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ABSTRACT obtained with the floating-point digital signal process®13320

Spectral subtraction is a method for restoration of the tspec C6713B.

magnitude for signals observed in additive noise, throudgtrac-

tion of an estimate of the average noise spectrum from th&ynoi 2. EPHRAIM-MALAH SUPPRESSION RULE

signal spectrum. In this paper we show that, starting from th

known minimum mean-square error (MMSE) suppression rifles o In this section we briefly summarize the suppression rulseoreed
Ephraim and Malah and under the same modeling assumptionsin [4]. We assume thag(n), the noise corrupted discrete input
a simpler suppression filtering rule can be found. Moreower,  signal, is composed of the clean speech sigrtal) plus the un-
demonstrate its performances and compare its computhtiosis correlated additive noise signé(n):

with respect to the reference rule of Ephraim and Malah. Teys

sult permits a real time implementation of the exposed thedth y(n) = z(n) + d(n). @
an efficient algorithm on the DSP TMS320 C6713B. The signal is processed on a short-time basis (frame-ge)an
the frequency domain:

1. INTRODUCTION
Yi(i) = Xk (2) + Di(3), 2

whereYy, X, Dy are the discrete Fourier transformsiofz, d;

the indexk € [0, N) represents thg-th bin of the spectrum (with

N the order of the DFT) and the indéxc Z thei-th time frame.
Noise reduction is achieved by the application of a suppres-

Noise reduction systems are used for many applicationsentzer
ious sources of ambient broadband noise degrade the qobdity
quired audio signals. A great deal of work has been spentufor a
tomatic speech and/or speaker recognition, and the lilerabout
the state of the art is more and more focused about noisyamvir . . . .
ments[[1]. Moreover, since long time it is known the negaiive sion rule, the ngnnegatlve real ya!ued galR(i), to gach b'rk. of
pact of noise on the recognition over the telephone cha;&l] tt]e gbserved signal spectru}@(z) in order to obtain an estimate
Many short-time spectral attenuation techniques may bedfou Xk (%) of the clean speechx (i):
in the literature, in which a time-varying (zero phase) fjloe sup- A . .
pression rule, is applied to the short-time Fourier tramafof a X = Hie(0) Yi(2)- ®)
corrupted signal with the goal of improving the acquired SNR
The minimum mean-square error (MMSE) suppression rules 2.1. Additive Gaussian Model
due to Ephraim and Malahl[4] appears to be extremely effectiv
Unfortunately, direct implementation of this rule reqsire great
amount of computations, which make it not suitable for raakt
implementations. In particular the estimation of the seppion

In a Gaussian Model assumption the spectral component of
and D, are modeled as independent, zero-mean, complex Gaus-
sian random variables (for simplicity indeéxs omitted):

filter implies computation of Bessel functions. Yi = V| €Y e N (0, 0‘5) (4)
In this paper we start from the rule of Ephraim-Malah in order
to find a simpler function to weight the spectrum of noisy shee Dy = |Dg|“Pr e N (0, 03) (5)

signal. The proposed filtering rules is characterized byrg hasv
discrepancy with respect to the Ephraim-Malah solution laynd
dramatically lower computational load. In addition we c@re
our rule to a similar simplified rule (Minimum Mean-Squaredr
Spectral Power Estimator), originally presented_in [5]. L _a?
Finally a real-time DSP implementation of the proposedeois _ J o7 Ak €XP (F) z 20, 6
> oF ! ) Py, (ak) v v (6)
suppression approach is discussed. The implementatiobeas 0 x < 0.

with variancesr; andco. In such hypothesis the probability den-
sity for the absolute value of the complex variablgis modeled
by the Rayleigh function:
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Figure 1:Ephraim-Malah suppression rule H, (in dB) for different
values of a priori and a posteriori SNR (¢ and v resp.).

Similarly for the spectrunD;, of the noise signal we have:

2
Lz ar exXp (;—aé‘)
Py 1y (ak) = (‘)’d 7d

x>0,
z < 0.

@)

2.2. MMSE Suppression Rule

The Ephraim-Malah MMSE log estimator is a short-time sgctr
amplitude estimatoH;. that minimizes the mean-square error of
the estimated logarithms of the specia. It takes the following
form:

Hy, = \é:? [(1 + i) Io (%) +vily (%)] 6_%&}: (8)

wherel, (-) is the modified Bessel function (MBF) of orderand
wherevy, is defined as follow:

s Sk

vk ©)
The function¢y, is thea priori signal-to-noise ratio and the func-
tion v is thea posteriori signal-to-noise ratio. They are given
by:
A |Xk|2 A |Yk|2
|Di?’ | D |?
Figure[d shows the reference rule as a function of the pasastet
and~ expressed in dB.

€k (10

Ve

2.3. Apriori SNR,a posteriori SNR

The computation of the priori SNR and thea posteriori SNR
requires the knowledge of the clean speech spectkiymwhich
is not available. An estimation of the posteriori SNR can be
obtained as:

s [Ye@P

()

under the assumption that the noi$@:) is stationary and that
an estimationD;, of its power spectrum may be computed during

portions of the input signaj(n) where no speech is present:

Di(i) £ (1= B) |Ya(i)]* + 8 Di(i — 1) (12)

z(n)=0
The g € [0, 1] parameter in[{J2) controls the update speed of the
recursion from framé: — 1)-th to framei-th.

An estimation of thea priori SNR can be obtained with a
decision-directed approadh [5]:

L oL HE = DY = DI

€k () = (1 — o) (i) Dili)

;o (13

wherea € [0, 1] parameter rules the update speed of the recursion
at the same manner as n112) and where the funéticis simply

defined as:
N ol
Yk 0

2.4. Computational cost

7k207

Y < 0 (14)

In this section we compute the number of operations used doy th
implementation of the exact Ephraim-Malah rule on the D$fe T
largest computational load is due to the MBFs of ordend 1,
I,(v/2). For integer values of, the MBFs are defined as:

oo v)2m
5 iy

We need to find the indek/ where the summation can be stopped,
in such a way that the truncation error is smaller than macpie-
cision. The TMS320 C6713B DSP used in this work is featured
with a32-bit floating-point single precision CPU, whete 7549 -
10738 is the smallest representable normalized number. The de-
nominator in Eq.[(I5) leads the summatory terms to z&for 34
may be used as a good truncation point, as we h#v&(M!)) =
1.6936 - 1079,

To achieve a better estimate for the truncation pdifitwe
draw in Fig[2 the absolute errdé,, between a double precision
“exact” implementation, computed using the MBFs available
Matlab (double precision), and our implementation, truedand
with single precision. There are three sources of error vaftect
only the single precision algorithm:

In(v) = (15)

e the single precision itself;
e the truncation error for the formulB_{15);
e the saturation off].

Fig.[@ usesM = 1000 to keep low the truncation error and
highlight the others; we see the little numerical noise andre
noticeable, the saturation error in the high-SNRs area. étioal
and saturation errors can not be eliminated, so we procetteto
optimization of M without taking care of these. Summing over
and~ the squared error for various/ values we are able to find
the optimalM used for truncationM/ = 68. This is the lowest
one able to keep the whole error exactly the saméf/as- 1000
or more (i.e. withM = 68 we keep only the irremovable errors).

1This is due to the termxp (—vy,/2) in 8); whenv exceedsl 77 this
term becomes too small to be represented in single preci$ioa causing
the whole formula to diverge.
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Figure 2: Logarithm of the absolute error £, for (@) computed
using single and double precision; seetext for details.

Having chosen a suitabl®/, we are now able to count the
floating-point operations used by our algorithm; in thedaling
we suppose the cost of any sum and product operation equal to
The Ephraim-Malah ruld{8) is computed for every bin of th@FF
which are twice as much as the cardinality of the samplesén th
time domain because of tt#®% overlap of the audio frames.

For each time sample the formuld (8), in our implementation
for single precision and with0% frames overlap, uses: two expo-
nentials, two square roots a@e(14+11M) = 1524 sum/product
operations.

3. PROPOSED SUPPRESSION RULE

The spectral amplitude estimator given by (8) requires tha-c
putation of exponential and Bessel functions. This greatuarm
of operations is not suitable for real-time implementagicas it is
hardly sustainable also by highest performance DSPs.

In the past a number of simplified rules has been proposed;

in particular in [%] there are three alternative rules, eash sup-
ported by a different theoretical view. Our simplified foraus
geared toward a fast real-time DSP implementation with saea
ably little performance loss ovdr](8).

3.1. An approximated suppression rule

We propose a suppression rule that approximates the Ephraim
Malah rule as the root of a second-order polynomial. The MBFs

I,(-) have the following asymptotic forms for non-negative inte-
gern:

1
Ly(x) ~ ——=¢" S ’n2—1/4|,
. 27r:7£2 (16)
L) ~ — (3) 0<z<vVntl,
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Figure 3: The global minimum of the cost function C'x (bo) found
for bp = 0.9182.

In light of this observation we introduce the following appr
mated suppression rule:

A N,
Hy = k\/b0+ble,

2’)%

17

where the coefficients,,; have to be determined in order to min-
imize the error offf;, with respect toH,. Equivalently, we seek
bo,1 to provide the best fit of the link) + b1y, to the function:

(0o 0 (%) st (2]

Using the first equation il (16) for = 0, 1, the coefficienb; can
be determined by observing that the functibnl (18) has tHevel
ing asymptotic behavior:

(18)

[( +vi) o ( 5 ) + vl (7)}267% ~ %Vk, (19)

for v, — 4o00. In practice this approximation holds fog > 3/4
(see Eq.[(16)). By comparison with Ef.[17), one can see tthat i
order for H,, to fit H}, the value:

4

by (20)

has to be chosenMiceversa, for small values ofv;, expanding
the exponential function il (18) according to its Maclawsaries

up to the second order, and expanding the MBFs accordingeto th
definition [I%), yelds the approximation:

2 2
[(1+l/k)fo( )+Vk11 (7)} ek N1+I/k+%, (21)
for 0 < v, < 1. It follows that in this limit:
2
Hy ~ Vm”“\/ y + ] +éyk. (22)
279k 2 ™

The expression in brackets in EG.{22) suggests that thevaite

which show that the the expression between braces in[Eqgs (8) i where to seek the optimal value fgf is a left neighborhood of the

asymptotic to,/vy, for v, — +oo, while it tends tol for v, — 0.

valuel.
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Figure 4: Gain errors of H;, (upper surface) and H (lower sur-
face) with respect to the reference Hy,.

3.2. Optimal coefficientbg

A key point in the approximatiort{,, in (I7) is the choice of the
optimal coefficientho. We find the optimabo by minimizing the
square error betweeH, and Hy,. That is, the optimaby mini-
mizes the cost function:

O(bo)éAA|Ek|2d£dv,

where the error functio®, = Hj, — Hj, depends parametrically
on bo. In Fig.[d the two independent variablgésand~ both vary
in the rangg—30, 30] dB, similarly to [5]. We choose to compute
the cost functior'(bo) in these ranges of values. Leaving implicit
the conversion to linear values, and referrind{o (9) to iohtawe
rewrite the cost function as:

Clho)= > > [Hk—m(bo) ’

£=—30y=-30

(23)

(24)

with the only independent variablg. The optimization is thus
straightforward; we use a (linear) grid approach, refinimg grid
in the vicinity of the global minimum indicated by Ed._{22)can
related statements. Figl 3 shows the cost function in thgeran
[0.84,1.0]; the value

bo = 0.9182 (25)

is found to provide the absolute minimum f6f(bo). Recalling
Eqg. [20) and rearranging terms yields the approximatedrespp
sion rule used in the DSP implementation:

. 1
Hy = — | (bov + biv2) = —1/0.72120 + 2. (26)
eV 4 Tk

3.3. Gain error and computational costs

The proposed ruléd;, in Eq. [28) has been compared quantita-
tively to the original Ephraim-Malah ruléf,. by studying the dB
error 20log,, | Ex|) over the whole ranges fgrand-.

Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

HENERE
2 2 E c — | Memory Exp
iluals McBSPs Sl =
AlC23 -
Codec | el | ] | B 32 =
JPT 128Y = E
o .42 33V 6713 E E é 9—_‘
JTAG) ux H— DSP o i a §
L
Reg F
. Embedded - Peripheral Exp
e, JTAG z =2 z
3 o] | Ext SLololS] e
E @ JTAG LILL] 0123 0123

Figure 5:Block diagram TMS320 C6713B DK board.

Additionally we have compared our approximated rule with
the MMSESP estimator proposed by Wolfe and Godsillin [5]:

)=arid
= —\/Vk + V.-
Vi

The reason is that this latter estimator is functionally\&milar
to our Eq. [Z6) (with differenty andb, values), although it has
been found based on a statistical rather than algebraioagpipr

Figure[4 shows the gain differences of both our rule &hd
with respect to the referencd,. From this figure one can note
that, despite the approximations introduced and the lifoita due
to single precision, the absolute maximum error providedihyis
well below—30 dB over the whole SNR ranges and belew0 dB
in the most interesting area$ ¢ 0 dB). Moreover, comparison of
the two error surfaces shows that the gain errofgfis higher
throughout the considered range, and reaches a maximurouwt ab
—18 dB.

The computational cost of the proposed approximatfion (26)
is, for each time-domain sample, the following: two squarets
and10 operations § operations counted twice because of 3h&;
overlap). The MMSESP estimatdr(27) uses two square roats an
4 - 2 = 8 operations; thus our approximation carryes only a little
extra computational effort. By contrast you can comparedhe
numbers with those in the end of section 2.4.

&k 1+
14 & Y

@7)

3.4. DSP Implementation

A real-time implementation of the proposed suppressioa was
obtained with the board DSK TMS320 C6713B, equipped with
the floating-point digital signal processor TMS320 C67188y(
). Operating at 225 MHz, this DSP delivers up to 1350 million
floating-point operations per second (MFLOPS), and 1800anil
instructions per second (MIPS). The CPU fetches advanced ve
long instruction words (256 bits wide) to supply up to eighttst
instructions to the eight functional units during everyoil@ycle.

Referring to Fig[B, the DSP receives the analog audio sig-
nals through an on-board TLV320 AIC23 codec with 90 dB SNR
Multibit Sigma-Delta ADC (A-weighted af’s = 48 kHz). The
input signal is segmented in blocks 2V = 512 samples with
an overlap o256 samples §0%) based on Hanning window. The
frame-rate period is equal t6; = 5.33 ms; consequently the
maximum DSP load capacity is fixed €06 million instructions
per frame.
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Figure 6:Schematic of the DSP implementation.

Spectral analysis is implemented efficiently by means of a
N = 256 complex points radi¢ FFT. The original2 N-point
real sequence is packed ad/apoint complex sequence, on which
N-point complex FFT is applied. The resultidg-point complex
output is unpacked into anoth&f + 1 point complex sequence,
which corresponds to spectral bingo N of the 2N-point real
input sequence.

After filtering by means of our suppression rule, the inverse
FFT and the Overlap-Addition method are used to obtain satgne
of processed speech, which are passed to the D/A converter.
voice activity detector (VAD) is required to identify thofames
of the input signal in which only noise is present; the nojsecs
trum is updated only in these frames using Eq] (12). The VAD
has to accurately identify frames of silence in order to éwesio-
neous updates of the noise spectrum including parts of thechp
signal. The detector used in this implementation is basedl sia-
tistical model-based voice activity detection approatbomputes
the likelihood ratio of speech being present or absent inrthet
frame as described ifi][6]. The parametein Fig.[§ determines
the threshold of speech level detection.

Tabled reports results about the computational load irienill
instructions per frame, for both the original rul&, and the pro-
posed rulef,. The benchmark profiler integrated in DSP Code
Composer Studio v3.3 was used in order to obtain these ésma
The number of cycles refers to a single input frame. As dseds
in Sec[Z2.}, the CPU load of the original rule is computedrigisi-
precision usingM = 68, by englobing the exponential func-
tion /2 in @) into the Bessel series, and expanding the term
(v/2)*™*™ in (I8) as a product of single factors to preserve the
numerical accuracy.

Max Cycles | Avrg. Cycles

[mill. instr.] | [mill. instr.]
Ephraim-Malah Ruldd, 17.697 17.586
Proposed Ruléf}, 0.221 0.153

Table 1:DSP computational loads per frame (2N = 512).

The computational loads reported in Table 1 show that direct
implementation of the Ephraim-Malah suppression rulerifréan
providing a real-time de-noising algorithm on the DSP TM&32
C6713B. On the other hand the approximated rule can stfaight
ward be implemented on DSP without further optimizationjtas
requires a small fraction of the available computationalgo
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4. CONCLUSIONS

We have proposed a new suppression rule for noise redugtion a
plications looking at the well-known Ephraim-Malah rulesasef-
erence, but aiming toward real-time DSP implementationghé
first part of the paper we have determined the minimum number o
iterations needed to obtain the precise computation of tB&M
for the Ephraim-Malah rule. This analysis has provided angua
titative estimate of the computational cost of the Ephradah
rule. Moreover the analysis has shown that double precisabn
culations are needed for accurate implementation.

The proposed rule is obtained starting from asymptoticidens
erations on the Ephraim-Malah rule, based on which a sireglifi
equation with two coefficients is found and a range for pdssib
values for these coefficients is determined. We have theliealgp
straightforward numerical optimization procedure to finae the
parameters. The results discussed in Eeé. 3.3 show thaitedes
the apparently crude approximations, the proposed ruléiesh
negligible gain errors.

We have then described the computational cost for our pro-
posed rule, with references to a real-world DSP implemantat
A real-time set up has been developed in order to perfornttdire
comparisons between computational loads of the origindlaam
proximated rules. This comparison shows that the appraeicha
rule requires a small fraction of the computational powetheaf

ADSP. On the contrary the DSP is not able to support the ofligina

Ephraim-Malah rule in real-time.

We have done some tests using real-world audio samples and
pointing out the good properties of our real-time implenagon.
Our future activities will try to apply some objective meess
like those of the PESQ standards, which should show the iepro
intelligibility of the filtered speech. Combining noise supssion
and speech enhancement may also give interesting results.
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