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ABSTRACT

Physical models of real or virtual instruments are usually only ex-
ploited for the generation of wave forms. However, models oftwo-
and three-dimensional vibrating structures contain also informa-
tion about the sound radiation into the free field. This contribution
presents a model for a membrane from which the required driv-
ing functions for a multichannel loudspeaker array are derived.
The resulting sound field reproduces not only the musical timbre
of the sounding body but also its spatial radiation characteristics.
It is suitable for real-time synthesis without pre-recorded or pre-
synthesized source tracks.

1. INTRODUCTION

The spatial radiation characteristics of musical instruments have
been a research topic for quite a long time. Many results have
been obtained by careful physical analysis of the acoustical and
mechanical properties of musical instruments. Initially,the main
intention of this research has been to obtain a scientific understand-
ing of the mysteries behind the sound production of traditional in-
struments. For a compilation of selected research see e.g. [1].

Recently the focus has shifted from pure understanding to the
attempt of actual reproduction of the temporal and spatial proper-
ties of real instruments. This change of interest has been driven
by new spatial reproduction technologies, like Ambisonics, wave
field synthesis, and vector based amplitude panning. With different
mathematical, physical, and perceptual methods, these newrepro-
duction techniques overcome the limitations of traditional stereo
panning.

However, to use these new reproduction techniques to the best
of their possiblilities, a more precise knowledge of the spatial di-
rectivity of musical instruments is required. During the last years,
a lot of effort went into the careful measurement of the spatial
radiation characteristics of many traditional musical instruments.
Ingenious recording devices have been developed to determine the
amount of acoustical energy radiated by musical instruments to
the environment in dependence of azimuth and elevation angle
and of the musical notes played, see e.g. [2, 3, 4, 5, 6]. Similar
to head related transfer functions, this information can bestored
and retrieved to reproduce not only the recorded wave form but
also the position of a specific instrument in the orchestra setup
and the varying pose of the musician during peformance. Suchan
approach might be called data-based, because it relies on record-
ings of the musical piece as well as of the spatial radiation char-
acteristics of each single instrument. A related problem has been
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studied in [7] for the spatial reproduction of non-omnidirectional
loudspeakers. Similar to musical instruments, the directivity of the
loudspeakers has to be determined from measurements.

A different route is taken here. Rather than relying on mea-
sured data, a physical model of a musical instrument is used to de-
rive its spatial characteristics in an analytic way. Such a model can
never reproduce all details of a real instrument but it may provide
a parametric way for defining and manipulating certain typical di-
rectivities.

The physical model used here is not entirely new. It has been
used before to reproduce the waveforms of generic vibratingob-
jects (strings, membranes, plates, air columns). In addition to ex-
ploiting the physical model for its temporal characteristics only,
also its spatial characteristic, i.e. its directivity, is used here.

As an example, a physical model of a membrane is consid-
ered. A detailed analysis of the membrane’s vibration as well as of
the sound propagation from the membrane to the locations of the
reproduction loudspeakers allows to determine their driving func-
tions in an analytic fashion. In contrast to a simpler pistonmodel
presented earlier [8], the motion of the membrane does not have to
be calculated explicitly.

Sec. 2 discusses a simplified membrane model which is suf-
ficient to establish the proposed method. The calculation ofthe
loudspeaker driving functions for wave field synthesis reproduc-
tion is briefly shown in Sec. 3. The core results i.e. the link be-
tween the physical model and the loudspeaker driving functions
are presented in Sec. 4.

2. PHYSICAL MODELING OF TWO-DIMENSIONAL
STRUCTURES

This section gives a concise introduction to physical modeling with
functional transformations. The material discussed here is neither
new nor complete. More detailed presentations can be found in
[9, 10, 11, 12, 13]. The following analysis is included for com-
pleteness and it is restricted to those aspects which are important in
the context of spatial sound synthesis. Therefore only a simplified
vibration model and only the continuous-time case are considered.
These restrictions allow to focus on the calculation of the spatial
eigenfunctions, which provide the link to the spatial soundradia-
tion in Sec. 4. A few extensions to more general cases are shortly
discussed in Sec. 2.6.

2.1. The Wave Equation

As a simple example of a two-dimensional structure considerthe
transversal vibrations of a membrane. Its spatial region isde-
scribed by the vector of two-dimensional spatial coordinates x.
The type of coordinates (e.g. polar, Cartesian, etc.) matches the
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shape of the spatial regionx ∈ V (e.g. a circle, a rectangle,
etc.). The vibration of the membrane is described by the deflection
u(x, t) in the third dimension normal toV , wheret is the contin-
uous time coordinate. The membrane is fixed to the boundary∂V
of V , such that the deflection is zero at the boundary. An excitation
f(x, t) shall act on the membrane, typically a drum stick, a mal-
let, or alike. In the simplest case the vibration is governedby the
wave equation, which links the excitationf(x, t) to the deflection
u(x, t), subject to the boundary conditions as

∆u(x, t) − 1

c2

∂2

∂t2
u(x, t) = f(x, t) x ∈ V, (1)

u(x, t) = 0 x ∈ ∂V, (2)

wherec is the speed of sound. The Laplace operator∆ = ∇2

(divergence of the gradient) describes the spatial differentation in a
coordinate free representation. When a specific coordinatesystem
is adopted,∆ can be specified with respect to these coordinates.

2.2. Fourier-Transformation

Application of the Fourier-transformation with respect totime

U(x, jω) = F{u(x, t)} =

∞
∫

−∞

u(x, t) exp(−jωt) dt (3)

turns the wave equation into the Helmholtz equation

∆U(x, jω) +
(ω

c

)2

U(x, jω) = F (x, jω) x ∈ V, (4)

U(x, jω) = 0 x ∈ ∂V. (5)

The differentiation theorem of the Fourier-transformation converts
the second-order time derivative into a multiplication with (jω)2.
Thus a boundary value problem for the space variable remains.

2.3. Sturm-Liouville-Transformation

To remove also the spatial differentiation∆, another transforma-
tion for the space variables is required, the so-called Sturm-Liou-
ville-transformation.

2.3.1. Definition

Unlike Fourier- or Laplace-transformation, the transformation ker-
nel of the Sturm-Liouville-transformation depends on the spatial
differentiation operator (here∆), the shape of the spatial region
(hereV ), and the boundary conditions (5). Therefore, a generic
definition with an yet unspecified transformation kernel is given
for the moment. The transformation kernelK(β,x) depends on
the space variablex and a scalar spatial frequency variableβ.
Then the Sturm-Liouville-transformationT is defined by spatial
integration over the regionV

Ū(β, jω) = T {U(x, jω)} =

∫

V

U(x, jω)K(β,x) dx. (6)

2.3.2. Application to the Helmholtz equation

Application of the Sturm-Liouville-transformation to theHelmholtz
equation (4) gives

T {∆U(x, jω)} +
(ω

c

)2

Ū(β, jω) = F̄ (β, jω) (7)

Similar to the Fourier-transformation, a differentation theorem for
the transformation of∆U(x, jω) is required.

2.3.3. Differentiation Theorem

The procedure for obtaining a differentation theorem for the Sturm-
Liouville-transformation differs from other transformations. E.g.
for the Laplace- or the Fourier-transformation, the transformation
kernel is known in advance (exp(−st) or exp(−jωt), respec-
tively). From this transformation kernel, the differentation theo-
rem is derived, e.g. through integration by parts.

On the other hand, the differentiation theorem for the Sturm-
Liouville-transformation is constructed such that it is useful for
the problem at hand, here the boundary value problem (4,5). The
transformation kernelK(β,x) follows from the procedure for ob-
taining the differentiation theorem.

This approach is a generalization of the integration by parts.
To start with, consider the expressionU · ∇K − ∇U · K. Its
divergence is given by (the arguments are omitted for simplicity)

∇(U · ∇K −∇U · K) = U · ∆K − ∆U · K. (8)

Now integrate both sides over the volumeV . For the divergence
on the left hand side, the Gauß-integral-theorem can be applied
∫

∂V

(U · ∇K −∇U · K) dx =

∫

V

U · ∆K dx −
∫

V

∆U · K dx.

(9)

So far, no assumptions about the transformation kernelK have
been made. To adapt it to the given problem, two conditions are
required. One condition concerns only the boundary∂V , the other
one is valid inside of the spatial regionV .

The first condition requires thatK(β,x) shall satisfy the same
boundary conditions asU(x, jω) in (5), i.e.

K(β,x) = 0 x ∈ ∂V. (10)

Due to (5) and (10) the left hand side of (9) vanishes and
∫

V

U · ∆K dx =

∫

V

∆U · K dx (11)

remains. It is the equivalent to integration by parts for homoge-
neous boundary conditions.

While the first condition forK(β,x) is valid only on the bound-
ary ∂V , the second one addresses the behaviour inside ofV . It
requires that

∆K(β,x) = (jβ)2K(β,x), x ∈ V, (12)

such that (11) turns into
∫

V

∆U · K dx = (jβ)2
∫

V

U · K dx. (13)
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With the definition of the Sturm-Liouville-transformationin (6)
follows the differentiation theorem

T {∆U(x, jω)} = (jβ)2 T {U(x, jω)}. (14)

Now also the transformation of the first term in (7) can be per-
formed. It removes the spatial differentiation by∆ and replaces it
by a multiplication with(jβ)2. The result is an algebraic equation

(jβ)2 Ū(β, jω) +
(ω

c

)2

Ū(β, jω) = F̄ (β, jω). (15)

The differentiation theorem (14) can also be established for the
more general cases discussed in Sec. 2.6, see e.g. [10, 14, 15].

2.4. Transfer Function Description

It is straightforward to solve (15) for the transformationŪ(β, jω)
of the unknown deflection by simple algebraic operations. The
result can be written in the form of

Ū(β, jω) = Ḡu(β, jω)F̄ (β, jω) (16)

with the transfer function

Ḡu(β, jω) =
1

(

ω
c

)2 − β2
=

c2

ω2 − (cβ)2
. (17)

The roots of this transfer function resemble the dispersionrelation
of the wave equation whereβ takes the role of the wave number

β = ±
(ω

c

)

, (18)

The transfer function description (16) is the starting point for
the derivation of a discrete-time synthesis algorithm which pro-
duces time samples of the deflectionu(x, t) within the accuracy
limits imposed by the audio sampling rate. This process involves a
continuous-to-discrete-time transformation ofḠu(β, jω) like the
impulse-invariant or the bilinear transformation. The impulse-in-
variant transformation preserves the eigenresonances since it is
free from frequency warping. Aliasing can be avoided, if thesyn-
thesis is restricted to the audio range which is only reasonable.

The discrete-time synthesis is not developed here because it
has been presented in e.g. [10, 16]. The spatial characteristics,
which are of interest here, can also be shown in the continuous-
time representation. To this end, the spatial structure imposed by
the above two conditions for the spatial transformation kernel K
has to be investigated.

2.5. Eigenfunctions

2.5.1. General Case

The two conditions for the spatial transformation kernelK from (10)
and (12) are compiled here as

∆K(β,x) + β2K(β,x) = 0 x ∈ V, (19)

K(β,x) = 0 x ∈ ∂V. (20)

These conditions constitute a homogeneous boundary value prob-
lem forK(β,x) with a similar structure as (4, 5). Boundary values
problems of this kind are known as Sturm-Liouville problemsand
are well studied, see e.g. [14, 15, 17, 18, 19, 20]. Equation (19) can

µ+1

��
v̄(βµ, t)

f̄(βµ, t) // Ḡv(βµ, ω) • // N−1
µ K(βµ,x) // /.-,()*++ // v(x, t)

µ−1

OO

Figure 1: Computational structure in the space-time domain.

be seen as an eigenvalue problem with the eigenvalue(jβ)2. Solu-
tions exist for a discrete set of values forβ = βµ with µ ∈ Z. The
corresponding eigenfunctions form a set of orthogonal functions
with

∫

V

K(βµ,x)K(βν ,x) =

{

Nµ µ = ν
0 µ 6= ν

. (21)

Thus the inverse Sturm-Liouville-transformationT −1 has the form
of a generalized Fourier series (see (6))

U(x, jω) =
∑

µ

1

Nµ

Ū(βµ, jω)K(βµ,x) . (22)

2.5.2. Synthesis Structure

By inverse Fourier-transformation follows the deflection of the
membrane in the space-time domain

u(x, t) =
∑

µ

1

Nµ

ū(βµ, t)K(βµ,x) . (23)

In the same way also the velocity of the membrane can be obtained
as the time derivative of the deflection

v(x, t) =
∑

µ

1

Nµ

v̄(βµ, t)K(βµ,x) , (24)

wherev̄(βµ, t) is computed similar to (16) with̄Gv(βµ, jω) in-
stead ofḠu(βµ, jω)

Ḡv(βµ, jω) = jω Ḡu(βµ, jω) . (25)

Fig. 1 shows the structure in the space-time domain, as it evolves
from (16), (24), and (25). It consists of a number of parallel
branches from (24), where only the one with the numberµ is
shown here. Note that̄Gv(βµ, jω) is the frequency-domain de-
scription of a continuous-time dynamical system. In a discrete-
time realization it would be approximated by an IIR filter.

2.5.3. Circular Membrane

As a typical example consider a circular membrane with radiusR.
It is conveniently described in polar coordinates(ρ, ϕ) with 0 ≤
ρ ≤ R and0 ≤ ϕ < 2π. The eigenfunctionsK(β,x) are then
written asK(β,x) = K(β, ρ, ϕ) and the Laplace operator has the
form

∆K(β, ρ, ϕ) =
1

ρ

∂

∂ρ

(

ρ
∂

∂ρ
K(β, ρ, ϕ)

)

+
1

ρ2

∂2

∂ϕ2
K(β, ρ, ϕ)

(26)
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such that the eigenvalue problem (19) can be written as

ρ
∂

∂ρ

(

ρ
∂

∂ρ
K(β, ρ, ϕ)

)

+
∂2

∂ϕ2
K(β, ρ, ϕ) + (ρβ)2K(β, ρ, ϕ) = 0.

(27)

A real-valued form of the solution is

K(β, ρ, ϕ) = Jn(ρβ) cos nϕ (28)

with the Bessel functionJn of first kind and ordern. The well-
known properties of the Bessel functionJn show that (28) is a
solution of (19) in the form of (27). However, the boundary con-
dition (19) still has to be considered. The boundary∂V of a circle
is described in polar coordinates byρ = R. The boundary condi-
tion (19) for the circular membrane thus requiresK(β, R, ϕ) = 0
which is fullfilled for Rβnν = λnν whereλnν is the zero num-
ber ν of the Bessel functionJn, i.e. Jn(λnν) = 0. Thusβ is
restricted to

βnν =
1

R
λnν , n ∈ Z, ν = 1, 2, . . . (29)

and the eigenfunctions can be indexed in the order of the Bessel
functionn and the number of its zerosν as

K(βnν , ρ, ϕ) = Jn

( ρ

R
λnν

)

cos nϕ = Jn(ρβnν) cos nϕ. (30)

The double indexn andν is not convenient, but it cannot be avoided
alltogether. As a link to the audio frequencies consider thedisper-
sion relation (18) with

ωnν = 2π fnν = c βnν =
c

R
λnν . (31)

The lowest eigenfrequency corresponds to the first zero ofJ0 at
λ0,1 = 2.404826 with n = 0 andν = 1 as

f0,1 =
1

2π

c

R
λ0,1 . (32)

For c = 340 m
s andR = 0.54 m followsf0,1 ≈ 240 Hz.

A simpler indexing scheme is obtained by ordering the val-
uesβµ = βnν in increasing order of the resulting audio frequen-
vies (32). Both indexing schemes are used in the sequel.

2.6. Extensions

The concise presentation of the physical modeling method inthis
section has been chosen because it provides a short and complete
route from the initial problem to the structure of the eigenfunc-
tions (28) and their time evolution expressed by the coefficients
ū(βµ, t) andv̄(βµ, t) in (23) and (24), respectively. However the
functional transformation approach is applicable to far more gen-
eral problems. A few extensions are highlighted below.

2.6.1. Damping and Dispersion

More accurate models for vibrating bodies include also effects like
damping or dispersion. Their physical description resultsin addi-
tonal terms in the partial differential equation (1). The general
form of the eigenfunction remains but the functionsv̄(βµ, t) de-
cay through damping and the eigenvaluesβµ are shifted through
damping and dispersion.

2.6.2. Non Self-Adjoint Problems

The spatial differential operator∆ of the wave equation (1) ap-
pears on both sides of (11). Boundary value problems with this
symmetry are called self-adjoint. They are a special case ofmore
general spatial differential operatorsL comprising more complex
spatial differentiation terms. In the general case, a relation similar
to (11) holds, with an operatorL on one side and its adjoint oper-
atorL̃ on the other. Two different sets of eigenfunctionsK andK̃
result which are bi-orthogonal to each other.

2.6.3. Other Types of Boundary Conditions

The so-called Dirichlet boundary conditions in (2) and (20)are
not the only case where the left-hand side of (9) vanishes. This
would also be the case for Neumann boundary conditions, i.e.
∇U = 0 and∇K = 0 on the boundaryx ∈ ∂V . Also impedance
type boundary conditions (Robin boundary conditions) are possi-
ble. For non self-adjoint problems, different boundary conditions
for K andK̃ are required.

2.6.4. Other Spatial Shapes

The formulation in Sec. 2.5.1 and Sec. 2.5.2 does not imply a cer-
tain spatial shape, a specific coordinate system, or a fixed number
of spatial dimensions. Therefore the representations (23)and (24)
are valid for all shapes of practical interest. Practical difficulties
may arise in the analytical calculation of the eigenfunctions and
eigenvalues. For certain standard shapes (e.g. rectangular, circular,
elliptical, spherical, and others) they can be found by separation of
variables.

3. SPATIAL SOUND REPRODUCTION

3.1. Overview

Two-channel stereophony and common surround sound formats
for sound reproduction exploit the spatial hearing capabilities of
human perception. Phantom sources are placed by applying pan-
ning or other spatial effects. Besides these common formats, sev-
eral massive multichannel reproduction methods have gained ac-
ceptance. So far they are no alternative for home users, but the
number of installations in cinemas, laboratories, and other profes-
sional acoustic spaces is increasing. Common spatial soundrepro-
duction methods are Ambisonics, wave field synthesis, and vector
based amplitude panning, see e.g. [21] for a description andrefer-
ences to the original literature. The focus in this contribution is on
wave field synthesis, although an extension to Ambisonics would
appears to be feasible as well.

3.2. Wave Field Synthesis

Consider a planar loudspeaker array for reproduction with wave
field synthesis. No special shape is assumed, but rectanglesor
circles are typical shapes. The position of an arbitrary loudspeaker
is x0 and the vector normal to the array atx0 is calledn0. The
normal vector points inwards, e.g. for a circular array it points to
the center of the circle. To calculate the driving functionsfor the
loudspeakers, the sound field at their positions must be known. It
can be obtained either by suitable processing of spatial recordings
of an acoustic event or from a model of an acoustic scene. The
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model-based view is adopted here, where the membrane model
from Sec. 2 serves as a description of a spatially extended source.

The calculation of the loudspeaker driving functions from a
piston model has already been discussed in [8]. Therefore only a
short account is given here for the sake of completeness.

The Fourier spectrumD(ω,x0) of the driving function for a
loudspeaker at the positionx0 is derived in [22, ch. 13.2][23] as

D(ω,x0) = w(x0,xS)A(x0)Hwfs(ω)nT
0 ∇P (ω,x0). (33)

where

• w(x0,xS) is a spatial window which selects the active loud-
speakers for a certain source positionxS,

• A(x0) is an amplitude factor,

• Hwfs(ω) is a frequency selective filter which is independent
of the loudspeaker position.

The essential component to determine the loudspeaker driving
functions is the gradient of the sound pressure∇P (ω,x0). Its
derivation from the membrane model in Sec. 2 is shown in the
following section.

4. SPATIAL SOUND SYNTHESIS

This section derives the loudspeaker driving functions fora wave
field synthesis array according to Sec. 3 from the sound synthesis
model of a membrane according to Sec. 2. Techniques similar
to the piston model from [8] are applied, but instead of a rigid
piston the eigenfunctions of a vibrating membrane from (24)are
considered. The result is a matrix description where each entry
indicates the contribution of a specific eigenfunction to a specific
loudspeaker of the reproduction array.

4.1. Membrane Coordinate System

So far no special type of spatial coordinates has been assumed.
Also no distinction has been made between the coordinates ofthe
membrane model and the coordinates for the loudspeaker array.
For practical reasons, it is of advantage to use two separatecoordi-
nate systems for the membrane and for the array. The positionof
the membrane with respect to the array is not fixed and the mem-
brane might change its position or its orientation with respect to
the array. Therefore a coordinate system suitable for a circular
membrane is introduced first, the connection to a loudspeaker ar-
ray is then shortly discussed in Sec. 4.7. The spatial coordinate
system for the membrane is shown in Fig. 2.

The coordinates for the membrane are denoted with greek let-
ters. The components of the vector of space coordinatesξ are

ξ =
[

ξ η ζ
]T

. (34)

The circular membrane resides in the center of theξ-η-plane with

ξ = ρ cosϕ (35)

η = ρ sin ϕ (36)

ζ = 0 (37)

The loudspeaker position for the calculation of the sound pressure
gradient is an arbitrary location

ξ0 =
[

ξ0 η0 ζ0

]T
(38)

with the assumption that the distanceζ0 from theξ-η-plane is large
compared to the membrane radius, i.e.ζ0 ≫ R.

ρ

R

ϕ

γ

ξ

η

ζ

ξ0

η0

ζ0

ξ0

r

r0

l0

ϑ

Figure 2: 3D spatial coordinate system for the membrane model.
Small rectangles indicate right angles.

4.2. Determination of the Sound Pressure Gradient

The sound pressure gradient∇P according to (33) is now deter-
mined in the temporal frequency domain. At first, Fourier trans-
formation with respect to time for the velocity from (24) gives

V (ξ, ω) =
∑

µ

1

Nµ

V̄ (βµ, ω)K(βµ, ξ) ξ ∈ V . (39)

The sound pressure at the locationξ0 is obtained similar to the
piston model discussed in [8] as

P (ξ0, ω) = jωρL

∫

V

V (ξ, ω)G(ξ|ξ0, ω) dξ , (40)

whereG(ξ|ξ0, ω) is the Green’s function in the temporal frequency
domain for the propagation from a point on the membraneξ to the
arbitrary locationξ0. Note that in contrast to the piston model, the
velocity is different for all pointsξ ∈ V and thus has to be part
of the integration. However, it is not very attractive to perform the
spatial integration in (40) over the vibrating membrane forevery
time instant.

Instead, the sound pressureP (ξ0, ω) can be expressed by the
spectral coefficients̄V (βµ, ω) from (39) by inserting into (40) as

P (ξ0, ω) =
∑

µ

1

Nµ

V̄ (βµ, ω) H(βµ, ξ0) (41)

with

H(βµ, ξ0) = jωρL

∫

V

K(βµ, ξ) G(ξ|ξ0, ω) dξ . (42)

Each functionH(βµ, ξ0) describes the contribution of the eigen-
function with numberµ to the sound pressure induced by the mem-
brane at the locationξ0. Note thatH(βµ, ξ0) is independent of
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the actual state of the membrane. Similar to the eigenfunctions
K(βµ, ξ), alsoH(βµ, ξ0) can be calculated in advance.

For the sound pressure gradient at the locationξ0 according
to (33) the gradient has to be calculated with respect toξ0. Then (41)
turns into

∇P (ξ0, ω) =
∑

µ

1

Nµ

V̄ (βµ, ω) ∇H(βµ, ξ0) (43)

with

∇H(βµ, ξ0) = jωρL

∫

V

K(βµ, ξ) ∇G(ξ|ξ0, ω) dξ . (44)

Fig. 3 shows the resulting computational structure for the sound
pressure gradient. The structure on the top is an extension of the
membrane model from Fig. 1 by an integration similar to (40).Its
disadvantage is that each pointξ (or a sufficiently dense grid) has
to be calculated in order to perform the spatial integrationwith
∇G(ξ|ξ0, ω). The strucuture on the bottom results from the sim-
plification by obtaining the sound pressure gradient directly from
V̄ (βµ, ω) with (43). The functions∇H(βµ, ξ0) are called the
transfer coefficientsfrom the eigenfunctionµ to the locationξ0.

The sound pressure gradient∇P (ξ0, ω) can be calculated from
(43) once the transfer coefficients according to (44) are known.
Since the eigenfunctionsK(βµ, ξ) for a circular membrane are
already given by (30) it remains to determine the gradient ofthe
Green’s function∇G(ξ|ξ0, ω).

4.3. Gradient of the Green’s Function

The integration in (44) collects the contributions of all point-like
regions inside of the membrane areaV . Therefore the Green’s
function of a point source is chosen as propagation model

G(ξ|ξ0, ω) =
1

2πr
e−jkr, r = |ξ0 − ξ|, k =

ω

c
. (45)

The distancer from an arbitrary point on the membrane (formally
ξ ∈ V ) to the arbitrary loudspeaker positionξ0 is given in detail
by (see (35–37) and Fig. 2)

r(ξ0) =
√

(ξ0 − ξ)2 + (η0 − η)2 + ζ2
0 . (46)

The distancer(ξ0) is written as a function ofξ0 because the gra-
dient is calculated with respect to the loudspeaker location ξ0.

Application of the chain rule of derivation to (45) gives

∇G(ξ|ξ0, ω) =
∂

∂r
G(ξ|ξ0, ω) ∇r . (47)

From (45) and (46) follows with simple calculation rules

∂

∂r
G(ξ|ξ0, ω) = −(1 + kr)

1

r
∇G(ξ|ξ0, ω) (48)

∇r =
1

r
(ξ0 − ξ) (49)

such that

∇G(ξ|ξ0, ω) = −(1 + kr)
1

r2
G(ξ|ξ0, ω) (ξ0 − ξ)

= −1 + jkr

2πr3
e−jkr (ξ0 − ξ). (50)

Due to (46)∇G(ξ|ξ0, ω) turns out to be a complicated function
of ξ0 andξ. Therefore some approximations are required before
the integration in (44) can be carried out efficiently.

4.4. Approximations for the Green’s Function

Some simplifications are permitted since the loudspeaker position
has been assumed to be somewhat remote from the membrane (see
Sec. 4.1). However, care has to be taken not to oversimplify the
problem. The derivation below is known from a simplified piston
model [24, 25]; here it is applied to the membrane model discussed
in Sec. 2.

For the magnitude terms in (50) it is suitable to replace the
distancer = |ξ0−ξ| by the distance to the center of the membrane
r0 = |ξ0| i.e.

r0(ξ0) = |ξ0| =
√

ξ2
0 + η2

0 + ζ2
0 . (51)

Applying the same approximation to the phase term in (50) would
reduce the whole membrane model to a point source (see [8]).
For a more detailed approximation the distancer is formulated
with (46) as

r2 = (ξ2
0 + η2

0 + ζ2
0 ) − 2(ξ0ξ + η0η) + ξ2 + η2 (52)

and rewritten with the polar coordinates (35–36)

r2 = r2
0 − 2ρ(ξ0 cosϕ + η0 sin ϕ) + ρ2. (53)

The second term on the right hand side is a mixture of Cartesian
(ξ0, η0) and polar coordinates (ρ, ϕ). Expressingξ0 andη0 also in
polar form with the magnitudel0 and the angleγ (see Fig. 2)

l0 =
√

ξ2
0 + η2

0 ,
η0

ξ0
= tan γ (54)

results in

ξ0 cos ϕ + η0 sin ϕ = l0 cos(ϕ − γ) (55)

and

r2 = r2
0 − 2ρ l0 cos(ϕ − γ) + ρ2. (56)

In this form, it is easy to recognize the dependency onρ. Neglect-
ing the second order term and keeping the first order term gives

r2 ≈ r2
0 − 2ρ l0 cos(ϕ − γ). (57)

Further approximations are possible by writingr as

r(ρ, ϕ) = r0

√

1 − 2
ρ

r0

l0
r0

cos(ϕ − γ). (58)

With ρ ≪ r0, l0 ≤ r0, and
√

1 − x ≈ 1 − 1
2
x follows

r(ρ, ϕ) ≈ r0 − ρ
l0
r0

cos(ϕ − γ). (59)

The fractionl0/r0 can be expressed as

l0
r0

=

√

1 −
(

ζ0

r0

)2

= sin ϑ . (60)

The angleϑ = ϑ(ξ0) depends only on the positionξ0 of the loud-
speaker and is shown in Fig. 2.

The distancer in the exponential term of (50) can finally be
approximated by

r(ρ, ϕ) ≈ r0 − ρ sin ϑ cos(ϕ − γ). (61)
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µ+1

��V̄ (βµ, ω) V (ξ, ω)
F̄ (βµ, ω) // Ḡv(βµ, ω) • // N−1

µ
// K(βµ, ξ) // /.-,()*++ • // ∇G(ξ|ξ0, ω) // ∇P (ξ0, ω)

µ−1

OO

µ+1

��V̄ (βµ, ω)
F̄ (βµ, ω) // Ḡv(βµ, ω) • // ∇H(βµ, ξ0) // /.-,()*++ ∇P (ξ0, ω)

µ−1

OO

Figure 3: Computational structures for the sound pressure gradient.Top: Cascade of the membrane model from Fig. 1 and the integration
with the gradient of the Green’s function∇G(ξ|ξ0, ω). Bottom:Simplification through the transfer coefficients∇H(βµ, ξ0) from (44).

Inserting into (50) and collecting terms gives

∇G(ξ|ξ0, ω) ≈ ∇G(0|ξ0, ω) exp(jkρ sin ϑ cos(ϕ−γ)). (62)

This approximation for∇G(ξ|ξ0, ω) can be interpreted as the gra-
dient of the Green’s function∇G(0|ξ0, ω) from the center of the
membrane toξ0 and an exponential directivity term which consid-
ers the position(ρ, ϕ) on the circular membrane. The directivity
term affects only the phase but not the magnitude due to the differ-
ent approximations (51) and (61).

4.5. Determination of the Transfer Coefficients

In the approximation for∇G(ξ|ξ0, ω) in (62), the dependency on
the polar coordinates of the membrane,ρ andϕ, is restricted to
the arguments of elementary functions (exponential and trigono-
metric functions). Therefore the integration in (44) can becarried
out partly in closed form. Writing the integration in (44) inpolar
coordinates gives

∇H(βµ, ξ0) = jωρL

R
∫

0

2π
∫

0

K(βµ, ξ) ∇G(ξ|ξ0, ω) ρdϕ dρ .

(63)

The argumentξ of K and∇G has to be understood also in polar
form according to (35– 36).

Inserting the approximation for∇G(ξ|ξ0, ω) from (62) gives
an approximation∇Ĥ for the transfer coefficients (63) and the
eigenfunctionsK(βµ, ξ) from (30)

∇Ĥ(βµ, ξ0) = jωρL∇G(0|ξ0, ω)

R
∫

0

Jn(ρβnν) Q1 ρdρ . (64)

with Q1 = Q1(ρ, ϕ, ξ0, n, ν)

Q1 =

2π
∫

0

exp(jkρ sin ϑ cos(ϕ − γ)) cosnϕ dϕ . (65)

From the definition of the Bessel functionsJn follows the identity

2π
∫

0

ejx cos(ϕ−γ) cosnϕ dϕ = jn 2π Jn(x) cos nγ, (66)

such that the integral in (65) can be expressed in closed form

Q1(ρ, ϕ, ξ0, n, ν) = jn 2π Jn(kρ sin ϑ) cosnγ . (67)

For the approximate transfer coefficients∇Ĥ follows from (63)

∇Ĥ(βµ, ξ0) = 2πjn+1ωρL cosnγ ∇G(0|ξ0, ω) Q2(ξ0, n, ν, R)
(68)

with

Q2(ξ0, n, ν, R) =

R
∫

0

Jn(ρβnν) Jn(kρ sin ϑ) ρdρ . (69)

This integral over a finite range cannot be expressed by analytical
terms and has to be evaluated numerically. However, it depends
only on indicesn andν of the respective eigenfunction, the fixed
locationξ0 of the loudspeaker, and the radiusR of the membrane.

The other terms in (68) can be evaluated in closed form. The
term∇G(0|ξ0, ω) follows from (50) withξ = 0 and consequently
r = r0 (see (52)). The termcosnγ can be expressed by the
Chebyshev PolynomialsTn(x) of ordern and with (54) as

cos nγ = Tn(cos γ), cos γ =

(

1 +

(

η0

ξ0

)2
)

−
1

2

. (70)

Thus the transfer coefficients∇Ĥ can be evaluated by the
equations (68) – (70). Now all components in the spatial sound
synthesis model in Fig. 3 are determined and an approximation of
the sound pressure gradient∇P at an arbitrary locationξ0 can be
calculated from the physical model of the membrane.

4.6. Spatial Sound Synthesis Structure

So far it has been shown how to obtain the sound pressure gradient
at an arbitrary location within the limits of reasonable approxima-
tions. In principle this process can be carried out for different loud-
speaker positionsξm as required by a specific wave field synthesis
arrangement. Then the above process yields a matrix of transfer
coefficients, where the entry(µ, m)

∇Ĥµ,m = ∇Ĥ(βµ, ξm) (71)

determines the contribution of the eigenfunctionµ to the loud-
speaker positionm. The driving functionD(ω, ξm) for this loud-
speaker results from (33).

4.7. Membrane and Array Coordinates

For practical reasons it is convenient to use different coordinate
systems for the membrane and for the wave field synthesis array.
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The membran coordinatesξ have been introduced in Sec. 4.1 and
in Fig. 2. A system of array coordinatesx can be chosen to suit
the spatial shape of the loudspeaker array. The link betweenboth
coordinate systems is provided by a matrix description of a rota-
tion and a translation. Details for a circular array are given in [8].
The choice of two different coordinate systems makes it easier to
change the position and the orientation of the membrane withre-
spect to the reproduction array.

5. CONCLUSION

This contribution presented a combined physical model for repro-
ducing both the waveform and the spatial radiation characteristics
of a sounding membrane. The focus of the development was the
calculation of the transfer coefficients from each eigenfunction of
the membrane to each loudspeaker of the array. These transfer co-
efficients are the link between physical modelling sound synthesis
on the one hand and wave field synthesis on the other hand. The
key feature of this approach is that any numerical integration over
the surface of the membrane can be avoided.

This procedure is not restricted to the simple membrane model
used as illustration here. Several extensions have been already
mentioned in Sec. 2.6. On the other hand, physical modelling
sound synthesis is not necessarily connected to wave field syn-
thesis. A model-based determination of the Ambisonics encording
process should be possible along the same lines.
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