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ABSTRACT

Soon after the Echo Nest Remix API was made publicly available
and open source, the primary author began aggressively enhanc-
ing the Python framework for re-editing music based on percep-
tually-based musical analyses. The basic principles of this API
– integrating content-based metadata with the underlying signal
– are described in the paper, then the authors’ enhancements are
described.

The libraries moved from supporting an imperative coding
style to incorporating influences from functional programming and
domain specific languages to allow for a much more fluent, terse
coding style, allowing users to concentrate on the functions needed
to find the portions of the song that were interesting, and mod-
ifying them. The paper then goes on to describe enhancements
involving mixing multiple sources with one another and enabling
user-created and user-modifiable effects that are controlled by di-
rect manipulation of the objects that represent the sound. Reve-
lations that the Remix API does not need to be as integrated as it
currently is point to future directions for the API at the end of the
paper.

1. INTRODUCTION

The Echo Nest is one of the most visible commercial proponents
of modern practice in machine listening and musical information
retrieval. On 8 September 2008, the company made its first public,
open-source release of its Remix API on the Google Code hosting
site[1]. Since then, there have been frequent and vigorous updates,
rapidly evolving the framework from a distillation of the code
used in internal projects into a domain-specific language capable
of radically re-editing music with very concise, music-oriented
commands.

The Echo Nest Remix API (‘Remix API’ hereafter) is a pro-
gramming framework written in Python that is oriented towards
making computational re-edits of existing music very easy. While
analytic feature-driven approaches to re-editing material have been
proposed [2] and executed [3] before, a large proportion of the
API’s power is derived from the musically-sensitive analyses made
available through the same company’s Analysis API. The remote
analyses provide hierarchical, content-based segmentation of mu-
sic, and the Remix API provides many methods and classes for
using that segmentation in order to re-edit music seamlessly.

After giving a brief overview in sections two and three of
what was made available in the original version of the Remix
API, this paper gives a narrative of the various design decisions
the author made since the Echo Nest open-sourced the framework,
evolving it into a somewhat idiosyncratic, but terse and powerful,

domain-specific language for manipulating music, not just in the
time dimension, but with multiple parallel tracks and user-defined
effects. New and old are otherwise not distinguished in the paper,
as all the code exists as part of the same open-source project.

2. THE ECHO NEST ANALYZE API

The Echo Nest Analyze API (‘Analysis API’) performs efficient,
perception-based signal processing, simulating how people hear
sounds (accounting for temporal and pitch masking, for example
[4]) in order to extract higher-level musical knowledge about a
sound [5]. From the point of view of a Remix API user, one of the
most useful outputs is a three-level, hierarchical rhythmic analysis
of a given song: beats, bars, and tatums, as in Figure 1.
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Figure 1: Bars, beats, and tatums, as analysed in a song.

The analyses that lead to bar and beat grouping are not perfect,
but they work reasonably well in a wide variety of situations.
Tatums, as the most fundamental rhythmic unit, as described in
[6], are considerably more reliable.

There are two other ways the Analysis API divides a song:
into sections and segments.

• Sections reflect large scale changes in the song’s sound,
whether it be in rhythmic pattern, instrumentation, or har-
monic structure. Although it is often described as dividing
a song into a verse-chorus-bridge structure, reality yields
not as clear-cut results as that.

• Segments are the most elemental portions of a song. They
do not precisely align with beats or tatums, but rather are
representative of some sort of ‘event’ in the song, such as a
note or a drum beat.

Since there are likely many instruments playing many notes that
overlap, the practical result of this part of the analysis is that
segments capture the starts of notes and drum beats. Because
segments are elemental, containing one event, they also act as
containers for further sonic analysis. They contain information on
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the loudness envelope, the overall pitch content (with the relative
loudness of each step of the scale), and the timbre of the segment.
For the purposes of the Analysis API, timbre is reduced to twelve
component time-frequency elements: they are the first twelve
principal components of the time-frequency shape of the event’s
musical surface.

By combining this low-level information with general music
knowledge, the Analysis API also offers estimates about global
features of the entire song, such as time signature, key signature,
and tempo. As with any case of reducing thousands of complex,
evolving values with a single number, there exist some edge
cases in particularly irregular or complex sonic material where
performance is not perfect. Nevertheless, with proper sanity
checks, it is very useful information for the purposes of the Remix
API.

The Analysis API begins its work with a user uploading
an MP3 file to its servers. The analysis itself happens on the
Echo Nest’s centralized servers and usually takes far less time to
complete than it takes to upload the file from a domestic broadband
connection. Once the analysis is complete, simple web (HTTP)
requests that identify the file that was uploaded receive responses
in XML. For example, an API call to get_beats would yield
an XML-formatted list of beats with their starting times and
confidence values.

3. BASIC REMIX API OPERATION

This paper details two data models: the original model, and
therefore the fundamentals of those seen in the Remix API (as seen
in Figure 2) and another model that shows various enhancements
– the current data model as it stands.

AudioFile
  Inherits from:

  .analysis accessor:

AudioAnalysis
  .duration
  .end_of_fade_in
  .start_of_fade_out
  .tempo
  .time_signature
  .loudness
  .key
  .mode
  .metadata
  .bars
  .beats
  .tatums
  .segments
  .sections

AudioData
  .getsample
  .getslice
  .__add__
  .append
  .save

Figure 2: The basic accessor methods available in the Remix API
from the start.

The foundation of the Remix API is derived from the Echo
Nest Analyze API: the same metadata and perceptual analysis that
is exposed there forms the foundation of the data structures used in
the Remix API. Jehan [7] has described the underlying techniques

for the analysis exposed in the Analysis API. The professional of-
fering adds rhythmic groupings, such as beat and bar measure-
ments, to the event-synchronous audio analyses offered in his PhD
research.

The Echo Nest Remix API first appeared with three main
parts: a library for transparent access to their Analysis API, classes
and methods for performing simple audio manipulation, and some
functions for gluing these together. In providing transparent ac-
cess to the Analysis API, the Remix API offered methods for up-
loading audio to the Echo Nest servers and for accessing the sub-
sequent analyses available through their web API. The methods
would parse and transparently cache (in memory) the results of
calls to the Analysis API, returning Python-native datatypes and
objects. The simple audio manipulation involved loading and sav-
ing multiple audio formats, and representing them internally with
sample data kept in NumPy [8] n-dimensional arrays and other
metadata such as sample rate, number of channels, and a pointer
to the location of the final sample.

These two parts, analysis metadata and audio, were glued to-
gether with the remainder of the original Remix API. All rhythmic
units are represented as AudioQuantum objects within the API.
An AudioQuantum is represented at the minimum with a start
(time offset, in seconds, from the beginning of the original file)
and a duration (also in seconds). Given an AudioQuantum and
a source, the samples for the specific time interval of the Aud-
ioQuantum can be retrieved. With AudioQuantums collected
into a generic Python list, a new edit of the original material can
be obtained by a function, getpieces().

Much more sophisticated manipulations could be performed
on an ad hoc basis with additional user classes, such as those
shown in the demonstration code for the popular “More Cowbell”
site, but none of them had yet been included in the API. The
essence of the original Remix API lay in accessing the Echo Nest
Analyze API over HTTP, offering access to audio via the NumPy
libraries, and the sample-accurate glue between them.

4. RE-EDITING MUSIC WITH FUNCTIONAL
PROGRAMMING

With the basic API operation established, the primary author’s
attention turned to utilising more of the rich data held within
the Analysis API. Segments hold rich timbral, loudness envelope,
and pitch data but they were unused by the Remix API. There
are implicit relationships between tatums, beats, and bars that
went un-exploited. At that point, there was nothing in the API
that took advantage of the fact that all elements in a list full of
AudioQuantums had special properties. The first set of external
changes set to work on exposing these properties.

4.1. Introducing that()

Although from the start, anyone could manually loop through the
rhythmic lists and collect the audio quanta that were of interest,
the fact that most operations began with an AudioQuantum-
List and ended with a different one suggested a more functional
programming style. Instead of iterating through a loop, it is per-
fectly plausible to filter the entire loop through a single function.
Once filtering is accomplished, then it follows to use the same
paradigm for sorting and otherwise applying transformative func-
tions on AudioQuantumLists. The change that most informed
the developments that followed with the Remix API, giving it its
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unique flavour, was the introduction of the AudioQuantumList
method, ‘that()’.

Not only did that() establish the beginnings of a functional
programming style, but it also served as the beachhead for a fluent
interface. Fluent interfaces are related to natural language APIs
and internal (or embedded) domain-specific languages [9]. The
goal was to establish a pleasant, natural-language-style portion of
the language, where a naive user could use existing libraries and
functions and get usable results out while writing a minimum of
code.

A guiding principle of this interface paradigm is that each of
these natural language methods operates on an AudioQuantum-
List and returns a new AudioQuantumList. In this way, fil-
tering, sorting, and otherwise modifying lists of elements can be
chained so that an entire programmatic remix could conceivably be
expressed in a one-line program. However, since AudioQuan-
tumLists are native Python sub-classes of lists, many other fa-
miliar methods are available to the user, if what they wish to ac-
complish lies outside of the filter-sort-and-manipulate paradigm.

In order to make the natural language aspects of the system
concrete were a small library of queries and selection filters ready
for use with that() and similar methods. The majority of the
selection filters are higher-order functions that generally take one
or two arguments and return a function of a single argument.
Since this pattern is so pervasive but is a non-trivial way of
writing functions, definitions are made much easier with a Python
decorator pattern [10]:

def overlap(aq):
def fun(x):

if x.end > aq.start and \
x.start < aq.end:

return x
return fun

...was simplified to this:

@selector
def overlap(x, audio_quantum):

return x.end > aq.start and \
x.start < aq.end

(Note that in this and most Python examples that follow, back-
slashes indicate line continuations interrupting a single statement.)

The naming of such functions was essential to establishing
the fluent interface, as well. The linguistic pattern that ended up
working was to name selection filter functions as verb phrases that
agree with a plural noun, typically in a restrictive clause introduced
by ‘that,’ but may also work as the end of an subordinate clause.
For example, given a section1 in a song and the beats derived
from an analysis:

beats.that(overlap(section1)) \
.that(fall_on_the(2))

This code fragment takes the subset of all beats that have some
portion of their time intervals overlap with the time interval of
section1, and takes the further subset of those beats that fall
on the second beat of their respective bars. Admittedly, the
idiom can present some difficulties to get used to writing: while
the various function and method calls read as coherent fragments
of English, the punctuation – knowing what must be a Python
method call separated with a period (.), and what should be a
pre-defined function as an argument to such a method – takes a
non-trivial amount of learning. Nevertheless, we believe it has

been beneficial to introduce such linguistic patterns to the API. It
provides a friendly introduction and aids a sense of empowerment
in the user to understand the available example code.

4.2. Rhythmic context

With conventions for scanning the native AudioQuantumLists
established, the next development was to use these techniques, plus
the reasonable (but not always true) assumption that if an analysis
has found beats, it also has tatums and bars available.

By giving each AudioQuantum some representation of
its context within an AudioQuantumList, and giving each
AudioQuantumList access to the AudioAnalysis that con-
tains it, we enabled each component in the rhythmic partitioning of
the original song to have a representation of its rhythmic context.
The rhythmic context of an AudioQuantum allows a user to pro-
grammatically access the AudioQuantum’s neighbours, forward
and backwards in time, of the same type of rhythmic quantum.
The context allows one to navigate up the hierarchy (beat to bar,
tatum to beat) to its rhythmic ‘parent.’ Conversely, one can access
a rhythmic unit’s children (beat to tatum, bar to beat) by going
down the hierarchy. The children of an AudioQuantum’s parent
form the ‘group’ to which that AudioQuantum belongs. These
concepts are all illustrated in Figure 3.

Additionally, a user may also programmatically access relative
and absolute indices. The absolute_context() returns a
Python tuple with the index number of the item in its entire
containing AudioQuantumList and the length of that entire
list. The local_context() returns a similar tuple, but only
with reference to its group().

Internally, all of these parent-child relationships are computed
on the fly by using the knowledge of the kind of AudioQuantum
in question, the circular links back to the containing lists, and
the same queries that the that() method normally works with.
What might be seen by some as syntactic sugar yields immediately
accessible navigation and queriable context information.

4.3. More functional and fluent additions

After establishing the functional programming pattern and trying
it with further use, additional methods were prototyped and then
added. First to be added was the sorted_by() method for
AudioQuantumLists. The input to the method is a function of
a single argument that returns a scalar value to be used as a sorting
key. Many of the input functions are trivial, such as returning
the value of a given accessor on an input AudioQuantum, but
framing the method this way allows for rich comparisons as well,
such as ordering segments by the mean-squared distance from a
reference segment’s timbre vector. The naming convention here is
of nouns (or noun phrases) that could conceivably follow “sorted
by.”

An early version of that() was implemented using the
python built-in function ‘map()’ instead of the more specific
‘filter()’ built-in. A curious side-effect was that returning the
current AudioQuantum being tested was merely a convention:
the selection filters could actually return any AudioQuantum
available to them. This could be used for much more sophisti-
cated remix generation, but in the interest of simplicity and retain-
ing conceptual clarity to the very fundamental that() method,
a new AudioQuantum method was introduced: beget().
Any element within an AudioQuantumList may beget()
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(a) Reference beat with a (zero-indexed) local_context() of
(1, 4) and a context_string() of “beat 2 of bar 2”.
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Bars

 Song

prev(3) next()

(b) The same reference beat with the next() and prev(step=3)
beats noted.

Tatums

Beats

Bars

 Song

parent()

children()

(c) The same reference beat with its parent() bar and
children() tatums noted.

Tatums

Beats

Bars

 Song

group()

(d) The same reference beat with its group() bar noted. The
group is its parent()’s children(): its siblings.

Figure 3: Rhythmic context in relation to a beat.

zero, one, or more AudioQuantums. By convention, multiple
AudioQuantums are returned as an AudioQuantumList, to
aid in further processing chains if needed.

Another method turned out to be particularly helpful for
remixing: changed_by(fn, if_they=cond). In this func-
tional programming “map()” variant, the function passed to the
named if_they argument is used as a filter-like test for each
element of an AudioQuantumList. If the condition is true,
the function fn is applied to the AudioQuantum; otherwise, the
AudioQuantum passes through unchanged.

Given a hypothetical function, ‘adding(filename),’ that
mixes the audio from an external file, a rudimentary, beat-syn-
chronous drum pattern could be added to a song with a single as-
signment statement:

remix = song.analysis.beats \
.changed_by(adding(’bdrum.wav’),

if_they=fall_on_the(1)) \
.changed_by(adding(’snare.wav’),

if_they=fall_on_the(2)) \
.changed_by(adding(’bdrum.wav’),

if_they=fall_on_the(3)) \
.changed_by(adding(’snare.wav’),

if_they=fall_on_the(4))

5. OBJECT-ORIENTED MUSIC EFFECTS

5.1. Recursion and the rendering chain

The innovations that completed the previous section do raise addi-
tional questions of the simple audio glue: what happens now that a
list returned by beget may contain other lists? How might we im-
plement the adding() mixer function in the changed_by()
example? By dint of following the functional programming

paradigm to its logical conclusions, we have ended up with recur-
sive data structures: AudioQuantumLists may contain other
AudioQuantumLists. This should not disturb us one bit: mu-
sic’s structures are very hierarchical and recursive, and numerous
music representations (e.g., SuperCollider [11], JMSL [12], CLM
[13]) use such structures extensively.

Once we make this recursive leap, the hypothetical mixer func-
tion is fairly obvious in concept: it is an AudioQuantumList
wherein all the sounds are simultaneous rather than sequential.
Thus, we have the two most important concepts of time-based me-
dia according to SMIL 1.0: par(allel) and seq(uential) groups of
objects.

Walking the chain of audio quanta and lists thereof suggests
that each of these objects should respond to a uniform message,
render(), and return a uniform structure, an AudioData ob-
ject. An AudioQuantumList sequentially sends a render()
message to each of its components, and append()s the data to
its own. An AudioQuantum obtains its sample data by fol-
lowing back references to the containing song, and returns the
data bounded by its time interval. The new Simultaneous ob-
ject sequentially sends a render() message to each of its com-
ponents, and sums the resulting data with its own. By adopt-
ing a protocol for renderable objects where each responds to a
render() message, and provides accessors to a source (al-
ways an AudioData object) and a duration (in seconds), the
Remix API moved from being primarily about re-shuffling seg-
ments from an single file to inter-mixing and cutting between any
number of source files.

There are a few internal details that work as conventions
more than anything else. It is, after all, an open-source project:
if users need further capabilities, the flexible architecture of
the software ought to be able to handle further enhancements.
The AudioData.endindex becomes very important, as it
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is the running marker for the next insertion point for a list.
The endindex is advanced by the AudioQuantum’s dura-
tion when appending to an AudioQuantumList, and not at
all when summing to a Simultaneous object. The dura-
tion of a Simultaneous is by default that of its first child’s
AudioQuantum. Although the duration of an object determines
the insertion point of the next object in a sequence, an object may
have sample data that extends past the ‘rhythmic’ duration. This
way, overlapping tails and effects do not have to be truncated. Pre-
roll, however, is not currently supported.
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105

6

2 4 9 13 14
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11

Figure 4: Given an AudioQuantumList (0) that contains six
renderable audio objects (three AudioQuantums, two Simul-
taneous objects, and one AudioQuantumList), the order
in which the different objects receive their respective render()
message is shown. Colours here signify different sources.

The rendering chain is illustrated in Figure 4, where rendering
one item triggers all of its constituent parts to be rendered in turn.
Despite segment 10’s length, segment 13 directly follows segment
9 in a rhythm consistent throughout that source’s meter and tempo.

At this point, it is worthwhile to note one last thing that relates
back to the fluent interface. Any renderable audio object can also
be encode()d. That is, a convenience function common to all
renderables is encode() without having to call render() first.
As a result, any object can be written out to an MP3 file or WAVE
file, making some remixes literally one-line programs, from input
to remixing to output. Given a function that reverses the audio on
a given AudioQuantum, this variation on example code reverses
the fourth beat of each bar with one long statement (split among
several lines):

audio.AudioFile("input.mp3").analysis \
.beats \
.changed_by(reversing, \
if_they=fall_on_the(4)) \

.encode("output.mp3")

5.2. Modification chain and Plugins

Given the fact that we can now freely manipulate segments across
two dimensions (time and track), we now look to a third dimen-
sion, in terms of user-defined effects. The paradigm favoured here
was to enable direct user manipulation of the AudioQuantum’s
parameters derived from analysis. The sense here was that – even
in code, programmatically – the AudioQuantum objects would

be malleable and responsive: by manipulating the analytic param-
eters on the sound segment, the underlying sound can itself be ma-
nipulated.

To achieve this, however, required a rethinking of how
AudioQuantums are manipulated. Until this critical point,
AudioQuantums were effectively immutable. Although
you could conceivably change the start and duration of an
AudioQuantum, you would change its essence: it would point
to a different segment of the original audio. Worse, any other
copies of that object retained for remixing would also be affected:
only pointers to the original items are passed around. As a result,
the UserAudioQuantum was introduced. Although an instance
appears to be the original AudioQuantum, with the same anal-
ysis parameters and the same methods, it is actually an entirely
different type of object, fairly sparse of methods and native data,
but acting as a proxy object for the original AudioQuantum.
Any unknown methods and accessors in a UserAudioQuantum
object are passed on to the original AudioQuantum for dispatch.

In order to ensure that users manipulate UserAudioQuan-
tums, all access methods for AudioQuantumLists were
re-written. When a user attempts to index an element, a
range of elements, or iterate among all the elements in an
AudioQuantumList, the special methods intervene and trans-
parently return the proxy object.

The relatively hollow insides of a UserAudioQuantum
means that further methods and accessors can be injected into
the UserAudioQuantum Class by the user at runtime. The
plugin class names an accessor to watch. If a user attempts to
set that variable within an UserAudioQuantum instance, then
the “setter” instance in the plugin class takes over, obtains the
original values (from the original AudioQuantum) behind the
scenes, and then creates new private variables and sets their values
in the current instance. If the user attempts to read the variable
in the instance, the injected “getter” method takes over, and finds
the most appropriate value, either from a private, modified, newly-
created variable, or from an appropriate value held in the original
AudioQuantum.

The third method the plugin class must define is a
modifier(). It is the effects version of a render() method.
Given the context of an AudioQuantum and the data from the
previous effect in the chain, it is the task of the modifier()
method to create new sample data, presumably according to the
accessor it claims to watch.

The canonical use case is installing an effect that performs its
magic on the duration accessor. There are actually two implemen-
tations of duration watchers as of this writing: one unsophisticated,
poor sound-quality time stretcher effect, and a cheap truncator that
truncates the end of the sound in the case of a shorter duration, and
inserts extra silence in the case of the user setting the duration to
be longer than the original AudioQuantum. (One of the benefits
of working in open source is making this sort of compromise in
public, and having multiple parties raise their hands to attempt to
do it better.) A user decides to use a specific effect, and registers it
with the UserAudioQuantum class:

audio.UserAudioQuantum.register(AutoStretch)

...and may then modify the duration parameter in any
UserAudioQuantum they encounter. There is an optional
parameter in register() that allows a user to specify the order
within the effects chain with an integer. A single plugin type
may exist at multiple points in a chain: an effect (for example,

DAFX-5



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

a reverberation) may have a ‘reversed’ version by inserting a re-
verse effect before and after the effect. When the reverse effect
is triggered for a given AudioQuantum, the sound is forward,
but there is reversed reverb. When it comes to render()ing the
AudioQuantum, each modifier() that has been registered is
then triggered in order with the output of the previous one in the
chain. The result of the final effect is returned as the render()ed
output of the UserAudioQuantum.

It is not a particularly safe computational model nor does it
make for the most flexible and complete audio network graphs,
but the prototype implementation is astoundingly compact: the
plugin registration is less than ten lines of code. Effects implemen-
tations can be similarly compact. By convention, a modifier()
method does its own checking of its watched variables. If the
variables of interest remain unchanged, then it does nothing and
passes the input to the output. For example, changing the level of
a UserAudioQuantum by entering a positive or negative offset
in decibels is simply implemented with:

class LevelDB(audio.RenderableAudioObject):
propertyname = "level_change"

def __get__(self, instance, owner):
if hasattr(instance, ’_level_change’):

return instance._level_change
else:

return 0.

def __set__(self, instance, value):
instance._level_change = value
instance._modified.add(’level_change’)

@staticmethod
def modifier(aq):
if aq.level_change == 0.:

return aq.source
source = audio.AudioData(

ndarray = aq.source.data,
numChannels = aq.source.numChannels,
sampleRate = aq.source.sampleRate)

source.data *= pow(10.,
aq.level_change/20.)

return source

By closing the loop from sound to analysis to modified analytic
parameters to novel sounds, we believe the Remix API has access
to a powerful sound manipulation paradigm. Although the sound
objects are rooted in their original context, users are not limited
to their original sounds: effects may radically change their content
with minimal effort, but can be targeted down to the briefest tatum,
allowing for novel synchronised rhythmic effects.

5.3. XML Output

Somewhat surprisingly, what began as an attempt to have a stan-
dard debugging output led to some minor revelations suggesting a
life for the Remix API out of the bounds of a single client machine.
Just as the analysis is independent of remixing, remixing and audio
rendering can be decoupled. This was established with a method
added as an experiment, to_xml(). As with the render()
method it mirrors, AudioQuantums are visited in sequence from
within an AudioQuantumList. The AudioQuantumList

gets output as a <sequence> XML node, with the list con-
tents returned inside it. Complementarily, a Simultaneous
object is output as a <parallel> XML node, making the ana-
logue with SMIL’s <par> and <seq> [14] much more explicit.
AudioQuantums are output as XML nodes with start and du-
ration attributes, along with a reference to its source, if it dif-
fers from that of its container. Finally, if a user has modified a
UserAudioQuantum, it is output with its changed parameters
and the source AudioQuantum contained inside. The order of
the nodes in the XML output is exactly the same as the numerical
order shown in Figure 4.

A sample XML output from Figure 4 would resemble:

<sequence source="blue" duration="10">
<beat start="10" duration="1"/>
<beat start="15" duration="1"/>
<parallel duration="1">
<beat start="16" duration="1"/>
<beat start="3" duration="1"

source="red"/>
<beat start="42" duration="1"

source="green"/>
</parallel>
<bar start="17" duration="4"/>
<parallel duration="1">
<beat start="21" duration="1"/>
<bar start="4" duration="3"

source="red"/>
<tatum start="43" duration="0.25"

source="green"/>
</parallel>
<sequence duration="2">
<user_modified_audio_quantum

level_change="-3">
<beat start="22" duration="1"/>

</user_modified_audio_quantum>
<beat start="27" duration="1"/>

</sequence>
</sequence>

In this example, the sources are simplified to colours in the di-
agram. In practice, they would be set to identifiers for the source
audio files. Similarly, for the purpose of the narrow column format
for this manuscript, the times are mostly simulated with integers.
In actuality, they are floats with enough precision to achieve sam-
ple accuracy.

We discuss the ramifications of the independence between
remixing and rendering in Subsection 6.1 on future work, below.

5.4. Current architecture

The current class diagram is summarised in Figure 5. Not all
classes, methods, or attributes are shown, but it does give a
sense of the inheritance, some shared patterns, and how some
classes are contained within each others’ instances. What had
been independent classes are shown to be united by a common
superclass, which ends up being a powerful key to giving a uniform
interface to any object a user is likely to interact with.

We see from the developments in the library a kind of audio
rendering in three dimensions: sequentially in time, in parallel
with tracks, and with modifications applied in series to individ-
ual AudioQuantums. The prevailing reduction operator for se-
quential elements is append(), while parallel audio elements are
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Figure 5: A partial class diagram showing essential attributes, methods, class inheritance and some containment relationships.

combined with sum(). Modifications through successive effects
are combined through function composition. Nearly any mixing
operation can be modeled by some combination of these funda-
mental operators.

6. CONCLUSIONS

This paper represents just a snapshot of an experimental branch
of the Remix API as of mid-April 2009. While it is expected that
significant portions of the experimental branch is integrated into
the mainline, it is by no means guaranteed. Additionally, while the
code examples capture the flavour of the embedded DSL, we can-
not warrant that they be up-to-date. The internal implementation
code shown is intended to be merely representative of the small
scale of code that goes on behind the scenes.

With all of those disclaimers out of the way, we can say that
the Remix API is now a highly capable music manipulation lan-
guage. While the API does not accomplish anything profoundly
new that could not be achieved with another music programming
language – or even Matlab – the art of language design lies in the
levels of abstraction afforded to the programmer. The Remix API,
in connecting the Echo Nest’s Analyze API with sampled audio,
offered a powerful concept: automated beat-synchronous editing
based on perceptual audio analyses. In taking the concept further
through the ideas shown in this paper, the Remix API has become
a remixing language where users can interactively, exploratively,
or programmatically integrate songs from various sources, expres-
sively filtering through reams of data for the most suitable matches,
all while staying locked to the rhythmic clock of their choice.

There are a few users of the Remix API, and it is clear that
more have come aboard since the fundamental model has evolved.
Nearly all users use at least some of the new methods and classes –

particularly the navigation and context ones and the ones involved
with the rendering chain, but relatively few have been public about
using the terse functional programming-style method chaining.
This is no formal means of evaluation, but such user monitoring
does offer some feedback on what changes have been generally
useful.

6.1. Future work

The Remix API has a broad potential. The Echo Nest has already,
from the start, spoken of integrating video manipulation with the
existing audio manipulation. Both the Echo Nest programmers and
other API users have discussed the possibility of integrating high-
quality time stretching external libraries with the Remix API. We
hope that the plugin mechanism we describe provides a foundation
for integrating those and potentially many other libraries.

Among the issues explored in this paper, there are many ar-
eas for further development. The functional programming style
discussed throughout uses a lot of iteration. There is room for
much improved memory usage on the content-based manipulation
side, in which AudioQuantumLists are continually and repeat-
edly scanned. By moving such access to use Python iterators and
generators, the functional programming style will be further jus-
tified in lowering the performance and memory impact of such
operations. Item search within the AudioQuantumLists ob-
tained from the analyses currently uses naive scanning through the
entire list. Since we know the analysis to be ordered partitions,
temporal search (such as that used by all of the rhythmic hierar-
chy navigation methods) could be vastly improved by considering
the assumptions that AudioQuantums are ordered and fairly uni-
formly spaced: a binary or interpolation search would go far.

One of the reasons why the above memory and search time is-
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sues have not yet been addressed is that the resource demands they
make are generally dwarfed by the demands of manipulating au-
dio data. While moving to a multiple-source rendering paradigm,
the audio code was moved from 16-bit integers to a 32-bit format.
This, combined with early users’ tendencies to want to push the
system to its limits, means that inter-cutting a dozen songs can lead
to a gigabyte of sample data held in memory before any output is
created.

As a result of exploring the XML output discussed previously,
we noted that – as the Remix API stood – a complete (and rela-
tively compact) representation of the remixing intent was possible
independent of the audio sources. No sample data needs to be pre-
loaded. With regards to alleviating memory usage, the rendering
step could load one file, remix the relevant AudioQuantums, and
clear its memory before proceeding to another source file. In fact,
XML output could conceivably be generated and passed on to an-
other process – or machine – that renders the output and returns a
file.

If rendering is performed by another process or on another
machine, then new manipulation interaction patterns could form.
Graphical user interfaces – even on computationally low-powered
devices – could concentrate on letting the user directly manipulate
the AudioQuantums in the interface, directly reordering beats
and tatums at will, and then communicate with a rendering pro-
cess. Remix libraries could blossom in many different computer
languages, being as idiomatic as they wish. (How would a music
remixing library look in a LISP dialect, compared with Ruby, or
compared with Erlang?) The only requirement would be that they
input the XML from the Echo Nest Analyze API, and export ren-
dering directives in an XML dialect resembling that discussed in
Subsection 5.3.

These independent rendering processes need not even execute
on the same computing resource: they could be distributed. Since
audio is transparent, combining the products of render()s from
independent source files is as trivial as summing across all of the
independent renders and normalising upon output. Video has its
own techniques for composition, but, as time-based multimedia, it
shares much in common with the sequntial/parallel paradigm from
audio. This suggests a framework for collaborative, distributed
audio-visual remixing, where the basic components of interaction
are relatively light XML documents containing metadata or remix
directives. Users – or their computational clients – need not
handle any multimedia data. All multimedia handling can happen
remotely.

6.2. Summary

In open-sourcing the Remix API, the Echo Nest provided a frame-
work for event-synchronous music re-editing backed by their web-
based music analysis service. Since then, the re-editing has devel-
oped into a content- and context-aware audio remixing environ-
ment, capable of not only supporting an imperative coding style,
but a terse, expressive, functional and fluent interface. The na-
tive API tools for audio manipulation have evolved from being
one-dimensional – selection and re-ordering along the time axis –
to being three-dimensional, stacking multiple, simultaneous tracks
atop one another and then additional, parameter-driven, user-pro-
grammable audio effects atop those. The user controls these effects
by directly modifying analysis and other parameters on the objects
representing AudioQuantums.

Many of the ideas here have been around for a long time, but

we hope that in the presentation, their combination and synergies
point to something new.
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