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ABSTRACT
The dynamic simulation of nonlinear guitar effects has recently
been studied in depth. There are several approaches to the simu-
lation of the distortion guitar effects. This paper presents an al-
gorithm based on using a digital linear time-variant filter for the
simulation of the nonlinear circuit of diode limiter. Filter coeffi-
cients are changed in each sample period according to the level of
an input and output signal using numerical methods for the solu-
tion of nonlinear functions. The designed algorithm was used in
the distortion effect to examine its characteristics. Sound examples
of the implemented distortion effect can be found at web page
www.utko.feec.vutbr.cz/~schimmel/DAFx09/.

1. INTRODUCTION

Real-time digital simulation of analogue guitar effects has recently
become very popular. However, implementing these systems brings
two contradictory requirements – accuracy versus computational
complexity. Therefore the whole process of the simulation is di-
vided into individual blocks and each block is simulated individ-
ually [1], [2]; this allows describing each block more precisely,
but we have to ignore the effect of adjacent blocks. The ana-
logue guitar distortion effects usually consist of filters and non-
linear blocks. The nonlinear block can be effectively implemented
as a static waveshaper with good results [3]. Nevertheless, accord-
ing to [4], a static nonlinearity doesn’t work well on transients. A
more accurate approach has been proposed in [3]. It is based on
the solution of nonlinear ordinary differential equations (ODE) us-
ing implicit (Backward Euler) and explicit (Forward Euler, Runga-
Kutta) solvers. Linear time-invariant (LTI) filters can be consid-
ered as solvers of linear ODEs and they can be used for the sim-
ulation of small-signal models of nonlinear systems because the
coefficients of these models are constant. However, in the guitar
distortion effect, large-signal models must be used. Large-signal
models that do not have constant parameters, can be described by
a set of small-signal models with different parameters. Therefore
the linear time-variant filters must be used instead of the LTI filters.

2. DIODE LIMITER CIRCUIT MODEL

The diode limiter can be found in many guitar distortion effect ped-
als. Example of the diode limiter that provides one-way limiting is
shown in Figure 1.The diode current is given by the equation

Id = Is(e
Ud
Ut − 1), (1)

where Is is the saturation current, Ud is the voltage on the diode,
and Ut is the thermal voltage. Using Kirchhoff’s law we can ob-

tain the nonlinear ODE
dUd

dt
=

Ui − Ud

RC
− Is

C
(e

Ud
Ut − 1). (2)

This equation can be solved using some of the methods for numer-
ical solution of the ODE.

R
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Figure 1: Diode limiter model.

2.1. Small-Signal Model of Diode Limiter

The diode from the circuit in Figure 1 can be replaced with a non-
linear resistance. This leads to the circuit in Figure 2. The nonlin-
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Figure 2: Small-signal model of diode limiter.

ear resistance r can be obtained from

r =
Ud

Id
=

Ud

Is(e
Ud
Ut − 1)

(3)

and it is considered a constant in a small-signal model. Therefore
it is possible to get the transfer function of this circuit

S(s) =
r

r + R + sCRr
. (4)

The bilinear transform [5] of equation (4) results in

H (z ) =
r + rz−1

r + R + 2fsCRr + (r + R − 2fsCRr)z−1

=
a0 + a1z

−1

b0 + b1z−1
,

(5)

where a0, a1, b0 and b1 are the LTI filter coefficients. The output
signal is then

Ud[n] =
a0

b0
Ui[n] +

a1

b0
Ui[n − 1]− b1

b0
Ud[n − 1]. (6)
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2.2. Large-Signal Model of Diode Limiter with Linear Time-
Variant Filter

A large-signal model works in a wider range of input voltages than
the small-signal model, so the nonlinear resistance r is now a func-
tion of the output voltage Ud. The digital filter coefficients com-
puted according to (5) are also functions of output voltage Ud. The
output voltage equation (6) will change to

Ud[n] =
a0(Ud[n − 1])

b0(Ud[n − 1])
Ui[n]+

+
a1(Ud[n − 1])

b0(Ud[n − 1])
Ui[n − 1]−

− b1(Ud[n − 1])

b0(Ud[n − 1])
Ud[n − 1].

(7)

In this equation the output voltage value from the last iteration
Ud[n − 1] is used to compute filter coefficients a0(Ud[n − 1]),
a1(Ud[n − 1]), b0(Ud[n − 1]) and b1(Ud[n − 1]). Then the new
output signal value is computed. Figures 3 and 4 show the output
signal for 1 kHz sinewave input with an amplitude of 1 V at a
sampling frequency of 48 kHz. This algorithm needs to work at
high sampling frequencies with view to the stability of the solution
like explicit methods for solving the ODEs [3], [6].
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Figure 3: Output voltage for 1 kHz sinewave input with amplitude
of 1 V. No oversampling is used.
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Figure 4: Output voltage for 1 kHz sinewave input with amplitude
of 1 V. 8-fold oversampling is used.

The second possibility is exploiting the output signal value
Ud[n] for the computation of the filter coefficients. This algorithm

is analogous to implicit methods for solving the ODEs. The output
signal equation is in the following form:

Ud[n] =
a0(Ud[n])

b0(Ud[n])
Ui[n] +

a1(Ud[n])

b0(Ud[n])
Ui[n − 1]−

− b1(Ud[n])

b0(Ud[n])
Ud[n − 1].

(8)

Substitution of filter coefficients from (5) and converting equation
(8) into implicit form leads to the nonlinear function

f (Ud[n],Ui[n]) =
Ui[n] + Ui[n − 1]

Is
Ud

(e
Ud[n]

Ut − 1)

−

−


 1− 2fsCR

Is
Ud

(e
Ud[n]

Ut − 1)

+ R


Ud[n − 1]−

−


 1 + 2fsCR

Is
Ud

(e
Ud[n]

Ut − 1)

+ R


Ud[n] = 0,

(9)

where vector Ud[n] = [Ud[n],Ud[n − 1]] and Ui[n] = [Ui[n],
Ui[n − 1]]. The equation (9) is solved by the Newton method

U k+1
d [n] = U k

d [n]− f ([U k
d [n],Ud[n − 1]],Ui[n])

f ′([U k
d [n],Ud[n − 1]],Ui[n])

, (10)

where k is the iteration index and the value U 0
d [n] is the output

signal estimation. The derivation f ′ is approximated by the finite
difference formula. The output signal for the 10 kHz sinewave
signal with an amplitude of 10 V and the time behavior of the filter
coefficients are displayed in Figure 5.
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Figure 5: Time behavior of coefficients and output signal when
sinewave input signal is used.
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2.3. Reduction of iterations

The efficiency of the implicit type of the algorithm depends on the
output signal estimation U 0

d [n]. The efficient estimator is filter
with coefficients computed in the last iteration

U 0
d [n] =

a0(Ud[n − 1])

b0(Ud[n − 1])
Ui[n]+

+
a1(Ud[n − 1])

b0(Ud[n − 1])
Ui[n − 1]−

− b1(Ud[n − 1])

b0(Ud[n − 1])
Ud[n − 1].

(11)

The output signal for the 10 kHz sinewave signal with an ampli-
tude of 10 V and the number of iterations required for each output
signal sample are shown in Figure 6. The estimated output signal
value (solid line in Figures 7a and 7b) is the same as the com-
puted value (crosses in Figures 7a and 7b) in the linear part of the
transfer function, so the number of iterations here is one. A wrong
estimation occurs in the nonlinear part of the transfer function (see
Figure 7a) and the number of iterations rapidly grows here (dashed
line in Figure 6). This could be solved by replacing the estimated
value with

U 0
dmax[n] = f (Uimax), (12)

where
f (Ui) = RIs(e

Ud
Ut − 1) + Ud − Ui (13)

is the circuit equation without capacitor – the memory effect of
the capacitor does not have any influence at the maximal satura-
tion level. The result of this improvement is shown in Figure 7b
and the number of iterations has been reduced (solid line in figure
6). The 8-fold oversampling has been used to reduce aliasing that
can cause problems with stability at higher frequencies and also
unwanted audio distortion.
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Figure 6: Output signal (top) and required number of iterations
per signal sample (bottom).
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Figure 7: Dynamic transfer function of diode limiter and output
estimation when simple filter (a) and filter with saturation (b) are
used as the estimator. Solid line is the output signal estimation and
crosses are the output signal values.

2.4. Effect Implementation

The circuit from Figure 1 is a theoretical model. A circuit with
two diodes connected in anti-parallel (see Figure 8) is used in real
guitar distortion effect pedals. The nonlinear resistance r of both
the diodes is

r =
Ud

2Issinh(Ud
Ut

)
(14)

and can be directly used in equation (5) to get the filter coefficients.
The nonlinear output equation is now

f (Ud[n],Ui[n]) =
Ui[n] + Ui[n − 1]

2Is
Ud

sinh(Ud[n]
Ut

)
−

−
(

1− 2fsCR
2Is
Ud

sinh(Ud[n]
Ut

)
+ R

)
Ud[n − 1]−

−
(

1 + 2fsCR
2Is
Ud

sinh(Ud[n]
Ut

)
+ R

)
Ud[n] = 0.

(15)
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Figure 8: Real diode limiter model.

The whole algorithm is implemented according to the block
diagram in Figure 9. The Nonlinear Solver block implements the
Newton method for solving equation (15). The output signal value
can be directly obtained from this block. It is possible to get the
diode dynamic resistance according to (14) and then to compute
filter coefficients that are used in the estimator. To prevent a higher
number of iterations, the saturation block is connected after the
estimator. The estimated value is then used in the Newton method
in the next sample period.

Figure 9: Block diagram of the algorithm.

This algorithm was implemented in Matlab and then tested on
a real guitar signal and compared with Backward Euler method.
An E chord guitar riff was used as the testing signal. The recorded
signal was amplified to a maximum level of 10 Volts. In addition
to the the output signal and difference between LTV filter and Eu-
ler mothod (see Figure 13), the average and maximum number of
iterations in each sample period was examined, which is related to
the computation demands of the algorithm. To avoid a dead-lock,
the maximum of iterations was limited. The average number of
iterations depends on the chosen numerical error (see Figure 10)
– the value increases together with the accuracy of the algorithm.
The number of iterations also depends on the level of the input sig-
nal, as is shown in Figure 11. The LTV filter method has the lower
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Figure 10: Average number of iterations versus numerical error.

average number of iterations than Euler method, but the maximum
number of iterations is higher (see Figure 12). Some problems
with solution stability appeared during the testing of the algorithm
when oversampling was not used. Therefore 4-fold oversampling
has been used to ensure stability.
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Figure 11: Average number of iterations versus maximum input
signal level. Numerical error is 10−3.
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Figure 12: Maximum number of iterations versus maximum input
signal level. Numerical error is 10−3.
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Figure 13: Output signal for the part of guitar riff (top) and differ-
ence between LTV filter and Backward Euler method (bottom).
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3. CONCLUSIONS

The utilization of the linear time-variant digital filters for the sim-
ulation of nonlinear dynamic systems was discussed in this paper.
Two types of algorithm were designed. The first one is a simple
in-time iteration that requires very high sampling frequencies to
get appropriate results. The second one is based on the Newton
method and it can work at relatively low sampling frequencies.
The efficiency of this algorithm depends on the estimation of the
signal value in the next sample period. The digital filter seems to
be an efficient estimator, especially in the linear parts of the trans-
fer function. Saturation of the estimation was added to reduce the
number of iterations in the nonlinear part of transfer function.

The designed algorithm was used to simulate the nonlinear
circuit of the diode limiter and then tested on a real guitar sig-
nal. Some stability problems were observed when oversampling
was not used. However, the algorithm gives good results when
oversampling is applied and it is possible to use it in the guitar
distortion effect.

The results of the algorithm were compared to the Backward
Euler method. The both methods give almost the same output sig-
nal. Compared to the Euler method, the LTV filter method has
the lower average number of iterations but the maximal number of
iterations is higher.
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