDFs ac-
cording to [12]

p(x|λ) =

MX
i=1

pigi(x) (1)

where gi(x), i = 1, ..., M represent the component PDFs, x is a
D-dimensional observed feature vector and pi the individual mix-
ture weights or priors. Each component is defined as a D-variate
Gaussian PDF

g(x) =
1

(2π)D/2|Σ|1/2
exp


−1

2
(x− µ)T Σ−1(x− µ)

ff
(2)

with empirically estimated mean vector µ and covariance matrix
Σ. This way, a particular mixture PDF is completely parameter-
ized by the tuple λi = {pi, µi,Σi}. The training process is con-
stituted by the maximum likelihood (ML) estimation of the model
parameters that maximize the likelihood of the GMM given the
training data consisting of feature vectors for one class. The ML
optimization is actually carried out by the expectation maximiza-
tion (EM) algorithm, iteratively refining the initial estimation of
parameters [12].

The initial estimation of parameters is computed per model
by choosing an appropriate M and partitioning the classes in fea-
ture space using k-means clustering. The preceding clustering step
guarantees convergence to invariant ML estimates and is therefore
favoured in contrast to random model initialisation.

4. DECISION FUNCTION

The usage of VOX GMM and MUS GMM allows us to calcu-
late likelihoods of both models for every input frame of data. Let
L(λv|x) and L(x|λm) denote the likelihoods of feature vector x,
to belong to VOX and MUS classes respectively.

In previous works [7], a decision function was derived as a
simple difference between log-likelihood values for VOX and MUS
classes as given in equation (3).

f1(x) = log(L(λv|x)) − log(L(λm|x)) (3)

If the value of the decision function is above the theoretical thresh-
old of 0 then the corresponding frame is considered to belong to
the VOX class while values below 0 indicate MUS class.

In this work we propose a novel approach for computing a
decision function as given in equation (4).

f2(x) =
L(λv|x)

L(λv|x) + L(λm|x)
− 0.5 (4)

The theoretical threshold of the proposed decision function f2(x)
is also arranged to 0. It should be noted that whithout further post-
processing both decision functions essentially produce the same
results, when it comes to a binary threshold based decision (i.e.
indicate if L(λv|x) is higher than L(λm|x)). Since both decision
functions exhibit a very noisy slope, they are not directly suited
for utilization in real-world applications. It is not beneficial to
make a decision for audio excerpts that are too short to provide
semantically meaningfull interpretations. Therefore, the decision
functions need an additional smoothing and/or filtering.

Due to the complexity inherent to training two GMMs cov-
ering the entire body of real-world music, the absolute values of
L(λv|x) and L(λm|x) tend to be relatively small. Moreover, ab-
solute values of likelihoods for MUS and VOX parts even within a
particular song may exhibit significant differences.

The statistical properties of the above mentioned decision func-
tions have been examined in-depth in order to benefit from their
peculiarities. We investigated the PDFs of the values returned
by each of the desicion functions separately for MUS and VOX
classes of input data. Since manually segmented songs from our
audio data test set (see section 5) were available, we had the pos-
sibility to split the set of observed input feature vectors x in two
subclasses: VOX and MUS frames contained in the song. For each
of these subclasses the PDFs of the decision functions were esti-
mated. Exemplary results for a representative song are shown in
Figure 1. It can clearly be seen that although the experimental re-
sults for both decision functions proved the liability of the theoret-
ical threshold, the PDFs do exhibit distinct properties. In the upper
plot (results for f1(x)), the overlapping region of the PDFs covers
a large amount of observations. Thus, even small changes of the
thresholding could have significant impact on the classification re-
sults. In contrast, the lower plot (f2(x)) depicts overlapping in less
critical regions. A well-established technique to improve correct
classification rate is defining a so-called uncertain zone around the
threshold. One can see that for the decision function f1(x) it will
yield a high amount of uncertain frames. In addition, the borders
of uncertain zone for f2(x) must be given in absolute values which
tend to vary depending on the song.

Moreover, our experiments proved that the decision function
f2(x) is the most suitable for filtering and smoothing. It is ranged
between −0.5 and 0.5, and it is symmetrical around the threshold.
As it will be shown below, f2(x) can be successfully filtered using
ARMA filtering [8].

4.1. Autoregressive Moving Average Filtering

As singing voice generally tends to be continuous for multiple con-
secutive frames, we assumed that the instantaneous value of deci-
sion function of frame i is partly determined by k previous frames,
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Figure 1: Comparison of PDFs of the decision functions for a rep-
resentative song. The solid line in both plots corresponds to MUS
frames of the song, and the dashed line corresponds to VOX frames
of the song. The upper plot shows the PDFs recieved for f1(x) and
the lower plot shows the PDFs recieved for the decision function
f2(x).

i.e. it can be interpreted as autoregressive (AR) process. In addi-
tion, smoothing of the decision function for removing short term
outliers can be efficiently performed by means of moving aver-
age (MA) processing. The combination of the above mentioned
post-processing steps can be interpreted as an ARMA(p,q) pro-
cess. This process can be approximated by a rational transfer func-
tion [13] given by the linear difference equation:

xi =

qX
l=1

blni−l −
pX

k=0

akxi−k. (5)

The system transfer function H(z) between the input (ni) and the
output (xn) for the described ARMA process is the rational func-
tion H(z) = B(z)/A(z), where A(z) and B(z) represent the
z-transforms of the AR and MA branches respectively. We cal-
culate the coefficients bl and ak of the ARMA filter via Prony’s
method [13], [14]. Prony’s method is an algorithm for finding an
IIR filter with a prescribed time domain impulse response. This
filter can recover the coefficients bl and ak exactly if the data se-
quence is truly an ARMA process of the correct order. The order of
the ARMA filter was determined experimentally. The best results
were received for p = q = 10. An examplary result of ARMA fil-
tering applied to the decision function f2(x) is shown in the lower
plot of Figure 2. In that plot, additional smoothing via convolution
with a Hamming window was applied.

5. AUDIO DATA TEST SET

To assess the performance of the proposed method, we had to de-
fine a proper evaluation test bed. Due to the fact that there exists
no well established database for that particular task, we decided to
set up a proprietary test set by ourselves. Our test database con-
sists of 84 PCM WAV-files. All files are downsampled to 16 bit,
22050 kHz, mono. The database contains 10 singers: 5 male and
5 female (see Table 1). The songs of every singer were randomly
separated into training set (38 songs, 3-5 songs for every singer)
and test set (46 songs, 4-5 songs for every singer). Every record

Figure 2: The upper plot shows decision function f2(x) for an ex-
emplary excerpt of a representative song. The lower plot depicts
the decision function g(x) after ARMA filtering and smoothing.
For comparison, the dashed function represents the manual seg-
mentation for this audio excerpt.

in the database was manually labeled with regard to instrumental
and vocal parts using the open source tool Wavesurfer. The total
duration of the training set is 5815.47 sec, which equals more than
1.5 hours of music. The total duration of the test set is about 3000
sec, or 50 minutes, whereas only 1 minute excerpts of every song
were considered (from 20 sec to 80 sec).

Male Singers Female Singers
Brian Adams Barbara Streisand

Eros Ramazotti Anna Netrebko
Frank Sinatra Nelly Furtado

Ozzi Osbourne Anne Clark
Sting LeAnn Rimes

Table 1: Singers in the Database

6. EVALUATION AND RESULTS

At the stage of feature extraction we used D = 13 Mel-frequency
coefficients computed with 30 ms framesize and 10 ms hopsize. As
our system is considered to constitute a front-end for further singer
identification and lyrics alignment, we focussed on minimizing the
error in identification of MUS frames, thus errors for VOX frames
were considered to be less critical. For that reason, the number
of mixtures for MUS GMM was set to 20, and the number of mix-
tures for VOX GMM was 13. These optimum parameters had been
identified experimentally, the search was performed in an interval
from 4 to 52 mixtures per model. The covariance matrices Σ were
assumed as diagonal, considering the fact that they describe uncor-
related MFCCs.

The criterion F used to describe the classification rate has
been defined as the harmonic mean (8) of V (6) and M (7).

V =
number of voice frames detected correctly

total number of voice frames
(6)
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Figure 3: Correct detection rates for all 46 songs of the test set.
Dotted line corresponds to F = 0.75. Triangles represent base-
line classification results without post-processing. Circles depict
classification results achieved with the proposed method.

M =
number of music frames detected correctly

total number of music frames
(7)

F =
2V M

V + M
(8)

Figure 3 shows the achieved results for each of the 46 songs
of the test set with and without post-processing. Application of
the proposed approach resulted in an average increase of the F -
score from 72,7% to 81,3%. With our approach, the average re-
sult for MUS class is 90,5% while the average result for VOX
class is 75,0%. Classification performance can be observed to in-
crease significantly for the VOX class. This is due to fact that
the VOX GMM contains less mixtures than its counterpart. So
the possibility of spurious thresholding becomes higher in the raw
unsmoothed detection function. As we mentioned before, the mis-
takes in the MUS class are considered more critical and therefore
the outcomes correspond to our target. Besides relatively high
correct detection rate, the usage of the suggested approach allows
to retrieve semantically meaningful consecutive song segments of
MUS and VOX. These can be effectively used for further applica-
tions e.g. lyrics alignment.

7. CONCLUSION

This paper described our approach towards automatic detection of
singing parts in popular music. We used the well established meth-
ods of combining MFCCs and GMMs as a front-end. We showed
that comparably straightforward methods of post-processing pro-
duce significant increase in classification results. Moreover, the
application of the proposed decision function in conjunction with
subsequent ARMA filtering explicitly enhances the perceptual qual-
ity of the achievable song segmentation. The properties of the
described decision function can presumably be exploited in sys-
tems using further audio features and additional classification tech-
niques such as HMMs, Support Vector Machines or Neural Net-
works. The information that can be derived from statistical analy-
sis of the decision function allows for additional refinement stage

based on heuristics. In addition, the filtered and smoothed decision
function carries valuable information that can be interpreted in a
semantically meaningful manner. For instance, its local minima
indicate borders of phrases apparent while singing. These pecu-
liarities will be studied more in-depth in future work.
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