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ABSTRACT theKelly-Lochbaunmetwork has been derived for pipes with con-

tinuity of radius and slopeC(-regularity of the shape), using the

This paper deals with digital waveguide modeling of wind instru- ¥Vebster-Lokshi|acoustic model of lossy flared pipes which does

ments. It presents the application of state-space representation .
P bp P P not assume planar or spherical waves (cf. [9]).

to the acoustic model diVebster-Lokshin This acoustic model After modeling each piece of pine separately. it is necessary to
describes the propagation of longitudinal waves in axisymmetric Ut them togethergin ordep; 0 buildptrp:e Wh?)le res)(;lnatom [10] a)?ld
acoustic pipes with a varying cross-section, visco-thermal losses a[“’ﬁ]’ the following modular method is proposed: derivisite-

the walls, and without assuming planar or spherical waves. More-S ace representationsf everv pieces of pipe in discrete time do-
over, three types of discontinuities of the shape can be taken into pace rep . v p PIp
main, interconnection laws allow to calculate the state-space rep-

account (radius, slope and curvature), which can lead to a gOOdresentation of the whole resonator. This formalism facilitates the
fit of the original shape of pipe. The purpose of this work is modularity of the building of a virtual trombone.

to build low-cost digital simulations in the time domain, based
on the Webster-Lokshimodel. First, decomposing a resonator In a recent work|[12], a framework (based on Mibster-

into independent elementary parts and isolating delay Operatorsggkﬂéﬁiigﬁzzoggg\?ﬁ %adgr%e% andMaOIIrc;v(\)/\slet(r) rif(;ﬂ\(/)s\l,’sa:l[lon:)%?-
lead to a network of input/output systems and delaysKeify- [3, , 6, 8]). '

Lochbaumnetwork type. Second, for a systematic assembling of te:)l\r;ezlit g%cf’?r:gverlezfeifc\,%?lfyisvﬁz ?Jssgqu tnhl;n;gﬁ;;];s%pg'[l-rﬂe
elements, their state-space representations are derived in discretd y P '

time. Then, standard tools of automatic control are used to reduceiStartlng from the unifying model of [12]. Thanks to the modular-

the complexity of digital simulations in time domain. In order to ity of the method, virtual wind instruments can be built connecting

validate the method, simulations are presented and compared Withadd't'on"’II quels such as: mou_th-pl_ece, radiation, tone-hole,_ lips
measurements. and reed (which are not studied in this paper). For example], Fig. 1

presents the network of a possible virtual resonator built by con-
necting such acoustic elements.
1. INTRODUCTION
Ps,2
Studying physical modeling for sound synthesis allows to simu- @
late the behavior of musical instruments. Consequently it naturely 1
leads to realistic sounds, especially during attacks and note transi- | T |
tions, compared to signal processing approaches. However, digital _ﬂ_
simulations in time domain require intensive computations from i 1 Pen
signal processors, and simplifications of the physical model have — || ——
to be considered to make real-time simulations possible. More- pe @e \e
over, because of interactions between elements of an instrument,
building a modular synthetizer proves difficult.

With the approach of digital waveguides (cf. eg. [1]), some
works have considered 1D acoustic model of axisymmetric pipes
based on th&Vebsterhorn equation (cf. [2]). Approximating a
varying cross-section pipe by some cylinders or cones leads to

the Kelly-Lochbaumscattering network (cf. eg.’ [3, 4]), which Using theWebster-Lokshimodel, each piece of pipe is modeled

::ISOV;/:S?J L?;V;Zita?'ggzl :;I)nrzg?ct;r\]/vl;vtelr:?edsc;))r::tli\r;lel;—h?:ﬁ ':?g(;reby an input/output network of th€elly-Lochbauntype. In section
o i - . ; ) . 4, a state-space representation is derived for the network of section
realistic behavior of the virtual instrument, in [5] and [6] visco- P P

thermal losses have been taken into account. This model of losse 2, in continuous time and in discrete time. Section 5 presents stan-
. - o o Yard tools of automatic control which allow to optimize numerical
(cf. [7]) involves fractional derivatives, and is more accurate than

more standard dampings based on integer order derivativés., In [8] realizations in order to obtain low-cost digital simulations in the
ping 9 N time domain. Section 6 presents the digital simulations of virtual

Figure 1: Example of an acoustic network modeling a resonator
with a mouth-piece, a horn and a tone-hole.

This document is organized as follows. In section 3, a pipe
with varying cross-section is separated into some pieces of pipe.

* Rémi Mignot is Ph.D. student at Télécom ParisTech/TSI trombones and a comparison between computed impedances and
T This work is supported by the CONSONNES project, the measured impedance of a real trombone. The last section con-
ANR-05-BLAN-0097-01 cludes this paper and deals with perspectives.
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Figure 2:Separation of the

2. MODELING A PIECE OF PIPE

effects of pipe geometry.

In [12], a detailed analysis gives a framework which represents

the system of a piece of pipe. In this framework, delays and effects

2.1. Webster-Lokshin model and traveling waves

The Webster-Lokshin model is a mono-dimensional model which
characterizes linear waves propagation in axisymmetric pipes, as
suming the quasi-sphericity of isobars near the inner wall (cf. [9,
113]), and taking into account visco-thermal losses (cf. [7]) at the
wall. The acoustic pressufeand the particle flow/ are governed

by the following equations, given in the Laplace domain:

(Eofene) aponea oo
pos U;@;’ +Om(ts) =0, (2)

wheres € C is the Laplace variablée, is the space variable mea-
suring the arclength of the walk(¢) is the radius of the pipe,
S(¢) = mr(£)? is the section areas(¢) = ko\/1—7'(€)2/r(£)
quantifies the visco-thermal losses a@¢) = r"'(¢)/r(¢) is the
curvature. Eqg. [(1) is called the/ebster-Lokshirequation, and
(2) is theEuler equation satisfied outside the boundary layer. The
physical constants are the mass dengitythe speed of sound,
andxo = /1, + (v — 1)v/15, wherel,, andl;, denote characteristic
lengths of viscousl{) and thermal,) effects.

With the formalism ofDigital Waveguidesit is usual to de-
scribe acoustic effects with traveling waves rather tffaand U .
In this work, we define the change of variables by introducing a
virtual reference pipea lossless cylinder with (arbitrary) radius.
Its characteristic impedance &. = po co /Se, with S. = 772,
for which corresponding planar traveling waves would be defined

by
{p+(£7sq __47[1 ZC] {sz,sq 3)
p (4,s) 2|1 —Z.||Us)|"

In the case of lossy varying cross-section pipes, these vari-
ables are neither decoupled nor perfectly progressive inside the
pipe. Nevertheless, they remain “physically meaningful” at inter-
faces of the pipe (cfl. [12]), and respect the causality principle.

1

2.2. Two-port system of a piece of pipe

In this paper, a pipe with varying cross-section is approximated by
a concatenation of pieces of pipe with constant parameters. Thus
a piece of pipe is defined as a finite pipe with lengthand with
constant curvaturél() and lossess() parameters.

The piece of pipe is modeled by a system, the inputs of which
arepy (s) := pT(£=0,s) andp; (s) := p~ (£=L, s) (incoming
waves a¥=0 and/= L). Outputs arerd (s) andp; (s) (outgoing
waves).

of geometry of the pipe are isolated from each others. The geome-

trical parameters are the radii at endsandr,, the slopes at ends

!
To

andr’,, the curvature and the visco-thermal losses of the piece
of pipe (I ande). The framework is presented in Fig. 2 where

 Zi—Z.  Z—Z.
kl_ZH—ZC’ and kT_ZH—ZC’ 4)
/
s O . __Cm
RL(S)*S_ - with oy = SRR (5)
/
s Qo . Co Ty
S(s) = tha, = +27"
R;(s) s—a with o, = + 2 (6)
_s/co—T(s)
R(S) - S/ Co +1—\(8)7 (7)
T(s)=e " = D(s)e 0", ®)
with D(s) = ef(r(s%%)f" )
5\2 5\ 5
and T'(s) = \/(CO) +25(a) +T, (10)

and where, /. denotes an analytical continuation of the positive
square root ofR* on a domain compatible with the one-sided
Laplace transform, namelfS = {s € C/Re(s) > 0} (see
Ref. [14, 15] for more details). The functidn is proved to be
analytical inCg, and such thaie(T'(s)) > 0if € > 0.

Brief interpretations of cells of Figl2 are

e Cells @}, and Q7 with k; andk, (cf. (4)), remindKelly-
Lochbaunjunctions between two lossless cylinders (cf. eg.
[3,5]) with discontinuities of sections.

Cells Q% andQ”, with R. andR?’, (cf. (56)), are similar to
Kelly-Lochbaunjunctions between lossless cones (cf. eg.
[4,6]) with discontinuities of slopes.

CellsQ’, andQ?;, with R(s), remindKelly-Lochbaunjunc-
tions between lossy pipes with constant curvature of [8].
13

T(s) (cf. (8)), of the cellQ,,, represents the dela/ co

of wave propagation through the piece of pipe, and the ef-
fect D(s) (cf. (9)) due to the visco-thermal losses and the
curvature. In[14]D(s) is proved to be causal and stable.

The framework of Fig. 2 is interesting because the effects of
the curvature and losses are isolated from the others (section and
slope), and it makes their study easier. Because of the square roots
in the functionI" (cf. (10)), the study requires special treatments
(see sec. 3.1).
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3. STATE-SPACE REPRESENTATION Cells @, and Q7;, The transfer function® of the type[(12) is

) o o _ approximated byN% of the typel(14). The state-space representation
For a systematic building of resonators, it is proposed to derive of 9! is given by the following diagonal form

state-space representations for each cell of Fig. 2. These represen

tations allow algebraic manipulations on the system using well- A= diag([&, ooy ELyVLy oy VML Vs ooy WM]),
known tools of automatic control (see set. 4). Introducing the in- R R , R R —R —R
'U'l ot H/L7w1 LR w]y[vwl LR w]\/[
put vectorU (N x 1), the output vectol” (IV x 1), and the state C= R - R —n B
vector X (J x 1), each cell is rewritten with the following repre- BT ey WL W5 ooy Wi WYY -y Wiy 7)
sentation in continuous time T
I T | ap=|0 1
sX(s) = AX(s)+BU(s), (11) = -1, . -1 @EE=19 of-
Y(s) = CX(s)+DU(s).

Cel Q, In the central celll'(s) = D(s)efés. The transfer

_ function D(s) of type (12) is approximated bi(s) of type (14)
Because of the square roots litfs), transfer functions such as  for which the state-space representation can be written
R(s) andT(s) (see sec. 22) are irrational. These functions have

3.1. Finite-dimensional systems

continuous lines of singularities @@, which are nameduts These A= diag([§1, voey ELy YLy ey VM, Y1y wees WM]),
cuts join some pointdfanching pointsand the infinity. D D D D —D D

If T = 0, the functionl” has one branching pointat= 0. The C=[ul, .. png,wls .. wiy, Wy, ... wyr] (18)
cut R~ is chosen to preserve the hermitian symmetry. Thereof, B = [1 1]T and D = [0] )

transfer functions have a continuous line of singularitiesRon
The residues theorem shows that these functions are represented pure delay operators are treated differently : dof®, if + =

by a class of infinite-dimensional systems, cal@iffusive Re- MT, with M € N* andT is the sampling period, its discrete-
presentationgcf. [16, 17, 15]). For any diffusive representation  time version isZ~* and is performed by a circular buffer. I/
H (s) which is analytic orC\R™: is fractional, interpolation filters are needed (cf. eg! [4, 11]).
_ pr (§)
H(s) = /0 s+ & dg, (12) 3.3. State-space representationsin discretetime
1 - . Since every state-space representation are written in diagonal form
= ——{H 0)—H 0MH}. (@13 y p p g '
i (€) zm{ (=£+i07) 64100} (13) the dynamics equation behaves/amdependent first order equa-

For simulation in time domain, eg. in [17], it is proposed to tions with polesz; = A; ;. This leads to
approximate such dlffusze represehfatloun; by finite-dimensional X, = a;X; +V;, for1<j<J, (19)
approximations, given by (s) = >-7= FEval
number of poles—&; € R is the position of thejth pole and
uf is its weight. The poles are placedti with a logarithmic
scale, and the weightsf are obtained by a least-square optimiza-
tion in the Fourier domain.

It T > 0, I has two more branching points, which are com- 2XT = a; X+ (2AGa) + AoV, for1 <j < J. (20)
plex conjugate. In this case, diffusive representations are approxi-
mated with a finite sum of 1st and 2nd order differential systems:

where L is the

whereV; = SN | B ) Un.

Using any standard discretization schemésdiscrete-time
equations of the first order are derived from (19). The corredpon
ing difference equations dre

With A, = diag({\¢;,n}1<j<s)B forl € {0,1}, andA? =

j=L H j=M H —H . - S
H(s) = Z L N Z Wi wji ‘ (14) diag({a; }1<j<s), the matrix version is
j:15—|—€j s+ s+

=t 2XT = AYXT 4 (2A1 4 Ao)UY, (21)
R andD can be approximated with + 2M = 10 or 15. y¢ — ox®+ put 22)
3.2. State-space representationsin continuoustime Equation(21), is not a standard dynamics equation of state-

; , . . space representation, becausedepends upon,, in the time do-
Cells O, and Q, These Cells only contain constant CoeffiCients - majn, To cope with this problem, let's define the new state vector:
ki andk,.. With Q, for example, the state-space representationis yyd — yd A ,pd = e = AX¢ 1 A U7,

ki 1-Fk

A=[], B=[], C=I, D:{Hkl ki

. (15) Wt = AW+ BUY,
} = yé = ciwd 4 piud, (23)
A, B, C are degenerated (empty) matrices, but this convenient

notation is used to standardize the procedures in the sequel. with BY = (A?Ay + Ao), C* = C andD? = (CAy + D).
To simplify notations, vectors and matrices of the discrete-

Cells Q' and Q" They contain one first-order transfer function, (iMme systems are renotéd Y, X, A, B, C'andD.

the state-space representatiorgifis 1For example, choosing the triangle approximation (modified-firs
order hold, cf. [18]), the coefficients of (20) are:
A= [al} 5 B = [1 1] ; C = |:al:| s D = |:01 (1)j| . (16) a.T ’r]) l1—ajy 1 ( ) l1—ajy aj
a aj =V Aoy =—rn, T oy Ay = g+
J J -
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4. REALIZABLE NETWORK

To build the network of a whole pipe, two-port systems of pieces of
pipe (cf. Fig[ 2) are connected together. This section is devoted to
obtain a computationally realizable network of the whole system.

4.1. Concatenating systems

In Fig.[3 (top part), delay-free loops appear at interfaces of two
systems which represent some cells of Fig. 2. These instantaneou

loops cannot be simulated numerically as such, and it is necessary

to remove them. To cope with this problem, it is possible to derive
an equivalent two-port as the bottom of Fig. 3 shows.

(A1, B1,C1, D) (A2, B2,C2, D2)

T
P3

Figure 3:Concatenating two two-ports

In [11, p. 31-33], the interconnection laws are performed from
state-space representations. This leads to the matficeB., C.
and D. of the equivalent two-port. This operation is performed
recursively to remove every instantaneous loop, until the network
only contains intertwined two-port systems (without delay) and
cells Qp (with delay operators).

4.2. Minimal realization

At this stage of the building, a well-known result in automatic con-
trol allows to reduce the dimensions of the systems, in order to
reduce the cost of numerical computation.

For an original state-space representation, the study of its ob-
servability allows to know if a change of state exists, which defines
observable andion-observablesub-states. From an input/output
point of view it is not necessary to simulate the last substates, be-
cause they have no influence on the output.

Similarly, the study of reachability allows to separate reachable
andunreachablesub-states. With zero initial conditions, unreacha-
ble sub-states remain zero for bounded excitatidns

Using the canonical Kalman’s form (cf. [19]), tinginimal re-
alizationis derived by eliminating non-observable or unreachable
sub-states. If they exist, the dimension of this minimal realization
is lower than the original.

Remark: the minimal realization can be required for stability
reasons in some particular cases (cf. eg. [20]).

4.3. Jordan decomposition

To reduce the calculation cost, it is useful to look for a new change
of state which makes the matrik sparse.

Considering the minimal realization of a system of the net-
work, if its matrix A is diagonalizable oveE”*”, the modal form
of the system is computed. If this matrix is not diagonalizable, i
always admits dordandecomposition ove€ 7.

Then, the appropriate change of variable is done to lead to
the new dynamics matrix’ with the diagonal form or the Jordan
normal form. This matrix contains its complex eigenvalues on its
diagonal, somé or 1 on its super-diagonal arideverywhere else.

t

, Como, Italy, Sepezri-4, 2009

4.4. Last reduction

Whereas all systems are real-valueg @ndy,, € RY), matrices
of the state-space representation are complex-valued. From a nu-
merical point of view, computation with complex numbers is more
expensive than with real numbers. However using the hermitian
symmetry of input/output transfer matrixi(s) = H(3)), it is
possible to reduce the number of sub-states to calculate.

The matrixA is with the Jordan normal form, then its Jordan
blocks are sorted with respect to their eigenvalues:

A/ = diag(AR7AC7A6)?

with A, is a Jordan matrix composed with real eigenvalugsjs
a Jordan matrix composed with complex eigenvalues with positive

imaginary part, andl_ = A.. ThenH (s) is decomposed:
H(s) = Hy(s) + Ho(s) + H_(s) + D.

The hermitian symmetry ofi(s) and identifications prove
thatf,, (5) = Hy(s) andH, (3) = H_(s). Thus, the contribution
of I_(s) can be deduced from that &f_ (s).

Decomposing matrices with respect to eigenvalue$'of3’ =
[BR’ BC’ Bﬁ] T' C'= [Cm CC7 Cﬁ] andX’ = [XR7 Xcv Xa] T- the
equivalent scheme for simulation is, in time domain:

A 0| |z;(n)

{ {5 %H%w%{ Mw,

C iz, (n) + 2%6(00% (n)) + Du(n).

B

R

B

(e}

xh(ntl)
zo(n+l)

]_

5. RESULTSOF SIMULATIONS

y(n)

From the geometry of a real trombone, two virtual trombones are
built numerically. The varying cross-section pipe of the first vir-
tual trombone, M1, is built with 11 pieces of pipe, for a refined

fit with the original shape of pipe. The second mod#l, is a
simplified version with 5 pieces of pipe. Additionally, the mouth-
piece and the radiation impedance are modeled, but these models
are not detailed here.

From the geometrical parameters bf; and M-, the state-
space representations of the networks of simulation are built with
the procedures described in sections 3[and 4. These global sys-
tems which represent the resonator of a trombone, have one input
and two outputs: the input is the incoming traveling wayeat
the entry of the mouth-piece, and their outputs are the traveling
wavep, outgoing from the mouth-piece and the radiated pressure
ps from the horn. Simulating the impulse response of the input
reflexion of the resonatop, /pg, in time domain, the computed
input impedanceP/U,, is deduced in frequency domain from (3).

Computed impedances are compared with the measured impe-
dance of the real trombdhén Fig.[4. As we can see, the main im-
provement of the modél/; (with 11 pieces of pipes) compared to
that of M> (with 5 pieces) is about the spectral envelop. Whereas
the envelop of maxima and minima &f, is smooth, that one of
the measurements have some irregularities (see the fifth and the
sixth maxima for example). With a best fit of the real shape of
pipe, the envelop ol/; has the same type of irregularities. How-
ever, because of the simplification 81>, the complexity of the
network of simulation is reduced.

IMeasurements was done with the impedance sensor @¢hére de
Transfer de Technologie du MafSTTM), Le Mans, France.
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Figure 4:Comparison between impedances.

6. CONCLUSIONSAND PERSPECTIVES

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

Using the formalism of state-space representations for digital wave19]

guide networks leads to a good modularity for the assembling of
elements, and an automatic building of the network of simulation.

Moreover, standard tools of automatic control are used to reduce

the calculation cost.

(13]

Considering the refined model &flebster-Lokshirior lossy
flared pipes, it has been shown that this formalism can be applied
with approximations of the diffusive representations by finite-di- (14]
mensional systems. Compared to models based on cylinders or
cones, this model requires much fewer pieces of pipes to obtain
good geometrical fits and realistic computed impedances.

At present, the global complexity of computation is equivalent
to former models mentioned above. But the dimension of approx- [16]
imation (cf. sed. 3.1) can be reduced with a different method.

In this paper, only linear resonators with static parameters have
been presented. In order to have a complete computer-aided makelr17]
of virtual wind instruments, nonlinear or time-varying system must
be considered: trombone slide, valves, lips, reed, tone-holes. The
modularity of the formalism should make an easy integration pos- (18]

sible with only a few differences.
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