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ABSTRACT

In this paper we present an algorithm to reveal the immanent
musical structure within pieces of popular music. Our proposed
model uses an estimate of the harmonic progression which is ob-
tained by calculating beat-synchronous chroma vectors and let-
ting a Hidden Markov Model (HMM) decide the most probable
sequence of chords. In addition, MFCC vectors are computed to
retrieve basic timbral information that can not be described by har-
mony. Subsequently, a dynamic programming algorithm is used
to detect repetitive patterns in these feature sequences. Based on
these patterns a second dynamic programming stage tries to find
and link corresponding patterns to larger segments that reflect the
musical structure.

1. INTRODUCTION

Music is one of the oldest forms of human communication and
expression of feelings or experiences. Therefore it carries a lot
of properties that are strongly related to the culture it stems from.
Although all components that form music - from a single narrat-
ing voice to a romantic orchestra performing a symphony - can be
extremely different, one common component is the existence of
repetitive parts.

In the history of occidental music, the beginning of polyphony
took place in the eras of late Middle Age and Renaissance [1].
Musical progression was now no longer dependent only on a sin-
gle voice but had gained an additional dimension: harmony. While
being a product of various contemporaneous melodies in Renais-
sance, Baroque composers have made strong use of harmonic re-
lations to reinforce the dramatical progress [2]. This development
has not ended until nowadays’ popular music.

Therefore segment detection based on the semantic informa-
tion offered by the harmonic progresion exploits the same basis of
information as used in conventional musicological formal analysis.

For processing different types of spectral representation we
use the standard Short Time Fourier Transform (STFT) [3] as a ba-
sis of analysis. The resulting feature space is computed by means
of the Constant-Q Transform (CQT) [4], [5], the chroma [6], [7],
[8] and the Mel Frequency Cepstral Coefficients (MFCCs) [9],
[10].

Many different approaches regarding segmentation of music
have been published and discussed in literature. Levy and Sandler
have proposed labelling and constrained clustering of spectral fea-
tures in [11]. Aucouturier and Sandler have presented an approach
using succession of timbres using MFCC in [12] whereas Wang et
al in [13] exploit information gathered from the Constant-Q Trans-

form. Eronen uses a combination of MFCC and chroma features
for chorus detection in [14] and Ong and Herrera have presented
an algorithm in [15] that uses a set of low level descriptors to detect
segment boundaries.

Our model focusses on the usage of harmonies extracted from
chroma vectors. Additionally it uses MFCC vectors to extend the
information basis to timbral features that cannot be detected by
means of chords.

In the following section 2 we want to present the components
of our approach. In section 3 we will discuss the extraction of
chroma and MFCC features, followed by the determination of the
beat and the corresponding beat synchronous chord sequence in
sections 4 and 5. Pattern recognition through dynamic program-
ming and the subsequent structural analysis will be the topic of
sections 6 and 7. The evaluation of the algorithm will be discussed
in section 8 concluding the results in section 9.

2. APPROACH

The algorithm consists of the following sequential blocks (see fig-
ure 1):

1. Segment the signal into frames and calculate spectral fea-
tures for every frame,

2. Perform beat detection and compute average values for all
features belonging to one beat,

3. Use chroma vectors to estimate a chord sequence by using
a Hidden Markov Model,

4. Perform pattern recognition of chord and MFCC sequences
using dynamic programming,

5. Structural analysis: find and group similar repetitive pat-
terns.

3. FEATURE EXTRACTION

Obtaining information on the harmonic events causes the neces-
sity of a spectral description of the signal. After resampling the
signal to a frequency of fs = 11025Hz we use Hanning win-
dowed blocks and an FFT length of N = 4096 to compute the
STFT. With this set of parameters we obtain a frequency resolu-
tion of ~2,7Hz/bin. The hop size is set to k = 512 which allows
for a temporal resolution of about 45ms.
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Figure 1: Flowchart of the algorithm

3.1. Chroma

Extracting harmonic information directly from a spectrogram comes
with a lot of problems, such as the fact that the logarithmic human
perception of sound collides with the linear frequency resolution
of the Frourier Transform. We therefore need to adapt the result of
the STFT to a non-linear scale which matches the human percep-
tion of music. An appropriate auditory model to achieve this is the
Constant-Q Transform (CQT) as presented in [4].

The CQT of a signal can be seen as a filterbank in which every
single frequency band kcq represents one semitone of the equally
tempered scale. Theoretically, this could be extended to quarter or
1/8-tone resolution. Using the semitone instead as a rasterization
seems more appropriate as occidental music was developed upon
this measure (even though there do occur notes like the harmonic
seventh that are derived from the overtone scale and would fit a
quarter tone scale more tightly [16]).

To avoid misinterpretation of songs not played according to
the standard pitch of 440Hz we perform a tuning step by detecting
the center of energy within ±1 quarter-tone around the standard
pitch. The energy of the corresponding STFT bins is summarized
over time and the position of the peak determines the most proba-
ble tuning frequency.

To receive the chroma vector we summarize the energy that is
distributed over all the bins that belong to one tone - those can be
addressed as c(kcq) = mod(kcq, 12).

Thus, chroma is measure for the spectral energy that is divided
into the 12 semitones of the well-tempered scale despite of their
their real-world frequencies as utilized by Bartsch and Wakefield

in [17].

3.2. MFCC

Many pop songs do not expose substantial harmonic changes in
their progression - subdivisions are made by lyrical changes or
variations in timbre. As lyrical changes can hardly be made recog-
nizable to the computer with state-of-the-art methods, we need to
focus on the timbral events.

The Mel Frequency Cepstral Coefficients (MFCC) have suc-
cessfully been utilized in audio and speech applications for many
years and are a powerful method for describing timbral properties
of a signal as reported in [12], [18] and [19].

The optimum number of MFCCs used in algorithm has been
found to be 10 coefficients.

4. BEAT DETECTION AND AVERAGING

For further analysis we need a stable temporal representation of the
extracted features. We therefore need to group data into sensible
units. One unit that is very suitable for this purpose is the beat.

The beat is often defined as the rhythm or tempo one would
intuitively start tapping with a foot or finger while listening to a
piece of music. It can therefore be seen as the elementary temporal
unit of a song.

By defining an offset at the beginning and the end of every
beat, we can achieve suppression of transient events which im-
proves the desired stability. The chosen offset is set to 1 frame
(about 45ms).

In our approach we use a method proposed by Ellis in [21] that
allows detecting beats within an audio file and has been proven to
perform in a very adequate way.

As an additional constraint we define a range of possible beats-
per-minute values between 70 and 200 BPM which turned out to be
reasonable for the used test set. Values under the lower threshold
are doubled and values above the upper threshold are divided by 2.

For the resulting time intervals we perform averaging of the
block features STFT, CQT, chroma and MFCC.

5. CHORD DETECTION: HIDDEN MARKOV MODELS

Using chroma vectors to estimate chords in audio signals has been
proposed in various papers e.g. [8], [17] or [22]. A-priori likeli-
hoods derived from musical theory can be used to improve analysis
by introducing Hidden Markov Models (HMMs).

A Hidden Markov Model can formally be defined as

λ = {Q,A,O,B, π} (1)

where the describing parameters are:

Q . . . set of available states
A . . . transition probabilities
O . . . observations
B . . . observation or emission probabilities
π . . . initial probabilities

A large-scale study on the performance of approaches for chord
estimation utilizing HMMs [7] published by Papadopoulos dis-
cussed the possibilities of predefining the model or using the EM
algorithm to perform self training. Though our tests have shown
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that in some cases a self-trained HMM can perform much better
than an untrained HMM, the overall results did not show much
significance when analysing structure due to the very high amount
of smoothing that inherently comes with self-trained HMM. They
will therefore not be used in this approach.
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Figure 2: A chord sequence as a Markov chain: transition prob-
abilities are indicated by the lines between states (on behalf of
simplicity only the final trellis marked by the gray colored state is
displayed).

The set of available states Q is defined by musical theory as
a group of 24 chords: 12 for every semitone in major (C, C#, D,
D#, E, F, F#, G, G#, A, A#, B) and the corresponding 12 chords in
minor. The enharmonic equivalents do not carry information for
our algorithm and are therefore ignored.

The transition probability matrix A can also be derived from
musical theory. Transitions between certain chords have an im-
plicit probability due to their relation on the circle of fifth. We
used the model of the hypertorus as introduced in [23] by Li and
Bello to describe this knowledge in mathematical form.

Observation probabilities (also called emission probabilities)
are modelled as a multivariate Gaussian Mixture Model (GMM)
which are a weighted combination of multivariate Gaussians that
can be described by the mean vector ~µ and the covariance matrix
Σ.

We determined the mean vectors by accumulating the energy
of the tones of a chord and its first n harmonics as proposed by [7].
This is done for every of the 24 chords.

The covariance matrices we use consider the correlation of the
tones that form a chord. An extended approach could also consider
introducing harmonics to the covariance matrices. For additional
reading on the determination of the GMM parameters, refer to [7].

To finally estimate the most probable sequence of chords we
use the extracted and averaged chroma sequence as observation
vectors for the Hidden Markov Model. The Viterbi algorithm finds
the sequence of HMM states that matches the observed sequence
best [24].

The result of the chord detection step is a beat synchronous

concatenation of chord symbols corresponding to the schema de-
picted in figure 2.

6. DYNAMIC PROGRAMMING

To gain some insight into the underlying harmonic and timbral
structure of the song, we need a method to decide whether a given
sequence of chords or MFCC vectors is repeated in an other part
of the song. Since repetitions may not be perfect, repetitions with
small deviations need to be detected as well. To accomplish this
task of approximate pattern matching a simple algorithm based on
dynamic programming is used.

Generally, dynamic programming is a technique to solve prob-
lems that exhibit the properties of overlapping subproblems as de-
scribed by Bellman in [25] and is used in cases of pattern recogni-
tion as published by Chen in [26] and Chai in [27].

The chord sequence computed by the Hidden Markov Model
needs to be relabeled according to the relations of its chords on
the circle of fifths. More specifically, the symbols are assigned
integer values that can be used to calculate the distance between
two successive chords. In order to guarantee accuracy regarding
music theory, those values are chosen according to the “double-
nested circle of fifths” as proposed in [7].

The basic principle of our method is the recursive estimation
of a least-cost path that indicates the repetition of a certain pattern.

In our algorithm a pattern V of length M is compared with
the following rest of the sequence. This is performed for the en-
tire sequence in i steps by shifting the pattern V by the hop size
k at every iteration. This pattern can be one-dimensional (chord
sequence) or multi-dimensional (MFCC vectors). To measure the
similarity of a pattern to all observations we define the following
normalized distance for the one dimensional case (eq. 2) and the
varied cosine distance for the multidimensional case (eq. 3) :

dc(vm, vr) =
1

12


|vm − vr| if |vm − vr| ≤ 12
12− mod12|vm − vr| else

(2)

dMFCC( ~vm, ~vr) = 0.5− 0.5
~vm • ~vr

| ~vm||~vr|
(3)

As additional parameters for the algorithm, a cost of deletion
or insertion1 factor e can be defined which determines the impact
ambiguities that do not match the investigated pattern.

For the computation of the dynamic programming matrix Di

for the i-th pattern we perform an iterative, recursive calculation
that includes the distance and the cost factor:

Di[m, r] = min

8<: Di[m− 1, r] + e for m ≥ 1
Di[m, r − 1] + e for r ≥ 1

Di[m− 1, r − 1] + dm,r for else
(4)

where d is the distance of two feature vectors defined in equations
2 and 3, and e is the cost factor defined as e = (0.1 + dm,r)e0
where e0 denotes a basic cost that has been set to an empirical
value of 1.3

1In the general form of the dynamic programming algorithm there are
different values for deletion or insertion. As we do not want to distinguish
those cases we decided to us only one common value
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The last row of Di can be seen as a cost function ci[r] which
shows minima at the most likely positions of repetitions.

Processing the algorithm for overlapping fragments (length
M , hop k) of the entire chord or MFCC sequence results in the
a series of cost functions ci. Regarding this series as a function of
i leads us to the depiction as matching matrix M [i, r]. This ma-
trix is similar to Bartsch’s “time-lag surface” in [17], though the
basis of his calculation is different (e.g. Bartsch filters along the
diagonals to compute similarity between extended regions of the
signal).
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Figure 3: Calculation of the matching matrix M [i, r]

As a final step to ease further computation we apply an ex-
pander that decreases small values below a certain threshold to
amplify vallies in the dynamic programming matrix that will be
used in section 7.1.

Picking values for pattern length and hop size is very delicate
- on the one hand we want to conserve as much temporal resolu-
tion as possible by choosing a small hop size, on the other hand
we must be careful not to pick the pattern length too small. This
would result in a too general, weakly defined pattern, which would
probably be detected far too many times.

Tests have shown that using a pattern length M = 8 beats and
a hop k = 2 beats leads to the most significant results.

7. STRUCTURAL ANALYSIS

As shown in figure 4 the matching matrix M [i, r] exhibits two
major properties:

1. horizontal lines that appear clearly when exact repetitions
of the pattern can be detected

2. vertical blocks that indicate transitions between highly and
less similar patterns
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Figure 4: Matching matrix M [i, r] of “Beatles - I Wanna Be Your
Man”; the vertical white lines indicate transitions between seg-
ments.

Horizontal lines indicate very high values of similarity for long
periods at a constant lag. Tests have shown that those lines only
appear very rarely and can only be found in songs that expose a
very simple arrangement and/or instrumentation: the more details
or inexact detections appear in the analysis, the more blurry the
depiction of the matrix gets. Image processing algorithms can di-
minish the blur, but only up to a certain point.

Vertical blocks, instead, exhibit less exact information on pat-
tern repetitions, as they do not have a clear alignment between
time and lag. They indicate a more global change in similarity:
parts with higher repetition probability are more biased than parts
that might never be repeated at all. The clear advantage of using
blocks is that they are much more distinct in cases when there are
absolutely no horizontal lines detectable. This is why we will fo-
cus on extracting information from the appearance transitions of
blocks.

The loss of exactitude that comes with this approach has to be
compensated. We therefore separate this section into two stages:

1. Rough detection: transitions in the matching matrix M

2. Refinement: comparison of priorly detected segments; group-
ing

7.1. STAGE I: Rough Detection

To obtain a simple representation of the “events” visible in the
matching matrixM we use a varied difference measure φ[i] called
“repetition probability flux”. It can be derived from the first-order
forward difference d[n] that can be denoted in the general form

d[n] = |x[n]− x[n+ 1]|2 (5)

where n indicates a temporal unit.
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d[n] is then applied to all rows r of the matrix M along the
iteration axis i with the following restriction:

d̂[i, r] =


d[i, r] if d[i, r] > 1

L

PL[i]
r=1 d[i, r]

0 else
(6)

where L[i] denotes the “length” of a column, which is defined as
the number of elements 6= 0 that decreases with i. In other words,
a value d[i, r] of a column r that is less or equal the mean of the
column is set to zero.

This can be interpreted as an adaptive threshold that suppresses
all except the most prominent peaks in the difference function.
Subsequently, the entire column is summarized in the flux func-
tion φ[i]:

φ[i] =

L[i]X
r=1

d̂[i, r] (7)

The resulting function φ[i] depicts the maximal changes in the
matching matrix as local maxima.
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Figure 5: Summarized repetition probability flux of “Alanis
Morisette - Head Over Feet”. The dashed vertical lines indicate
predefined borders whereas the triangulars mark the detected bor-
ders.

A peak picking algorithm detects those maxima using some
limitations i.e. an adaptive sliding-median threshold with ajustable
window length, a minimum distance between two peaks and an
optional maximum number of detected peaks.

As a result we receive a first, rough estimate for segment bor-
ders which are located at the positions of the peaks in the flux
function.

7.2. STAGE II: Refinement

The rough detection step often results in a large amount of seg-
ments that can be identified as repeating patterns in the song. How-
ever, many of them are quite short excerpts that would not be de-
clared as a musical unit like verse or chorus. This is due to the
fact that the detection of repetitive elements on a basis of 8 beats
only carries a limited amount of information about the large scale
musical structure of a song.

Thus, we need to combine multiple segments into larger units
that should then match segments like verse or chorus.

This is done in an iterative approximation starting at j = 1
and using again dynamic programming to measure the similarity:

1. the j-th segment is compared to the rest of the song using
chroma vectors as a representation of spectral events, and
beats as the time basis. The last row of the dynamic pro-
gramming matrix exposes certain minima.

2. the (j + k)th segment is attached in a loop to the segment
j where k = 1 at the first iteration. Again the prolonged
segment is compared to the rest of the song.
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Figure 6: Matching functions of variable length segments (taken
from “Beatles - Don’t Bother Me”, j = 2). Bottom-up: only jth
segment (k = 0), k = 1, k = 2, k = 3

3. the iteration of k is stopped if the following condition is
fulfilled: the merged segment length exceeds a significant
border - it contains data that should not be part of it. Thus,
the probability or position of its repetition will change (see
figure 6 at the topmost line, where the deep valley is sud-
denly flattened).

4. the next iteration begins at segment j = j + k

The deep valleys indicate very distinct detections of repeti-
tions. Figure 6 displays four iterations of the algorithm for the jth
segment. As we can see the first three lines exhibit a very clear
valley at 48 beats. In the fourth step we prolonged the segment too
much, so that it already contains a part of the following musical
unit. The flattening of the valley tells us that the merged segment
is not repeated at the position of the valley. Thus, we can assume
that we have exceeded a critical length and have to stop the itera-
tion.

This method enables us to combine multiple short segments
into more meaningful units that fit the musically perceived seg-
mentes much more accurately.

8. EVALUATION

In order to evaluate the performance of the algorithm the resulting
segmentation is compared to a ground truth. This testing corpus is
similar to the one used by Levy and Sandler in [11] and consists of
32 pop songs.2 One half is formed by 16 works by The Beatles as
they have emerged to a standard in evaluation of similar tasks. The
other half consists of 16 more recent pieces by artists like Björk,
Britney Spears, Eminem, Madonna and Michael Jackson.

2http://www.elec.qmul.ac.uk/digitalmusic/downloads
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Defining a ground truth for musical segmentation is a very cru-
cial task. People define transitions between segments very differ-
ently e.g. repetitions within a verse can be annotated as one large
or two smaller parts. The body used here has been defined by ei-
ther professional musicians and/or musicologists for the MPEG-7
working group.

Performing the evaluation on basis of the ground truth needs
a certain amount of allowed deviation. In this case we followed
literature and picked a trust interval of 3s.

Subsequently the performance of the algorithm is measured
by precision p, recall r and the f-value f which are calculated by
relations between correctly detected borders truePos, incorrectly
detected borders falsePos and missed borders falseNeg:

p =
truePos

truePos+ falsePos
(8)

r =
truePos

truePos+ falseNeg
(9)

f =
2pr

p+ r
(10)

The calculated values are depicted for different corpora in ta-
ble 1.

Table 1: Performance measures after stage I.

Corpus precision p recall r f
Beatles 0.50 0.83 0.61
Recent 0.70 0.73 0.70
Overall 0.62 0.77 0.65

9. CONCLUSION

The combination of chords and MFCCs is able to detect small mu-
sical units in a very accurate way. However, these segments do not
match larger musical structures immediately. As visible in table 1
the recall value is quite high and guarantees a detection of almost
every border whereas the precision value is relatively low.

When examining the results by listening to segmented audiofiles,
the system is able to generate very distinct segments that can also
be very suitable as a loop because of its beat-synchronous cutting.

The task of stage II is to combine shorter patterns into larger
segments. This leads to a decrease of recall, but for some songs
it leads to a very significant rise of precision. However, stage II
comes with the danger of discarding too many - perviously cor-
rectly detected - borders.

As already mentioned previously, absolute or platonic ground
truth for segmentation of music does not exist. For instance, there
are many different ways to perceive transitions between a verse
and a chorus. There is, for example, no clear definition whether
the chorus begins on the first beat, even though it has a pickup in
the previous measure or if an immediate repetition of the chorus
causes two segments or only one.

Due to this missing ground truth, the evaluated values have to
be handled with a lot of care - the Beatles corpus, for instance,
shows some ambiguities and inconsistencies concerning the sepa-
ration of verses into smaller units.

Generally we could observe that the entire system is vulner-
able to the used set of parameters. A certain setup can perform
perfectly on some songs but have less appropriate results for the
rest of the corpus. Changing the parameters slightly leads to ac-
curate results in another group of songs while the formerly perfect
group loses accuracy.

10. FURTHER DEVELOPMENT

A very promising path to continue this work is to improve the per-
formance of the second stage.

Many songs have exposed unusually high accuracy after ap-
plying the refinement step. The short segments detected by the
first stage could be combined to meaningful larger elements that
coincided with the reference segmentation very accurately. How-
ever, these results did not hold for the entire testing set. We there-
fore need to enhance the portability of the second stage to many
different songs of diverse genres.
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