
Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

EFFICIENT POLYNOMIAL IMPLEMENTATION OF THE EMS VCS3 FILTER MODEL

Stefano Zambon

Dipartimento di Informatica
Università di Verona

Italy
stefano.zambon@univr.it

Federico Fontana

Dipartimento di Matematica e Informatica
Università di Udine

Italy
federico.fontana@uniud.it

ABSTRACT

A previously existing nonlinear differential equation system mod-
eling the EMS VCS3 voltage controlled filter is reformulated here
in polynomial form, avoiding the expensive computation of tran-
scendent functions imposed by the original model. The new sys-
tem is discretized by means of an implicit numerical scheme, and
solved using Newton-Raphson iterations. While maintaining in-
stantaneous controllability, the algorithm is both significantly faster
and more accurate than the previous filter-based solution. A real
time version of the model has been implemented under the Pure-
Data audio processing environment and as a VST plugin.

1. INTRODUCTION

Within the virtual analog research field, several efforts have been
made to properly simulate the voltage-controlled filters (shortly,
VCF) onboard the monophonic synthesizers of the 60’s, such as
Robert Moog’s transistor-based VCF [1, 2, 3], or the diode-based
VCF designed for the Electronic Music System Voltage Controlled
for Studio with 3 Oscillators, known as VCS3, which is considered
in this paper.

The first discrete time model of the EMS VCS3 VCF was pre-
sented in 2008 [4]. In that model the analog filter network was
accurately represented through a nonlinear differential equation
system, that was later discretized by means of an esplicit scheme
using a fourth-order Runge-Kutta method. A similar system was
reproposed in 2010 [5], where a passive digital filter network di-
rectly coming out from the analog structure was computed using
fixed-point iterations. This computation was proven to be efficient
enough to run in real-time meanwhile allowing variation at sample
rate of the VCF control parameters, typically the cutoff frequency
and feedback gain.

In this paper, an evolved simulation of the previous system [5]
is proposed. Specifically, the system equations are reformulated
in order to avoid the expensive computation of transcendent func-
tions, hence obtaining a quasi-polynomial system which is then
discretized using an implicit scheme and Newton-Raphson itera-
tions. Overall, the speed improvement is of an order of magnitude.
Moreover, due to the improved numerical behavior, the simula-
tion computes accurate solutions for large values of the control
parameters, i.e. where the fixed-point method failed to converge in
reasonable time causing noticeable artifacts in the output.

By considering a specific VCF analog circuitry, obviously this
study has not the generality of recently proposed techniques for the
simulation of generic electrical networks [6, 7]. However, some
of the employed recipes like the removal of transcendent func-
tions and the specific implicit scheme design can be applied to

other nonlinear systems, that need to be accurately simulated in
real time.

This poster is organized as follows. In Sec. 2, the nonlinear
differential state-space representation of the VCS3 VCF is shortly
reviewed. Then, in Sec. 3, some algebraic manipulations are car-
ried out to obtain an equivalent description containing polynomial
functions, which substitute the hyperbolic tangent used in the orig-
inal formulation. The resulting system is discretized with an im-
plicit method that is proposed in Sec. 4, and whose implementation
details are discussed. Finally, Sec. 5 shows some results that prove
the improved performance of the proposed solution compared to
the previous model.

2. MODEL

The VCF is a parametric filter, whose cutoff frequency and reso-
nant behavior can be controlled respectively by varying the char-
acteristic value of the nonlinear resistive components and the feed-
back gain. The behavior of the original circuitry can be described
with a good approximation by the following differential equations
system [5]:




v̇C1 =
I0
2C

(
tanh

vIN − vOUT
2VT

+ tanh
vC2 − vC1

2γ

)

v̇C2 =
I0
2C

(
tanh

vC3 − vC2

2γ
− tanh

vC2 − vC1

2γ

)

v̇C3 =
I0
2C

(
tanh

vC4 − vC3

2γ
− tanh

vC3 − vC2

2γ

)

v̇C4 =
I0
2C

(
− tanh

vC4

6γ
− tanh

vC4 − vC3

2γ

)

vOUT = (K + 1/2) vC4

(1)

In this standard space-state representation, vIN and vOUT are
respectively the voltage input and output signals; K is the feed-
back gain (ranging between 0 and 10 in the VCS3 synthesizer)
and I0 is a bias current setting the resistance values, hence the
cutoff frequency of the filter. The state variable vector vC =
[vC1 , . . . , vC4] corresponds to the voltages through the four capac-
itors present in the electrical network. The other terms in Eq. (1)
are the constants η = 1.836, VT = 26 mV, γ = ηVT = 48
mV, and C = 0.1 µF. The system has a fixed point at the origin,
corresponding to null charge at the capacitors [5].

3. NONLINEAR SYSTEM REFORMULATION

The main complexity in the model expressed by Eq. (1) is that any
accurate system solution requires the computation of several hy-
perbolic tangents. This computation, especially on modern hard-

DAFX-1

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-287

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

ware, can be several order of magnitudes more expensive than mul-
tiplying. Thus, it would be beneficial to rewrite equations contain-
ing only polynomial functions.

In order to do so1, we exploit the self-similarity of the deriva-
tive of the hyperbolic tangent: d/dt tanh(t) = 1 − tanh2(t).
Then, we proceed by assigning the values of the nonlinear terms
in (1) to the new auxiliary state vector x = [x1, . . . , x5]:





x1 = tanh
vC2 − vC1

2γ

x2 = tanh
vC3 − vC2

2γ

x3 = tanh
vC4 − vC3

2γ

x4 = tanh
−(K + 1/2)vC4

2VT
x5 = tanh

vC4

6γ

. (2)

The only auxiliary variable which does not capture a portion
of (1) directly is x4. Even if it is possible to set this variable to
one argument of the hyperbolic tangent, doing so would require to
include (hence to numerically compute) the derivative of the input
signal vIN . Since assumptions on the smoothness of the input
signal cannot be made, it is preferable not to include incoming
signals’ derivatives into the system, as they are sensitive to noise
and prone to amplification of the high frequencies.

Rather, we use the addition formula for the hyperbolic tangent
and rewrite the term as

tanh
vIN − vOUT

2VT
=

ṽ + x4
1 + ṽx4

,

where ṽ = tanh(vIN/2VT). In this way we are still left with
one transcendent function in the system: since it includes only
the signal vIN , its (possibly parallel) computation across the input
buffer can be decoupled by the solution of the system.

The system nonlinearities cause a bandwidth expansion on the
signal, so that oversampling is necessary to avoid aliasing [5]. A
good compromise between aliasing reduction and computational
cost is the use of 8x upsampling, as shown in Fig. 1.

Taking the time-derivative of the new state vector x, we obtain
the following equations:





ẋ1 =
v̇C2 − v̇C1

2γ
(1− x21)

ẋ2 =
v̇C3 − v̇C2

2γ
(1− x22)

ẋ3 =
v̇C4 − v̇C3

2γ
(1− x23)

ẋ4 =
(K + 1/2)v̇C4

2VT
(1− x24)

ẋ5 =
v̇C4

6γ
(1− x25)

. (3)

Finally, substituting into (3) the expressions for the previous state

1This transformation is generally applicable whenever the nonlineari-
ties are compositions in their own of exponential functions.

∫ ↓ 8

tanh
vIN ṽ

x3 x5

1

2VT

−(K + 1/2)I0
2C

vOUT

↑ 8 N-R

SOLVER

Figure 1: Block diagram illustrating the computational stages re-
quired before and after the nonlinear system solver: upsampling,
nonlinear map, system solving, downsampling and integration.

vC yields the following quasi-polynomial nonlinear ODE system:




ẋ1 =
I0
4Cγ

(
x2 − ṽ − x4

1− ṽx4

)
(1− x21)

ẋ2 =
I0
4Cγ

(x3 − 2x2 + x1) (1− x22)

ẋ3 =
I0
4Cγ

(−x5 − 2x3 − x2) (1− x23)

ẋ4 =
I0(K + 1/2)

4CVT
(−x5 − x3) (1− x24)

ẋ5 =
I0

12Cγ
(−x5 − x3) (1− x25)

. (4)

In this system all functions are polynomial, except for a divide in
the first equation due to the need to avoid the derivative of the input
signal.

We can recover vOUT from the relation v̇C4 = (−I0/2C)(x5+
x3). Since in (1) vOUT is proportional to vC4 , numerical integra-
tion (see Fig. 1) is required as a final inexpensive step to compute
the solution, furthermore preserving the passivity of the continuous
integrator if the trapezoidal rule is used for the discretization [5],
as we will do through Eq.(6).

4. NUMERICAL SOLUTION

We discretize (4) using standard techniques from numerical anal-
ysis [8]. The system can be written in vectorial form as

ẋ = f(ṽ,x), (5)

where f is a nonlinear vectorial function. Time discretization is
performed with the Adams-Moulton 1-step method (i.e., the trape-
zoidal rule):

xn+1 = xn +
T

2

[
f(ṽn,xn) + f(ṽn+1,xn+1)

]
(6)

which is numerically equivalent to the bilinear transformation [5].
The resulting numerical equation is implicit, since at each step we
need to solve a nonlinear system of equations. More precisely, we
have to find the zeroes of the vectorial function

F (ξ) = xn +
T

2
[f(ṽ,xn) + f(ṽ, ξ)]− ξ

= F0,n +
T

2
f(ṽ, ξ)− ξ.

(7)

The term F0,n has been highlighted in the expression so that
at each time step it can be updated efficiently with the recursive
relation

F0,n+1 = 2xn+1 − F0,n. (8)

DAFX-2

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-288

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

The system (7) is solved using Newton-Raphson iterations,
which guarantee second-order convergence in our case. At every
time step we start with the initial guess ξ0 = xn, then we update
iteratively the linear solution

JF (ξi) δξi = −F (ξi)

ξi+1 = ξi + δξi ,
(9)

where JF (ξi) is the Jacobian ofF at the i-th iteration, furthermore
related to the Jacobian of f by the relation JF = T

2
Jf − I.

Convergence is checked against the L∞ norm of the residual
vector δξi using a threshold of 10−8, accurate enough for single-
precision floating point computations. In [5] a different condition
was employed, based only on the output value. Conversely, check-
ing all the values of the state vector can provide more accurate
results especially during the simulation of transients.

The computation of the term F and the Jacobian JF can be
simplified if we split the terms of the system (4) into a vector of
coefficients

c =




I0/(4Cγ)
I0/(4Cγ)
I0/(4Cγ)

I0(K + 1/2)/(4CVT)
I0/(12Cγ)


 ,

plus two vectors, respectively containing the differences and the
quadratic terms in (4):

t =




x2 − ṽ−x4
1−ṽx4

x3 − 2x2 + x1
−x5 − 2x3 − x2
−x5 − x3
−x5 − x3



, d =




1− x21
1− x22
1− x23
1− x24
1− x25



.

For sake of compactness, we have dropped the discrete-time index
n in the previous equations. By (9), F can be computed from (7)
using the obvious relation

f(ṽ,x) = c ∗ t ∗ d, (10)

while the Jacobian of f is written in terms of the new vectors as

Jf =

−




2c1(d1+t1x1) −c1d1 0 c1d1fv 0

−c2d2 2c2(d2+t2x2) −c2d2 0 0

0 −c3d3 2c3(d3+t3x3) 0 c3d3
0 0 c4d4 2c4t4x4 c4d4
0 0 c5d5 0 c5(d5+2t5x5)




(11)

where fv = (ṽ2 − 1)/(1− ṽx4)2.
Note that the linear system described by this Jacobian matrix

does not have any particular structure. For this reason, we have
to employ general linear solvers such as LU decomposition with
pivoting or QR factorization. In our tests, LU with pivoting was
slightly less accurate, occasionally requiring an extra iteration to
converge, but generally 25% faster than QR decomposition.

5. DISCUSSION

The model has been implemented both as an offline Matlab simu-
lation, as a C++ external running under the PureData [9] real-time
audio processing environment and as a VST [10] Plugin. For the
real-time versions, we have employed the library libresample [11]

for accurate upsampling and downsampling, and the Eigen pro-
cessing library [12] for linear system solving and parallelized vec-
tor computations. The real-time model requires less than 10%
CPU power on an Intel Core2 Duo@2.4Ghz laptop, independently
of the VCF parameter values.

The main advantage of the new algorithm resides in signifi-
cantly faster, and parameter-independent computation times com-
pared to the previous reference model [5]. We can give a rough
quantitative comparison considering the approximate number of
MPOS (multiplication per input sample) required by either im-
plementation. At every step the previous algorithm requires the
computation of 5 hyperbolic tangents, plus 4 discrete-time inte-
grations and 10 multiply-and-accumulate (MAC) operations. If
we approximate the cost of each hyperbolic tangent to 50 MPOS2,
then the cost for each fixed-point iteration amounts to about 280
MPOS. Since the average number of iterations is between 10 to 50,
we can estimate the total cost per (upsampled) time step as rang-
ing between 3000 and 15000 MPOS. In [5] some examples of the
number of iterations required for different control values are given.

As opposed to the previous procedure, the proposed algorithm
instead requires to compute just one hyperbolic tangent. Since this
function can be precomputed on the input buffer at 1/4 the sam-
pling frequency, in parallel to the system integration, the cost of
this computation is around 5 MPOS. Building the right-hand term
F as by (10) requires roughly 20 MPOS, including the divide, and
the same cost is required for the computation of the Jacobian ma-
trix (11). LU pivoting takes about 120 MPOS, resulting in a total
cost of 165 MPOS per iteration. Finally, thanks to the better nu-
merical behaviour of the Newton-Raphson method, only 3-6 iter-
ations are usually required for convergence. Therefore, the total
cost of the proposed algorithm is between 500 and 1000 MPOS,
about one order of magnitude less than the fixed-point model.

As a by-product, the new model is more accurate for high val-
ues of the control parameters, especially the cutoff frequency. In
fact, iteration upper bounds are inevitably reached by the fixed-
point solver under these conditions [5]. The effect is illustrated in
Fig. 2, where the cutoff frequency is linearly increased across the
simulation. It can be easily noticed that the previous solver (left
plots) behaves inappropriately around cutoff values amounting to
10 KHz, when the number of iterations starts to reach the upper
bound set to 100 iterations. Within ranges of the control parame-
ters that do not cause iteration explosion, both models introduce a
relative error below -80 dB at every step, in ways that their output
differences are inaudible.

6. CONCLUSION

We have transformed the equations proposed for the simulation of
the VCS3 VCF, by deriving a quasi-polynomial system allowing
an implicit integration based on Newton-Raphson iterations. Com-
pared to the previous one, the new solution is significantly faster
as well as more accurate when high values of control parameters
are used, meanwhile enabling full controllability of the parameters
at sample rate without artifacts.

7. ACKNOWLEDGMENTS

The authors would like to thank Marco Civolani for his inspiring
comments on this work.

2Benchmarked on an Intel Core2Duo@2.4Ghz with gcc 4.6.

DAFX-3

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-289

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

Figure 2: Comparison of the proposed model (right) versus the previous implementation (left). The input signal is a sinusoidal sweep
ranging from 0 to 20 KHz, while the cutoff frequency is varied between 10 and 20KHz. The feedback gain is kept constant (K = 1) during
the simulation. Sampling frequency set at 176400 Hz.

8. REFERENCES

[1] T. Stilson and J.O. Smith, “Analyzing the Moog VCF with
considerations for digital implementation,” in Proceedings
of the International Computer Music Conference, 1996, pp.
398–401.

[2] A. Huovilainen, “Nonlinear digital implementation of the
Moog ladder filter,” in Proceedings of the International Con-
ference on Digital Audio Effects (DAFx-04), Naples, Italy,
2004, pp. 61–64.

[3] F. Fontana, “Preserving the structure of the Moog VCF in the
digital domain,” in Proc. Int. Comput. Music Conf, Copen-
hagen, Denmark, 2007, pp. 27–31.

[4] M. Civolani and F. Fontana, “A nonlinear digital model of
the EMS VCS3 voltage-controlled filter,” in Proceedings of
the 11th International Conference on Digital Audio Effects,
Helsinki, Finland, 2008, pp. 35–42.

[5] F. Fontana and M. Civolani, “Modeling of the EMS VCS3
voltage-controlled filter as a nonlinear filter network,” Audio,
Speech, and Language Processing, IEEE Transactions on,
vol. 18, no. 4, pp. 760–772, 2010.

[6] D.T. Yeh, J.S. Abel, and J.O. Smith, “Automated Physical
Modeling of Nonlinear Audio Circuits for Real-Time Audio

Effects-Part I: Theoretical Development,” Audio, Speech,
and Language Processing, IEEE Transactions on, vol. 18,
no. 4, pp. 728–737, 2010.

[7] F. Fontana and F. Avanzini, “Computation of delay-free non-
linear digital filter networks: Application to chaotic circuits
and intracellular signal transduction,” Signal Processing,
IEEE Transactions on, vol. 56, no. 10, pp. 4703–4715, 2008.

[8] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathemat-
ics, Springer Verlag, 2007.

[9] M. Puckette, “Pure Data,” in Proc. International Computer
Music Conference, Thessaloniki, Greece, 1997.

[10] Steinberg Soft and Hardware GMBH, “Steinberg virtual stu-
dio technology (vst) plug-in specification 2.0 software devel-
opment kit,” 1999.

[11] D. Mazzoni, “libresample,”
http://ftp.debian.org/pool/main/libr/libresample/.

[12] Gael Guennebaud, Benoit Jacob, et al., “Eigen v3,”
http://eigen.tuxfamily.org, 2010.

DAFX-4

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-290

