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ABSTRACT of which are fully captured in a 3D model. The model used here i

. . . . . similar to that used by Rhaouti and Chaighk [6] in musicaliaeo
Physical modeling sound synthesis for systemsin 3D is a com- i< inyestigations, with some additional features. Thepota-
putationally intensive undertaking; the number of degufdeee- 5| algorithm presented here is geared towards a syiatiras
dom is very large, even for systems and spaces of modest phySyementation in a highly parallel architecture, and ismded as a
ical dimensions. The recent emergence into the mainstréam 0 o _iyial feasibility test for the use of general purpgsepnical
highly parallel multicore hardware, such as general pwegpaph- processing units (GPGPUS) in physical modeling sound sgith
ical proces_sing . (GPGPU.S) has opened an avenue o_fgqbpro A model of a single timpani drum is described in Secfibn 2,
to synthesis fordsulch_ sysl_tft_ams_ ina rleasr?_nable amount ofwiive, including a description of the dynamics of the acoustic field
out sevedre Imo .T] S'?p ffication. 'dn this context, new prgga its termination (by the drum cavity and an absorbing layand
ming and algorithm design considerations appear, espe . the membrane, including nonlinear effects, as well as thiplotg
ease with which a given algorithm may be parallelized. Tes thi between the two. Sectiddl 3 continues with a description of an
end finite difference time domain methods operating oveulegg FDTD algorithm dperating over regular grids, as well asripota-
grids are explored, with_regarql to an interesting _a_md niovatr tion necessary to couple the two key subsys’tems. Impletiemta
test problem, that of the timpani drum. The timpani is chdsem in CUDA on an Nvidia Tesla general purpose graphical process

because Its sounding mechanism relies on the coupling batwe ing unit is described in Sectidd 4, followed by simulatiosuls
2D resonator and a 3D acoustic space (an internal cavitig)also in Sectior s

of large physical dimensions, and thus simulation is of fdgm-
putational cost. A timpani model is presented, followed tyiaf
presentation of finite difference time domain methodspfe#d by 2 MODEL SYSTEM
a discussion of parallelization on GPGPU, and simulaticults.

The system describing the timapani drum used here is sitailar
1. INTRODUCTION that used previously [6], and also in the case of the snara {if{
Using such a full model allows the direct simulation of adaus
A major recent research direction has been the large scat#n3D radiation and cavity modes, as well as full spatializatgrch fea-

ulation of acoustic spaces, for purposes of artificial regeation tures are difficult to capture using a 2D model [8], which, buer,
or concert hall prototyping, using grid based methods ssdha is far less computationally demanding in simulation.
digital waveguide mesh [1] or finite difference time domaiath The model is defined over a 3D volumg& here taken to be

ods (FDTD) [2[3]. The great advantage of such brute force-tec a rectangular parallelepiped. It possesses an externaldaoy
niques, compared with other room modelling methods, suainas  9Vg, consisting, in this case, of the six faces of the paralteg

age source_[4] or ray tracin@l[5] methods is that the acotistid and an inner boundary, consisting of the rigid shell boupdéathe
is modelled in its entirety, and without simplifying assurops. timpani drum,0Vs, and the membrané&)Vs;. The acoustic field
The disadvantage, of course, is computational cost—fomeie, is defined on both sides of these latter two boundaries ifiside

the simulation of a cubic metre volume, at 44.1 kHz, requines  and outside the cavity). See Figlie 1.
the order ofl0'! arithmetic operations per second of output. The
simulation of large acoustic spaces at audio rates in a neaso
amount of time remains a challenging problem. 2.1. Membrane

Smaller scale problems in 3D, however, are becoming trégtab
especially on new highly parallel computer architectut@se ap-
plication is 3D physical modeling synthesis, where a musica
strument is housed, or embedded, within a small 3D enclpsure
intended not to emulate the behaviour of a room, but to allom-c
plete modeling of the interaction between the instrumeudt the
acoustic field, with as few modeling assumptions as possiiiie
timpani drum, or kettledrum is a good match to this problem, a
the timbre of the instrument is critically dependent on ati@sed

The primary vibrating component in the timpani, and all dsym
is the drumhead itself. It is assumed to be a flexible membrane
defined over a two dimensional regiéiv,, (here a circle of radius

R, defined, for simplicity at coordinate = z, relative to the
three dimensional acoustic space), with displacementtcinsd

to be perpendicular to the plane in which it lies. The dynanoic
such a membrane are described by the following equation:

- L 9w ow

volume, as well as the usual acoustic radiation phenomeoth, b 5 = Er (14 9) Vipw — K2V, V2pw + CijangE
* This work was supported by the European Research Coundkrun 1 1

grant StG-2011-279068-NESS +—pM (f+ +f-)+ ot 3z — 20,y — Yo0) fexe (1)
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Figure 1:Timpani drum geometry.

wherew(z, y, t) is transverse displacement as a function of time
and coordinates andy, and the 2D Laplacian operator is defined
as , )
0 0

Vip =73 2

Here, pas is the surface density of the membrane, in kg/and
the wave speed,, and stiffness parameter for the membrane are

defined as

er = v To/pm (3)

whereTp is membrane tension/unit length, in k&y/s7 is mem-
brane tickness, in mg is Young’s modulus, in kg /sn, andv,
dimensionless, is Poisson’s ratiex is a parameter determining
viscothermal damping effects in the membrane.

The factorg represents an averaged nonlinearity in the mem-

brane, and is defined as
// |V2Dw|2da
D

EH
T 2To(1 —v?)

and results from a simplification (due to Berder [9]) of the War-
man systeni [10]. It may be viewed in the same light as the aimil
term appearing in the Kirchhoff Carrier equation][11] dédsiog
nonlinear vibration of a string, and gives rise, again, tolpglide
phenomena under high striking amplitudes, and which mayi-dom
nate, as in the case of the string, at very low tension [12thSu
model has been used previously in studies of the snare @rfum [8

The terms infy and f_ represent forcing due to coupling with
the acoustic space, above and below the membrane, reghectiv
These will be related explcitly to the acoustic field in SexciZ.3.
The term inf... represents a pointwise excitation acting at loca-
tion (o, yo) on the membrane. See Section 2.6.

The membrane is assumed rigidly terminated, i.e.,

k=+/EH3/12p0m (1 — 12)

g (4)

()

whereny, ..+ represents the 2D normal vector to the outer bound-
ary of the membrane, arMd.p is the 2D gradient operation.

W = NM,ext * Vapw =0

2.2. Acoustic Field

Variation in the acoustic field is assumed here to satisfy3ibe
wave equation:
o*w
ot?

= PVip U (6)

where here¥ (z,y, 2, t) is a velocity potential [13] depending on
time ¢ and spatial coordinates, y and z, and defined over the
regionV. cis the wave speed in air, set here to 340 m/s, @3¢
is the 3D Laplacian operator, defined as
o? 0? 0?
52 T oy T 022
¥ may be related to the more familiar quantities presgure
and particle velocity by

o
P—Pat

2
Viap =

@)

v=—-V3p¥ (8)
wherep is the density of air (taken here to be 1.2 kdJnandVsp
is the 3D gradient operation.

For problems defined over small regions, as is the case here,
the 3D wave equation is a good approximation to wave propaga-
tion in air. In larger regions, however, where sound propegja
over a reasonable distance, it is important to include tfectsf
of viscosity, which may be modelled using an extra term[in (6)
[13,[14].

Boundary conditions, for the external, shell and membrane
boundaries will be given in the next sections.

2.3. Drum Cavity

The timpani drum shell is assumed rigid. The exact geomstry i
immaterial from a computational point of view, but it is assd
here to be paraboloidal, defined by the surface

z=zm—Ho+Hop (172 + y2) /R2 zv—Ho < z<zm (9)

In other words, it is a section of a paraboloid, of heightm, and
operning up to a maximum radius & m at vertical locatior: =
zm . The paraboloidal shape here is chosen out of convenience—
for more discussion of real timpani drum shell profiles, &je [

As the cavity is assumed to be rigid, a Neumann (zero normal
velocity) condition is used, i.e.,

ns-Vsp¥ =0 over Vs

(10)

whereng is the normal to the shell surface; the condition above
holds on both faces of the shell (i.e., both inside and oattie
cavity).

2.4. Absorbing Boundary Conditions

As the enclosur® is intended to be transparent to outward propa-
gating waves, an absorbing boundary condition is necesseitye
boundaryVg. The usual choice is the well-researched perfectly
matched layel [15], translated from the electromagnetiteod to
acoustics. In the interest of keeping programming compleas
simple as possible—a key concern in the development of mdstho
on specialized hardware—a simpler choice of a boundaryieond
tion of Engquist Majda type [16] has been employed here gdf
signifies an outward normal to a planar boundary, then thdieon
tions may be written elegantly as

8 q
(—+CHE-V3D> U =0 (11)

ot
in terms of the ordeg. Such conditions may always be rewritten,
through substitution of{6), in terms of spatial derivasitangen-
tial to the boundary, and a normal derivative of maximal ofle

DAFX-2



Proc. of the 18 Int. Conference on Digital Audio Effects (DAFx-12), Yorl§ USeptember 17-21, 2012

Such conditions inhibit reflection over an increasinglygé&r
range of frequencies and angles relative to the normal s
creases, but are not perfectly matched, for any finite ardgough
in pratice, under discretization, neither are perfectlyahed lay-
ers). As a result, spurious reflection by this boundary dondi
back into the problem domain is confined to high frequencyesav
which are tangential to, and thus remain trapped near thedsou
ary itself. Though no perceptual testing has been doneglear
that provided output is not drawn directly adjacent to theratary
itself, the conditions are perceptually transparent, dicasample
rates, even with an order as low@as- 2.

2.5. Coupling Conditions

At the interfacedVy, between the membrane and the acoustic
space, coupling conditions are necessary, and determthetto®
boundary condition for the acoustic field, as well as thetasion
termsin[(1).

If the velocity potentials on the upper and lower faces of the
membrane are referred to @, and U _ respectively, the condi-
tions may be written as

o _ o,
_=p— =—p— 12
f 51 I+ Cary (12)
and o
a_l: =-ny. VU, =ny_-VU_ (13)
whereny; + = —n,— are the 3D outward unit normals to the

membrane in the positive and negative directions. Theses pai
of conditions indicate continuity of pressure and velqaigspec-
tively across the membrane interface.

2.6. Excitation and Output

Ideally, excitation should be modelled using a model of tred-m
let itself, subject to forcing by the player. Most models et
literature treat the mallet interaction in terms of an alitinallet
velocity, and a nonlinear interaction between the mallet e
membrane. This approach well models a single strike—horveve
modeling of a full gesture (such as a drum roll, where there is
a constant excitation force from the player) is far more clexp
For this reason, and from the observation that (a) the ictiem
time between mallet and membrane is typically very shoris it
sufficient to employ an external (non-interactive) forcfagction
feze = feac(t) Of a specified form. Seé [17] for more on this hy-
pothesis. A good choice is of a raised cosine, for which aongi
and duration may be adjusted to striking strength. The alpati
gion of interaction is small, relative to audible wavenumnstia the

different densities, for the membrane and acoustic spaeeamm
excellent match to parallel architectures, as the use cdamtical
update at a large number of locations leads to the assatiatth
simple computational kernels (threads). Such is the casspi
tially invariant systems such as a uniform membrane andsticou
field in Cartesian coordinates.

3.1. Membrane Scheme

The grid functionw;’,, is intended as an approximation to the
membrane displacement(z, y, t), at coordinates = lhar, y =
mhar, and at timet = nk, for integerl, m andn, and where
har is the grid spacing, ankl is the time step (generally defined a
priori, ask = 1/Fs, whereFy is the sample rate).

A finite difference scheme for the membrane, as defined in (1)
may be written as

Suw = ca (14 g)8pw — K338 pw + coyadspdi—w
1 1
+— (f+ + f-) + —0(z — 20,y — Yo) fexc(14)
pM pM

wherew now stands for the grid functiony’,,, and where the
various difference operators are defined as

n 1 n n n—
(sttwl,m = F (wl,'rtzl - le,m + wl,ml) (15a)
1 _
Se—wity, = Z (w{fm — wﬁml) (15b)
1
5§Dwﬁm = (wln+l,m + Wt m Wy (15C)
h]\/I
+w2m—1 - 4wlrfm)
n 1 n n—
Ht- Wy = 5 (wl,jnl + wl,ml) (lsd)
n 1 n n—
5t'wl,m = ﬁ (wl,;l - wl,ml) (15e)

and the other operators i {14), naméfy, 62, ands>,d:_ may
be formed through composition of the operators defined above
The fixed boundary conditions](5) may be simply approximéated
a staircase approximation, assuming that values of thefgnict
tion which lie outside the membrane boundary are permanentl
set to zero. See Sectibn b.1 for the consequences of thidegru
numerical boundary condition. Also, note that a backwaffdi
ence operator is applied to the frequency-dependent lossite
(T4), simplifying implementation in comparison with theseaof a
centred difference approximation.

The scalar nonlinear tergpn= g™ requires a special treatment,
in line with that of averaged nonlinearities which appeatha
case of the strind [18]. An approximation consistent wWithi¢4he

membrane, and has been modelled here as a simple spatial Dirafollowing:

delta function at the striking location.

3. FDTD ALGORITHM

In this section, finite difference time domain methods orutag
grids are developed for the timpani model, as describedeipie-
vious section. FDTD methods are, of course, not the onlycr
to simulation—see, e.g.][6] for methods on irregular griasd
[8], where a similar system (the snare drum) is approachedus
modal techniques.

EH

_ 2 (d) (d)
T 2Tp(1—1v?) > hrVipw: Vippww

(d)
Vi

g (16)

wherey. is the averaging operator given [0 (15d), and the differ-
ence approximatiofvé‘g to the 2D gradient is defined as

1
Vipfis = h—M[fi,j — fim1g, fig — fig—1] (7)

(d)

and summed over the regiofV,,’, consisting of all grid locations

Schemes on regular grids, despite some awkwardness (namely, m such thatiasl, harm, har(I — 1) andhar (m — 1) lie within

in treating curved boundaries, and in interfacing betwegasgf
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Though apparently implicit (i.e., when applied at time step where¥* , ., and¥? ,. _, indicate virtual values of the acous-

n, the averaging operatign;. introduces values of the as yet un-
known values of the grid function at time step+ 1), due to the
scalar nature of the nonlinearity, this expression may hi&emr
explicitly in terms of known values ab at time stepn. Seel[17]
for more details.

The coupling termg and f_ are now 2D grid functions, i.e.,
fr = fLim [- = fZ ., and and the external excitatigi,.. is
a specified time serie.. = f2,.. The grid functionp = ¢; ,, is
an approximation to a 2D Dirac delta function—if coinciderith
a grid locationl = Iy, m = my, it takes on the value/hﬁf at this
location, and is zero otherwise. If not, a bilinear, or higheder
interpolant may be used.

3.2. Scheme over Acoustic Field
Over the acoustic field, a simple seven point scheme is used:
5”‘1/ = 026§D‘1/ (18)

for a grid function¥'7’,,, , approximating the acoustic fieltd(x, y, z, t)
at coordinatesx = lh,y = mh,z = ph and at timet = nk,
whereh is the grid spacing. Here the operaber is as defined in
the 2D case if(15), and the 3D Laplacian difference opeestor

>

o, B,y
[ +[B]+]v|=1

6§D‘1/ﬁm,p = \Ilanra,erB,er'v - 6‘1/2771,1(19)

At the interface with the drum cavity, a staircase approxima
tion is again is used. At a grid locatidp, ms, ps, for example
(either inside or outside the cavity), for which one or modga
cent grid locations lie on the other side of the cavity boundhe
Laplacian is specialized to

2 n
53D‘Plh,mb,pb

)(int)

>

a,B,y
[a|+]B]+]vI=1
n
7tha7”bal7b\plb7

n
(‘I/lh-ka,mh-&-ﬁ,pb-w

my,pp (20)
where the superscript™ restricts the sum to values which lie
on the same side of the boundary as the grid phint.;, ps, and
where the integek;, .., p, is the number of nearest neighbours
lying on the same side of the boundary.

For the membrane coupling conditions, it is easiest (thdygh
no means necessary) to place the membrane hejghdt a loca-
tion directly between two vertical sets of grid points, witidex
p+ andp_, and thus at spatial locations; + h/2 andzas — h/2,
respectively. The coupling conditiorfs{12) become:

f==pée.Zsp—2pV_ f+=—potIsp—2DV 4 p,

(21)
where¥_, = ¥, , and¥,, = ¥, ,and where
d:. is a centered time difference operator, as giveri inl(15eg Th
operationZs p_.2p interpolates grid values for the acoustic field to
locations on the grid for the membrane.

Coupling conditiond{1I3) become, under simple differenze o
erations,

Iop—splrw” = — (U, 1=V, )

1

_E (\Il+,P+ - \I/i’er,l) (22)

tic field, and wher&,p_.3p is an interpolant from membrane dis-
placement values on the 2D grid to grid locations in 3D.

The conditions[[21) and(22), when coupled with the mem-
brane updatd (14) an@{[18), lead to a full update of both fields
furthermore, through inbuilt numerical energy consepmat{see
Sectior3.B), numerical stability conditions follow.

Numerical equivalents of the absorbing boundary condition
have been presented by one of the authors recently, in tleeofas
the snare drum [7].

3.3. Energy Conservation and Stability Conditions

In the case of a nonlinear coupled system such as this, ncetheri
stability is best approached using energy techniques A9this
topic has been covered at length by one of the authors (pkatig

in [17]), a lengthy review is unnecessary here.

The idea is that under lossless conditions (here, when 0,
and when absorbing boundary conditions are disabled),ctiaé t
energy of the system must remain constant under transieni-co
tions. If such a property of an invariant energy can be buiib i
the numerical simulation method, and, furthermore, theerical
energy is positive, then the algorithm is numerically statiis in-
cludes the effect of the nonlinearity in the membrane. Set@e
for an illistration of numerical energy conservatiomtachine
accuracy.

Positivity of numerical energy is ensured [17] under the sta
bility conditions

B > Aik® 426 ak 41/ (3, k2 + 263, ak)? + 1652k (23)

and
h > \/3ck (24)

if the two interpolantsZ.p_.3p, andZsp_.2p are chosen such
that when written in matrix form, they are transposes of ame a
other, scaled by /h. These stability conditions are identical to
those which would be obtained, under von Neumann analysis, f
the linear membrane system and acoustic space in isolatiomn:—
however, they hold in the case of a coupled nonlinear system.

4. PARALLEL IMPLEMENTATION USING CUDA

Implementation of the timpani model described above it
relies on linear algebra constructs using both dense andespa
matrix operations. Initial prototyping was performed @sMAT-
LAB, resulting in some five hundred lines of matrix based ¢ode
the majority of which is pre-runtime loop setup (primaritygen-
erating matrix equivalents of the various difference ofzgs). Bench-
marking on an Intel Core i7 "Sandy Bridge" processor gavenaco
putation time of 28.0 minutes for one second of simulatictlatkHz,
for a typical drum enclosed within a cubic metre volume. Tikis
clearly not ideal for the user in learning how to explore thegi-
bilities of such an instrument.

One of the benefits of using FDTD schemes is their high level
of data independence at each time step. Such schemes are well
suited to parallel processing using GPUs, which can draaiéti
reduce computation times even when using double precisibn ¢
culation [20]. This section details the transition from MAAB to
the use of Nvidia’s CUDA architecture.
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4.1. Algorithm Structure

A brief overview of the algorithm is useful in understanditing
computational requirements.

Preprocessing consists of matrix and grid space setuprand c
ating a list of grid points adjacent to the cavity boundari€his
takes a matter of seconds and is therefore minimal compared t
computation time in the main kernel. The run-time loop pern®
the following operations at each time step:

1. Calculate the 3D Laplacian taking into account cavity ahd
sorbing boundaries.

2. Compute the membrane displacement, with iterative tings:
tem solutions and interpolation.

3. Adjust acoustic field for interpolated effect of membramter-
action.

4. Read output from selected locations in the 3D grid.

Due to the implicit character of the coupling conditiohs](21
and [22), a linear system solution is required to update them
brane displacement, and an iterative method (provablyergent)
using five to ten iterations gives acceptable accuracy faect
ness testing. Tablg 1 shows the sizes of the grids used bythe t
components of the system.

System Dimensions | Total grid points
2D membrane| 127 x 127 16,129
3D volume 75X 75x75 421,875

Table 1: System grid sizes at 44.1kHz

The MATLAB implementation consists almost entirely of larg
sparse matrix operations and other grid updates performed i
vectorized manner. This is optimal in terms of runtime, alst a
efficient in terms of code complexity. However, this doesspre
some challenges when porting to C and CUDA.

4.2. Translation to CUDA Code

For FDTD schemes, the key to maximising performance on a GPU

is reducingandcoalescingaccess to global memory (coalescing is
achieved when consecutive threads in a group access coasigu

elements of global memory). GPUs are very good at perform-

ing floating point operations, which can lead to a bottlensblen
transferring the data on and off the registers. This is ailmifac-

tor for FDTD, where the compute/memory access ratios ang ver
low. Given this limitation, the structure of the MATLAB code
with its reliance on large but highly sparse matrices of atpe
coefficients, is certainly not optimal for CUDA.

Refactoring of the code to "unroll" very large sparse maifx
erations into explicit loop-based updates using scalaffic@nts
constituted the first stage of the port to CUDA. This was penfed
for the 3D volume calculations. The 2D membrane calculation
due to interpolation, are much harder to rewrite in a loopeba
form, and were thus left in sparse matrix form. The resulthy-a
brid system of explicitly threaded and matrix form compiatas,
the latter requiring the use of objects handling sparseicestin
both C and CUDA.

pressed Sparse Column) format library that uses efficientib-
gle threaded functions that replicate those used in MATLR&.
the membrane update calculations in the kernel, Nvidia’SCU
PARSE v2 library provides the necessary sparse matrix bgeden
vector multiplication [[22]. This requires the CSR (Comsexs
Sparse Row) format, so the matrices created in CSparseraage t
posed and the row and column arrays reversed.

Whilst the libraries provide the necessary tools for partin
from MATLAB, there are still issues that need to be addressed
to obtain optimal GPU performance.

4.3. GPU efficiency

Operations that are computationally expensive in seriald@can

be straightforward to run in CUDA. For instance, calculgtthe
3D Laplacian (Step 1.) in C code requires looping over thgdar
volume size, and computing an update for each point baset$ on i
six nearest neighbours. This is naturally an expensiveabioer.
However, on the GPU it is very simple to code and runs extrgmel
fast. Using the latest FERMI architecture cards, there iseed to
use shared memory for small scale stencils as the cachibtensys
performs the same function [23]. CUDA v4 allows thread grids
which are three dimensional, and so there are no issues ipintap
the data to the grid.

In contrast, operations that are trivial in serial C can beeo
slightly tricky to perform in CUDA. Considey = a’ xa, for a
dense column vector multiplied by its transpose to give dasca
value result. This is used several times in the membranellealc
tion, including in the linear system solve. In C code, thisimply
a case of looping over the vector, multiplying each valuetbgli
and summing it into a variable holding the cumulative totak
the 2D size is only 16 thousand points, this is an extremedy fa
calculation.

Moving to CUDA, parallelizing this operation is not readily
apparent due to the cumulative sum. This first thing to note is
that this needs to be preformed on the GPU, as transferritag da
between host CPU and the device has the slowest transfer rate
So, an initial "naive" approach would be to get a single tirean
perform the computation as per the serial C code.

Shared Memory
Dense Vector A
Thread 0 | | | >
Thread 1 L | >
Thread 2 | | ==

Figure 2:Vector multiplied by its transpose using shared memory.

This turns out to be extremely slow, even though the thread
only loops over a relatively small number of values, as no orgm
coalescing occurs. To improve on this, one can use a reductio
algorithm technique that utilises shared memory[{fig.2)is Tha
two stage approach. Firstly, issié = 1,024 threads in a single
thread block. Each thread then "strides" over the vectonetgs
in a loop, shifting byN elements at each pass, multiplying the
element by itself and adding the result to the cumulative gum
register. Each thread then stores its partial sum into a&dhaem-

For the initial setup of sparse matrices in C code, elements ory array of sizeV. The second stage is to get a single thread to

of the CSparse library were used [21]. This is a CSC (Com-

then loop over this shared memory array and sum the finaltresul
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This approach achieves memory coalescing for the data read f
global memory, and leaves a single thread looping over alsmal
amount of shared memory which is fast.

There are other stages in the kernel where memory coalescin
issues occur, and for instance in adjusting the Laplaciarhi®
cavity boundaries. These boundary points are stored i af]ig
the case of a typical drum modelled at 44.1 kHz, around 10-thou
sand rows and ten columns. This list is iterated througheafest.
of the kernel, picking-up values in the 3D volume. Achievoua-
lescing on the memory reads from the volume is hard, as ttiey re
to a 3D parabolic shape. However, coalescing the iteratimugh
the list is straightforward, again using a "strided" accggsroach
and ensuring that the list is linearly decomposed to enide t

5. SIMULATION RESULTS

5.1. Accuracy of Staircase Approximation

As a preliminary check, it is useful to examine the use of the-s
case approximation in the case of the membrane. A plot of m
frequencies, for an ideal membrane (i.e., without losg&fess
or nonlinearity) appears in Figufé 3, accompanied by anuiL
spectrum for a membrane simulation with a staircase apm@x
tion to the boundary. As expected, low frequency modes are
proximated nearly exactly, with increasing error, due tmatical
dispersion, for increasing frequency.

0 T

wivy

-30 I I " I
200 300 400

frequency (Hz)

output spectrum (dB)

500 600

Figure 3:In red: Exact modal frequencies for an isolated circular
membrane, with wave speegk = 112.65 m/s, under linear, loss-
less and non-stiff conditions, and fixed boundary condstiom
blue: Output spectrum calculated through FDTD on a Cartasia
grid, using a staircase approximation at the boundary.

5.2. Pitch Glides

Pitch glides, though a minor effect in timpani, can be repoed
using this model—an exaggerated pitch glide is illustateigure
4
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Figure 4: Spectrogram for sound output from the timapni model,
under low, medium, and high striking amplitudes; a pitctdegli
phenomenon at high striking amplitude is apparent.
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5.3. Numerical Energy Conservation

As an illustration, variation in numerical energy for thisstem,
gsubjected to an impulsive excitation, is shown in Figure &; e
ergy is constant to machine accuracy, as is clearly visiblbia
guantization in the energy. Under the stability conditi@3) and
(24), its constancy serves as a stability condition for tteeme
as a whole. The energy measure here is a positive definite (but

not quadratic) function of all the values stored in computem-
ory at any given time step—for more on energy-based algarith
construction, see, e.g., [17].

Though there is no need to calculate energy explicitly inla po
ished simulation, such an energy measure is a useful feature
debugging, and serves as a form of checksum—virtually amy er
in the implementation will be reflected by energy variation.
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Figure 5:Left, numerical energy of membrane (red), acoustic field
(blue) and total (green) as a function of time. Right, védatin
total numerical energy, normalized by total energy.

5.4. Performance analysis

The CUDA code is some three times longer than in MATLAB, at
1,500 lines (excluding the libraries). The Nvidia Tesla 62@ard
was used for performance testing, using double precisiaifig
point calculations. Running at 44.1kHz, this gave a comtjmria
time of 82 seconds for a typical timpani drum set within a cubi
metre volume, ax 20.5 speedup over the original MATLAB code.
Computation time for a three second simulation is reduced to
minutes, compared to nearly an hour and a half in MATLAB. Tim-
ings for the individual parts of the computation are giveTétle

2.

Kernel Time (% of total)
Calculate Laplacian over 3D volumge 8.50 %
Membrane : update 17.74 %
Membrane : interpolation 5.91%
Membrane : linear system solution 48.76 %
Update volume interior 9.58 %
Update volume boundaries 7.31%
Membrane coupling 1.95%
Read output 0.25%

Table 2: Relative kernel times for one time step at 44.1kHz

Despite the relatively small size of the 2D membrane grids,
their update takes 70% of the total kernel time. The iteedliiv-
ear system solution is clearly the stalling point, takingnhehalf
of the entire time. Each iteration requires two large scdll$S€C
PARSE kernel calls, two simple kernel updates, and a reotucti
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algorithm kernel as detailed above. This leaves little réonop- entire 3D acoustic field—which is opposite to the case of the-a
timization in its current form. However, with further refadng rithm running on conventional hardware. Two ways to colader
of the code to a loop-based implementation, the membransespa this might be to relax the energy-based requirement onlgyabi
matrix multiplications would most likely lead to furtherdhactions from (a) leading to a fully explicit update, or to choose @iitent

in the computation time. grids in the two spaces, leading to severe numerical digpers
from (b). Neither seems acceptable, for an algorithm rupairan
5.5. Full 3D Simulation Results and Sound Examples audio rate.

As mentioned earlier, the timpani drum here has been taken

For the sake of illustration, snapshots of a cross sectiothef to be a test case for the implementation of a non-trivial juajs
acoustic field are shown in Figuré 6. Sound examples producedmodeling synthesis algorithm in parallel hardware. The from
using this model are available at Matlab to CUDA was carried out, here, in a relatively direxsH-

ion, without a serious attempt at optimization, and hasltedin a
large speed-up—with further optimization, one could wepect

a much greater acceleration. Yet, case-by-case optimizéia
tedious undertaking, and efforts are being made at Edihbtog
develop parallel optimization tools which can be used foficu-
rations of increasing generality beyond that of a singlerdru

http://ww2. ph. ed. ac. uk/ ~s0956654/ Si t e/ | nstrunent s. ht n

6. CONCLUDING REMARKS

The timpani drum model described here is mainly linear, anelsg
good quality results under low striking amplitudes. It isarl, how-
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