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ABSTRACT

Spectral subtraction is a method for restoration of the spectrum
magnitude for signals observed in additive noise, through subtrac-
tion of an estimate of the average noise spectrum from the noisy
signal spectrum. In this paper we show that, starting from the
known minimum mean-square error (MMSE) suppression rules of
Ephraim and Malah and under the same modeling assumptions,
a simpler suppression filtering rule can be found. Moreover,we
demonstrate its performances and compare its computational costs
with respect to the reference rule of Ephraim and Malah. Thisre-
sult permits a real time implementation of the exposed theory with
an efficient algorithm on the DSP TMS320 C6713B.

1. INTRODUCTION

Noise reduction systems are used for many applications where var-
ious sources of ambient broadband noise degrade the qualityof ac-
quired audio signals. A great deal of work has been spent for au-
tomatic speech and/or speaker recognition, and the literature about
the state of the art is more and more focused about noisy environ-
ments [1]. Moreover, since long time it is known the negativeim-
pact of noise on the recognition over the telephone channel [2, 3].

Many short-time spectral attenuation techniques may be found
in the literature, in which a time-varying (zero phase) filter, or sup-
pression rule, is applied to the short-time Fourier transform of a
corrupted signal with the goal of improving the acquired SNR.

The minimum mean-square error (MMSE) suppression rules
due to Ephraim and Malah [4] appears to be extremely effective.
Unfortunately, direct implementation of this rule requires a great
amount of computations, which make it not suitable for real time
implementations. In particular the estimation of the suppression
filter implies computation of Bessel functions.

In this paper we start from the rule of Ephraim-Malah in order
to find a simpler function to weight the spectrum of noisy speech
signal. The proposed filtering rules is characterized by a very low
discrepancy with respect to the Ephraim-Malah solution andby a
dramatically lower computational load. In addition we compare
our rule to a similar simplified rule (Minimum Mean-Square Error
Spectral Power Estimator), originally presented in [5].

Finally a real-time DSP implementation of the proposed noise-
suppression approach is discussed. The implementation hasbeen

obtained with the floating-point digital signal processor TMS320
C6713B.

2. EPHRAIM-MALAH SUPPRESSION RULE

In this section we briefly summarize the suppression rule presented
in [4]. We assume thaty(n), the noise corrupted discrete input
signal, is composed of the clean speech signalx(n) plus the un-
correlated additive noise signald(n):

y(n) = x(n) + d(n). (1)

The signal is processed on a short-time basis (frame-by-frame) in
the frequency domain:

Yk(i) = Xk(i) + Dk(i), (2)

whereYk, Xk, Dk are the discrete Fourier transforms ofy, x, d;
the indexk ∈ [0, N) represents thek-th bin of the spectrum (with
N the order of the DFT) and the indexi ∈ Z thei-th time frame.

Noise reduction is achieved by the application of a suppres-
sion rule, the nonnegative real valued gainHk(i), to each bink of
the observed signal spectrumYk(i) in order to obtain an estimate
X̂k(i) of the clean speechXk(i):

X̂k = Hk(i) Yk(i). (3)

2.1. Additive Gaussian Model

In a Gaussian Model assumption the spectral components ofYk

andDk are modeled as independent, zero-mean, complex Gaus-
sian random variables (for simplicity indexi is omitted):

Yk = |Yk| e∠Yk ∈ N
`

0, σ2
y

´

(4)

Dk = |Dk| e∠Dk ∈ N
`

0, σ2
d

´

(5)

with variancesσ2
y andσ2

d. In such hypothesis the probability den-
sity for the absolute value of the complex variableYk is modeled
by the Rayleigh function:

p{|Yk|}(ak) =

(

1
σ2

y
ak exp

“

−a2

k

2σ2
y

”

x ≥ 0,

0 x < 0.
(6)
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Figure 1:Ephraim-Malah suppression rule Hk (in dB) for different
values of a priori and a posteriori SNR (ξ and γ resp.).

Similarly for the spectrumDk of the noise signal we have:

p{|Dk|}(ak) =

(

1
σ2

d

ak exp
“

−a2

k

2σ2

d

”

x ≥ 0,

0 x < 0.
(7)

2.2. MMSE Suppression Rule

The Ephraim-Malah MMSE log estimator is a short-time spectral
amplitude estimatorHk that minimizes the mean-square error of
the estimated logarithms of the spectraX̂k. It takes the following
form:

Hk =

√
πνk

2γk

nh

(1 + νk) I0

“νk

2

”

+ νkI1

“νk

2

”i

e−
νk
2

o

, (8)

whereIn(·) is the modified Bessel function (MBF) of ordern and
whereνk is defined as follow:

νk ,
ξk

1 + ξk
γk. (9)

The functionξk is thea priori signal-to-noise ratio and the func-
tion γk is the a posteriori signal-to-noise ratio. They are given
by:

ξk ,
|Xk|2
|Dk|2

, γk ,
|Yk|2
|Dk|2

. (10)

Figure 1 shows the reference rule as a function of the parametersξ
andγ expressed in dB.

2.3. A priori SNR,a posteriori SNR

The computation of thea priori SNR and thea posteriori SNR
requires the knowledge of the clean speech spectrumXk, which
is not available. An estimation of thea posteriori SNR can be
obtained as:

γk(i) ,
|Yk(i)|2

D̂k(i)
, (11)

under the assumption that the noised(n) is stationary and that
an estimationD̂k of its power spectrum may be computed during
portions of the input signaly(n) where no speech is present:

D̂k(i) , (1 − β) |Yk(i)|2 + β D̂k(i − 1)
˛

˛

˛

x(n)=0
. (12)

Theβ ∈ [0, 1] parameter in (12) controls the update speed of the
recursion from frame(i − 1)-th to framei-th.

An estimation of thea priori SNR can be obtained with a
decision-directed approach [5]:

ξk(i) , (1 − α)γ̂k(i) + α
|Hk(i − 1)Yk(i − 1)|2

D̂k(i)
, (13)

whereα ∈ [0, 1] parameter rules the update speed of the recursion
at the same manner as in (12) and where the functionγ̂k is simply
defined as:

γ̂k =

(

γk γk ≥ 0,

0 γk < 0.
(14)

2.4. Computational cost

In this section we compute the number of operations used by the
implementation of the exact Ephraim-Malah rule on the DSP. The
largest computational load is due to the MBFs of order0 and1,
In(ν/2). For integer values ofn, the MBFs are defined as:

In(ν) =
“ν

2

”n
+∞
X

m=0

`

ν
2

´2m

m!(m + n)!
. (15)

We need to find the indexM where the summation can be stopped,
in such a way that the truncation error is smaller than machine pre-
cision. The TMS320 C6713B DSP used in this work is featured
with a32-bit floating-point single precision CPU, where1.17549 ·
10−38 is the smallest representable normalized number. The de-
nominator in Eq. (15) leads the summatory terms to zero;M = 34
may be used as a good truncation point, as we have1/(2(M !)) =
1.6936 · 10−39.

To achieve a better estimate for the truncation pointM we
draw in Fig. 2 the absolute errorEM between a double precision
“exact” implementation, computed using the MBFs availablein
Matlab (double precision), and our implementation, truncated and
with single precision. There are three sources of error which affect
only the single precision algorithm:

• the single precision itself;

• the truncation error for the formula (15);

• the saturation ofν1.

Fig. 2 usesM = 1000 to keep low the truncation error and
highlight the others; we see the little numerical noise and,more
noticeable, the saturation error in the high-SNRs area. Numerical
and saturation errors can not be eliminated, so we proceed tothe
optimization ofM without taking care of these. Summing overξ
andγ the squared error for variousM values we are able to find
the optimalM used for truncation:M = 68. This is the lowest
one able to keep the whole error exactly the same asM = 1000
or more (i.e. withM = 68 we keep only the irremovable errors).

1This is due to the termexp (−νk/2) in (8); whenν exceeds177 this
term becomes too small to be represented in single precision, thus causing
the whole formula to diverge.
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Figure 2: Logarithm of the absolute error EM for (8) computed
using single and double precision; see text for details.

Having chosen a suitableM , we are now able to count the
floating-point operations used by our algorithm; in the following
we suppose the cost of any sum and product operation equal to1.
The Ephraim-Malah rule (8) is computed for every bin of the FFT,
which are twice as much as the cardinality of the samples in the
time domain because of the50% overlap of the audio frames.

For each time sample the formula (8), in our implementation
for single precision and with50% frames overlap, uses: two expo-
nentials, two square roots and2·(14+11M) = 1524 sum/product
operations.

3. PROPOSED SUPPRESSION RULE

The spectral amplitude estimator given by (8) requires the com-
putation of exponential and Bessel functions. This great amount
of operations is not suitable for real-time implementations, as it is
hardly sustainable also by highest performance DSPs.

In the past a number of simplified rules has been proposed;
in particular in [5] there are three alternative rules, eachone sup-
ported by a different theoretical view. Our simplified formula is
geared toward a fast real-time DSP implementation with a reason-
ably little performance loss over (8).

3.1. An approximated suppression rule

We propose a suppression rule that approximates the Ephraim-
Malah rule as the root of a second-order polynomial. The MBFs
In(·) have the following asymptotic forms for non-negative inte-
gern:

In(x) ∼ 1√
2πx

ex x ≫
˛

˛n2 − 1/4
˛

˛ ,

In(x) ∼ 1

n!

“x

2

”2n

0 < x ≪
√

n + 1,

(16)

which show that the the expression between braces in Eq. (8) is
asymptotic to

√
νk for νk → +∞, while it tends to1 for νk → 0.
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Figure 3:The global minimum of the cost function CH(b0) found
for b0 = 0.9182.

In light of this observation we introduce the following approxi-
mated suppression rule:

Ĥk =

√
πνk

2γk

p

b0 + b1νk, (17)

where the coefficientsb0,1 have to be determined in order to min-
imize the error ofĤk with respect toHk. Equivalently, we seek
b0,1 to provide the best fit of the lineb0 + b1νk to the function:

h

(1 + νk) I0

“νk

2

”

+ νkI1

“νk

2

”i2

e−νk . (18)

Using the first equation in (16) forn = 0, 1, the coefficientb1 can
be determined by observing that the function (18) has the follow-
ing asymptotic behavior:

h

(1 + νk) I0

“νk

2

”

+ νkI1

“νk

2

”i2

e−νk ∼ 4

π
νk, (19)

for νk → +∞. In practice this approximation holds forνk ≫ 3/4
(see Eq. (16)). By comparison with Eq. (17), one can see that in
order forĤk to fit Hk the value:

b1 =
4

π
(20)

has to be chosen.Viceversa, for small values ofνk, expanding
the exponential function in (18) according to its Maclaurinseries
up to the second order, and expanding the MBFs according to the
definition (15), yelds the approximation:

h

(1 + νk) I0

“νk

2

”

+ νkI1

“νk

2

”i2

e−νk ∼ 1+νk +
ν2

k

2
, (21)

for 0 < νk ≪ 1. It follows that in this limit:

Ĥk ∼
√

πνk

2γk

s

»

1 −
„

4

π
− 1

«

νk +
ν2

k

2

–

+
4

π
νk. (22)

The expression in brackets in Eq. (22) suggests that the interval
where to seek the optimal value ofb0 is a left neighborhood of the
value1.
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Figure 4:Gain errors of H̃k (upper surface) and Ĥk (lower sur-
face) with respect to the reference Hk.

3.2. Optimal coefficientb0

A key point in the approximation̂Hk in (17) is the choice of the
optimal coefficientb0. We find the optimalb0 by minimizing the
square error between̂Hk andHk. That is, the optimalb0 mini-
mizes the cost function:

C(b0) ,

Z

ξ

Z

γ

|Ek|2 dξdγ, (23)

where the error functionEk = Hk − Ĥk depends parametrically
on b0. In Fig. 1 the two independent variablesξ andγ both vary
in the range[−30, 30] dB, similarly to [5]. We choose to compute
the cost functionC(b0) in these ranges of values. Leaving implicit
the conversion to linear values, and referring to (9) to obtain ν, we
rewrite the cost function as:

C(b0) =
30

X

ξ=−30

30
X

γ=−30

h

Hk − Ĥk(b0)
i2

, (24)

with the only independent variableb0. The optimization is thus
straightforward; we use a (linear) grid approach, refining the grid
in the vicinity of the global minimum indicated by Eq. (22) and
related statements. Fig. 3 shows the cost function in the range
[0.84, 1.0]; the value

b0 = 0.9182 (25)

is found to provide the absolute minimum forC(b0). Recalling
Eq. (20) and rearranging terms yields the approximated suppres-
sion rule used in the DSP implementation:

Ĥk =
1

γk

r

π

4
(b0νk + b1ν2

k) =
1

γk

q

0.7212νk + ν2
k. (26)

3.3. Gain error and computational costs

The proposed rulêHk in Eq. (26) has been compared quantita-
tively to the original Ephraim-Malah ruleHk by studying the dB
error (20 log10 |Ek|) over the whole ranges forξ andγ.

Figure 5:Block diagram TMS320 C6713B DSK board.

Additionally we have compared our approximated rule with
the MMSESP estimator proposed by Wolfe and Godsill in [5]:

H̃k =

s

ξk

1 + ξk

„

1 + νk

γk

«

=
1

γk

q

νk + ν2
k. (27)

The reason is that this latter estimator is functionally very similar
to our Eq. (26) (with differentb0 andb1 values), although it has
been found based on a statistical rather than algebraic approach.

Figure 4 shows the gain differences of both our rule andH̃k

with respect to the referenceHk. From this figure one can note
that, despite the approximations introduced and the limitations due
to single precision, the absolute maximum error provided byĤk is
well below−30 dB over the whole SNR ranges and below−40 dB
in the most interesting areas (ξ > 0 dB). Moreover, comparison of
the two error surfaces shows that the gain error ofH̃k is higher
throughout the considered range, and reaches a maximum at about
−18 dB.

The computational cost of the proposed approximation (26)
is, for each time-domain sample, the following: two square roots
and10 operations (5 operations counted twice because of the50%
overlap). The MMSESP estimator (27) uses two square roots and
4 · 2 = 8 operations; thus our approximation carryes only a little
extra computational effort. By contrast you can compare these
numbers with those in the end of section 2.4.

3.4. DSP Implementation

A real-time implementation of the proposed suppression rule was
obtained with the board DSK TMS320 C6713B, equipped with
the floating-point digital signal processor TMS320 C6713B (Fig.
5). Operating at 225 MHz, this DSP delivers up to 1350 million
floating-point operations per second (MFLOPS), and 1800 million
instructions per second (MIPS). The CPU fetches advanced very-
long instruction words (256 bits wide) to supply up to eight 32-bit
instructions to the eight functional units during every clock cycle.

Referring to Fig. 6, the DSP receives the analog audio sig-
nals through an on-board TLV320 AIC23 codec with 90 dB SNR
Multibit Sigma-Delta ADC (A-weighted atFs = 48 kHz). The
input signal is segmented in blocks of2N = 512 samples with
an overlap of256 samples (50%) based on Hanning window. The
frame-rate period is equal toTf = 5.33 ms; consequently the
maximum DSP load capacity is fixed to9.6 million instructions
per frame.
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Figure 6:Schematic of the DSP implementation.

Spectral analysis is implemented efficiently by means of a
N = 256 complex points radix-2 FFT. The original2N -point
real sequence is packed as aN -point complex sequence, on which
N -point complex FFT is applied. The resultingN -point complex
output is unpacked into anotherN + 1 point complex sequence,
which corresponds to spectral bins0 to N of the 2N -point real
input sequence.

After filtering by means of our suppression rule, the inverse
FFT and the Overlap-Addition method are used to obtain segments
of processed speech, which are passed to the D/A converter. A
voice activity detector (VAD) is required to identify thoseframes
of the input signal in which only noise is present; the noise spec-
trum is updated only in these frames using Eq. (12). The VAD
has to accurately identify frames of silence in order to avoid erro-
neous updates of the noise spectrum including parts of the speech
signal. The detector used in this implementation is based ona sta-
tistical model-based voice activity detection approach; it computes
the likelihood ratio of speech being present or absent in theinput
frame as described in [6]. The parameterη in Fig. 6 determines
the threshold of speech level detection.

Table 1 reports results about the computational load in million
instructions per frame, for both the original ruleHk and the pro-
posed ruleĤk. The benchmark profiler integrated in DSP Code
Composer Studio v3.3 was used in order to obtain these estimates.
The number of cycles refers to a single input frame. As discussed
in Sec. 2.4, the CPU load of the original rule is computed in single-
precision usingM = 68, by englobing the exponential func-
tion e−ν/2 in (8) into the Bessel series, and expanding the term
(ν/2)2m+n in (15) as a product of single factors to preserve the
numerical accuracy.

Max Cycles Avrg. Cycles
[mill. instr.] [mill. instr.]

Ephraim-Malah RuleHk 17.697 17.586
Proposed RulêHk 0.221 0.153

Table 1:DSP computational loads per frame (2N = 512).

The computational loads reported in Table 1 show that direct
implementation of the Ephraim-Malah suppression rule is far from
providing a real-time de-noising algorithm on the DSP TMS320
C6713B. On the other hand the approximated rule can straightfor-
ward be implemented on DSP without further optimization, asit
requires a small fraction of the available computational power.

4. CONCLUSIONS

We have proposed a new suppression rule for noise reduction ap-
plications looking at the well-known Ephraim-Malah rule asa ref-
erence, but aiming toward real-time DSP implementations. In the
first part of the paper we have determined the minimum number of
iterations needed to obtain the precise computation of the MBFs
for the Ephraim-Malah rule. This analysis has provided a quan-
titative estimate of the computational cost of the Ephraim-Malah
rule. Moreover the analysis has shown that double precisioncal-
culations are needed for accurate implementation.

The proposed rule is obtained starting from asymptotic consid-
erations on the Ephraim-Malah rule, based on which a simplified
equation with two coefficients is found and a range for possible
values for these coefficients is determined. We have then applied a
straightforward numerical optimization procedure to fine-tune the
parameters. The results discussed in Sec. 3.3 show that, despite
the apparently crude approximations, the proposed rule exhibits
negligible gain errors.

We have then described the computational cost for our pro-
posed rule, with references to a real-world DSP implementation.
A real-time set up has been developed in order to perform direct
comparisons between computational loads of the original and ap-
proximated rules. This comparison shows that the approximated
rule requires a small fraction of the computational power ofthe
DSP. On the contrary the DSP is not able to support the original
Ephraim-Malah rule in real-time.

We have done some tests using real-world audio samples and
pointing out the good properties of our real-time implementation.
Our future activities will try to apply some objective measures,
like those of the PESQ standards, which should show the improved
intelligibility of the filtered speech. Combining noise suppression
and speech enhancement may also give interesting results.
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