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ABSTRACT

Real-time sound synthesis of musical instruments based on solv-
ing differential equations is of great interest in Musical Acoustics
especially in terms of linking geometry features of musical instru-
ments to sound features. A major restriction of accurate physi-
cal models is the computational effort. One could state that the
calculation cost is directly linked to the geometrical and mate-
rial accuracy of a physical model and so to the validity of the
results. This work presents a methodology for implementing real-
time models of whole instrument geometries modelled with the
Finite Differences Method (FDM) on a Field Programmable Gate
Array (FPGA), a device capable of massively parallel computa-
tions. Examples of three real-time musical instrument implemen-
tations are given, a Banjo, a Violin and a Chinese Ruan.

1. INTRODUCTION

Physical modelling and computational synthesis of acoustical in-
struments are forming the basis of many musicological, acoustical
and engineering applications and research [1], 2], [3], (4], [5].
Examples are the understanding of structural features of musical
instruments and the estimation of the importance of fine struc-
tures, like complex couplings, non-linearities, or orthotropic mate-
rial properties, all qualities of key importance to instrument builders
interested in changing or improving their instruments (3], [6]. An-
other important field of research is the relation between instru-
ments, perception, composed music, and ethnic musical traditions
in terms of the chosen material, sound requirements, and/or tra-
dition. Here the Physical Model can serve in two ways, through
the visualisation of the time-dependent vibrational parameters, like
displacements or flows, and through the auralization of these vibra-
tions, resulting in musical tones, melodies, articulations, or whole
musical pieces.

Many ways of Physical Modelling have been proposed. Even
though these methods differ in numerous aspects, they have one
conjoining property, namely the fit of the discrete model to the
real instrument strongly depends on the accuracy of the modeled
geometry and material, as well as on the appropriateness of the
chosen mathematical model. In practice this means the computa-
tional effort rises with the complexity of the model. Therefore, in
Musical Acoustics much effort was put into finding simplified for-
mulations of the vibrational behaviour of musical instruments to
compute them in real-time or close to real-time [7]. Most of these
works propose simplification and especially linearisations of the
physical equations. Most filter based techniques, like delay lines,
Waveguides, or modal synthesis use linear approximations and ne-
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glect most of the occurring diverse non-linear behaviour. They also
neglect most of the geometrical fine structure, discontinuous mate-
rial or tension and pre-stress distributions, and complex coupling
between parts of the specific instrument body. Furthermore they
are hard to formulate in higher dimensions. Although some sounds
produced by these methods are close to real instrument sounds,
still restrictions in terms of articulation and instrument flexibility
are present. Moreover, as these models do not consider the real
geometry, the link between specific geometry features and sound
behaviour often stays unclear and so its use for instrument builders
is restricted.

Another approach is Physical Modelling which solves partial
differential equations (PDE) governing systems in one, two, or
three dimensions. These PDEs may be the wave equation, the
membrane or the plate equations, the Helmholtz equation, or flow
formulations like the Navier-Stokes or the Euler equation. Due
to the fact that analytical solutions of these differential equations
are only known for plain geometries, like e.g. rectangles or circles,
when solving more complex geometries only discrete formulations
of these differential equations can be used to obtain solutions. The
most commonly used methods for solving discrete formulations of
PDE:s include Finite Element Methods (FEM), Boundary Element
Methods (BEM), and Finite Differences Methods (FDM). As these
approaches are capable of including all mathematical models, ar-
bitrarily shaped geometries, all kinds of nonlinearities, and also all
kinds of sound radiation, they seem to be the holy grail of Phys-
ical Modelling. Still they have the large trade-off that a real-time
computation is far beyond the capabilities of a standard PC. So
other hardware solutions have to be used to make these methods
real-time capable. At present, two hardware architectures are used
for accelerating numerical calculations in many scientific fields,
the Graphics Processing Unit (GPU) and the Field-Programmable
Gate Array (FPGA). The GPU seems attractive at first glance as
most PCs have such a unit installed already and many recent stud-
ies have shown the advantages of GPU calculations over CPU im-
plementations. Still, even though a standard GPU accelerates al-
gorithms around 4 - 10 times, this gain in calculation time is still
not enough to solve the comprehensive Physical Models discussed
above in real-time. The FPGA on the other hand was been shown
to be capable of speeding up discrete model FDM solutions to real-
time (8], [Oll, [10], [LL], [12], [13], [14].

Because of their massive-parallel and therefore high speed pro-
cessing capabilities and because of their flexibility, FPGA-devices
are used in many fields of Signal Processing. FPGAs are used in
the implementation of real-time noise source identification [[15],
high-speed direction-of-arrival algorithms [[16], high-speed cross
correlation [17], or delay-and-sum beamforming [18]], [19]. Still
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they are rarely used for the synthesis of sound. Martins et al. [20]
focus on a low-cost method to process sound on a FPGA without
the need of additional electronics, still omitting musical aspects.
A FPGA was also utilised as a function generator for simple sig-
nals like a sine wave or a rectangle signal (see [21]], [22]). All of
these works focus on high-frequency rather than audible signals,
e.g. suggesting an amplitude-modulation-demodulation chain for
a digital radio receiver [21]] but not on musical sound synthesis.

Another conspicuity in typical signal processing applications
on a FPGA is that they are mainly realized as a IIR- or FIR-filter
design. Madanayake et al. [23] implement 2D/3D plane-wave
filters by using IIR/FIR-filters. Shuang at al. [24]] focus on analog-
to-digital controllers using a similar filter-design. Several papers
propose methods of implementing DSP filter designs (IIR/FIR) on
a FPGA chip like [25] or [26].

Still there are implementations of solving differential equa-
tions on FPGA hardware. Motuk et al. [27], [27] propose the cre-
ation of new instruments, similar to a drum machine by simulating
plates using a FPGA. Simulating electromagnetic fields by solv-
ing the Maxwell equations using a Finite Differences in the Time
Domain (FDTD) algorithms was proposed by [28]. The FDTD-
Method a widely acknowledged algorithm for the analysis of elec-
tromagnetic problems [29].Strzdoka et al. [30] propose the conju-
gate gradient method implementation as a solution for linear equa-
tions which solve differential equation systems. As noted above,
its parallel processing capability predestines the FPGA to be used
in real-time applications like particle track recognition [31], next
to many other applications. All of these works have shown that al-
gorithms could be realized in real-time for the first time or be sped
up tremendously using a FPGA.

So indeed a real-time implementation of a FDM algorithm to
solve differential equations to simulate a whole musical instru-
ment on a FPGA is highly valuable. Although there are several
papers that research the real-time capability of FPGAs for Acous-
tic Modelling all of these works focus on special cases of the wave
equation e.g. strings, membranes, plates or air-volumes [32], [27]],
[33]. To the best of our knowledge there has been no work that
successfully modelled whole instrument geometries with interact-
ing parts or coupled wave equations in varying dimensions next
to the authors work [8]], [9], [10], [110, [12], [13], [14)]. The pro-
posed method in this paper tries to bridge the gap between both
worlds, real-time capability and physical accuracy of modelled in-
struments.

Among other features, the model includes:

e the whole geometry of the musical instrument,

e all material parameters,

e anisotropic distributions of material parameters over the ge-
ometry

o a multiple of differential equations governing the single in-
strument parts

e couplings between these parts,

e non-linearities caused by physical properties, couplings, ma-
terial, etc. ..

e solution of the dependent variables, e.g. displacement, ve-
locity, or flow on the geometry

o radiation of sound to a virtual microphone or listener posi-
tion.

The model is implemeted on a FPGA development board and
linked to a standard PC. A user interface gives the possibility to
change physical parameters in real-time. These parameter changes
include:

e changing the geometry in real-time,
e changing material parameters in real-time,

e changing playing parameters like plucking of a plectrum,
bowing-velocity or bowing-pressure.

With these capabilities, the proposed application may be used
by:

1. instrument builders who can listen to the sound produced
by different geometries or materials

2. researchers studying the behaviour of an instrument when
changing parameters

3. musicians playing an instrument and interaction with the
model in real-time producing notes and articulation.

2. INTRODUCTION TO FPGA ARCHITECTURE

As shown above, to compute finite differences with sufficient ac-
curacy in real-time a high speed processing unit is needed. In re-
cent years many studies and publications have shown that a FPGA
(Field Programmable Gate Array) is the most feasible device to
fulfill highly specialized tasks in different fields of signal process-
ing. In this section we give a short overview of the architecure of
modern FPGAs, with a focus on the key differences to CPUs.

2.1. FPGA structure

A Field Programmable Gate Array is a logic device that was orig-
inally developed to add more flexibility and reconfigurability to
gate logic devices like an ASI or a PL In distinction from
other logic devices a FPGA is not hard-wired so the user has the
ability to to configure the FPGA to his specific needs. The struc-
ture of a FPGA can be described as unwired transistor logic blocks
that can be freely progammed to yield any desired logical function.
Modern FPGA devices have additional functional blocks like DSP-
or memory-blocks (called BRAM on a Virtex-6 FPGA) which can
be integrated into a design. These special function blocks, in-
cluded on the device are directly accessible from the wired logic.
This means BRAM blocks can be accessed without time costely
operation of a communication protocol between a calculation ker-
nel and memory of a PC host or other external hardware. The basic
structure of a FPGA is shown in figure[I] The I/0-Blocks depicted
in figure[T|connect the logical core of the FPGA with other devices.

Another huge advantage of FPGA’s and other programmable
hardware devices (ASICs, PLDs) over other classes of hardware
is the capability of processing given tasks in parallel and not se-
quentially like CPUs, DSPs or Micro Controller do. On a FPGA
it is possible to compute massive numbers of instructions in par-
allel, within one clock cycle. To benefit from this advantage it is
crucial to implement an algorithm that processes as many paral-
lel instructions as possible. It has been shown that a optimized
parallel FPGA algorithm is always superior to a similar sequential
algorithm in means of calculation time and maximum clock rates
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Figure 1: FPGA structure.

(1341, (351, [36], [37]. Although the FPGA Structure is predestined
for parallel processing, sequential statements can also be realized
with a Finite State Machine (FSM).

2.2. Programming a FPGA

Another main difference of a FPGA chip compared to other logic
devices is the possibility of programming the device from a Per-
sonal Computer via a vendor specific programming tool. Pro-
gram designs that run on a FPGA are written in a special Hard-
ware Description Language (HDL) such as VHDL or Verilog. As
the name already implies, this programming language allows the
user to model and program hardware components on the device
in software, using specially defined constructs. This programming
language contains high-level constructs like If-, For-, While-loops
and low level aspects like bitwise declaration of signals, variables
and constants. The main difference in comparison to other high-
level languages is the capability of programming concurrent in-
structions.

3. METHOD

As mentioned before, in physical modelling it is desireable to to
calculate all physical and geometrical properties of a specific musi-
cal instrument with the highest accuracy possible. The goal of this
work is to implement such accurate formulations of physical mod-
els of musical instruments in real-time. To achieve this, a FDM al-
gorithm developed in MATLAB is translated to VHDL and imple-
mented on a FPGA development board. There are several works
that exemplify that transient behaviour of musical instruments can
effectively be modelled with an FDM formulation in an explicit
form [5], [2]], [38]. When certain requirements are met, the FDM
has a high numerical stability over a large frequency range [39], [5]
a property that is crucial when developing FDM-models of musical
instruments. In the following section we develop a basic formula-
tion of the implemented algorithm and show some modifications

for the final real-time implementation on a FPGA chip.

3.1. FD Formulation

The basic algorithm for all presented models can best be illustrated
by a discrete approximation of the 1-dimensional wave equation
of the linear string. The analytical wave equation for a ideal string
without damping effects and stiffness is given by:

2

Ut = €+ Uga M
with ¢ = 4/ % where 1" = tension and o the linear density. The
subscripts us+ and ug, indicate a differentiation by time and dis-
placement respectively. Using Newtons second law of motion where
the force acting on a conservative system can be expressed as

Force = M -a =M - uy = —VV (u(t)) ()

with M the mass, u(t) = (w1(t),...,un(¢))) a position vector and
V' the potential function depending on the position.

Combining equation [T|and 2] gives a formulation for the accel-
eration a = wu¢; depending on u. The discrete solution for equa-
tion [T]is calculated by a semi-implicit Euler method also known
as Newton-Stormer-Verlet (NSV)’[algorithm. The NSV algorithm
approximates differential equations of the following form

ou
55 f(t,v) 3)
ov
5 J(t,w) 4

with v = the position and v = the velocity of a system.
The basic iteration of the recursive algorithm is

Vi+At = UVt =+ at At (5)
UtyAt = Ut + Vipar - Al 6)

With At beeing the discrete time step .

This two step algorithm has several features suiting the calcu-
lation of physical models of musical instruments very well. Among
its conditional stability and accuracy as shown by Hairer et al.[39]]
the algorithm gives explicit expressions for the velocity v, the po-
sition (deflection) u and the acceleration a at every point of the
discretized geometry. In other words, three important physical
parameters governing the vibrational behaviour of most musical
instruments are calculated and directly accessible at every time
step A;. The accuracy of the solution now depends on the dis-
cretization steps in space and time and the precision of the physical
model. The algorithm in pseudocodeﬂ

Listing 1: NSV-Algorithm

a[t]=initial potential at t==0
for t=1 to SampleLength
{

for every discrete point of the string

{

3For the later implementation on the FPGA features of the Velocity
Verlet [40]] algorithm are added

4Remark: The asterisks denote a multiplication and are used for better
readability of the pseudo code
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vit+l]=v[t]+a[t] * delta_t;
u[t+1l]=u[t]+v[t+1] % delta_t;
a[t+1]=potential function at t+1
}
}

The potential function depends on the geometry and the given
equation for the model. In the case of the linear string it can be ap-
proximated by discretizing the right hand side of equation [T] with
a Finite Difference term:

—2*uz + Uz+1 + Uz—1
Az?
Summarizing the resources of this algorithm for one discrete point

on the ideal string:

Ugx N

(O]

Table 1: Resources of the MATLAB NSV version

Multiplications/Fractions | Additions
5 4

3.2. FPGA Optimizations

When designing DSP algorithms in Hardware, fundamental de-
sign strategies depend on the data type. In most DSP applications
based on IIR- or FIR-Filter designs a floating point data type is
chosen. This data type has some advantages compared to a fixed
point data type like lower resource usage for the typical Multi-
ply and Accumulate (MAC) opperations but on the other hand can
lead to stability problems due to a increased sensitivity to rounding
or truncation errors [41] especially in IIR-Filter or other designs
with a recursive structure [21]]. To circumvent these problems a
normalised fixed point data type is utilised in this work and used
for all proposed instrument models on the FPGA. When translat-
ing code from a high level programming language into VHDL the
main task is to optimize the code for parallel execution to fully
utilize the advantages of the FPGAs hardware structure. Other op-
timizations can be achieved when data type specific properties are
utilised as shown below: In binary logic a multiplication with a
number k& with the properties

k:=|k| € 2° withx € Z (8)

can be carried out as a leftshift if £ > 0 or a rightshft if £ < 0.
This property can be applied with the used fixed-point data type of
the models, so the 5 multiplications/fractions of the MATLAB/C
code are transformed to 4 left-/right-shifts and one multiplication
in the optimized FPGA code. The used resources of the algorithm
in hardware are:

Table 2: Resources of the FPGA NSV version

Multiplications | Additions | Shift Operations
1 4 4

Because of the fact that FPGA shift operations are much less
time and resource consuming compared to multiplications and frac-
tions the optimized hardware algorithm performs faster.

3.3. Complete Geometries

The described algorithm can easily be extended to higher dimen-
sions and higher orders of the wave equation as described in sec-
tion[d Beside the 1-dimensional wave equation for the string, the
models of the three instruments include the 2-dimensional wave
equation of the membrane, a 2-dimensional equation for wood
plates, a 2-dimensional equation for a wooden bridge and the 3-
dimensional wave equation for the air. As mentioned in section I]
besides an accurate discrete model for the singular parts of the
instrument, the coupling between these parts is of huge impor-
tance. In many cases the manner of the coupling imparts instru-
ments with their specific sound caracteristic, for instance the posi-
tion and mass of a banjo bridge strongly influences the timbre of
the instrument [42]). In conclusion to get a realistic physical model
of a complete musical instrument, the coupling parameters must
be modelled meticiously. In some cases, like the sound radiation
from a membrane and the influence of the air back onto the sur-
face, the coupling can be done via a force coupling of both wave
equations [4]. In other cases, like the coupling between a string
and a wooden bridge, it has to be done via a reciprocal influence
of the respective potentials at the interaction point or a mass cou-
pling [43]] respectively. Due to the fact algorithm 5] yields explicit
expressions for the deflection, the velocity and the acceleration on
every point of the discretized geometry, coupling between differ-
ent parts can be expressed as functions, in some cases non-linear,
of these quantities at the interaction point(s).

3.4. Hardware Implementation

After a complete implementation of the models in MATLAB, the
algorithm is converted to VHDL and flashed onto a FPGA devel-
opment board as described in section[T} The used hardware include
a XILINX ML605 Virtex-6 development board for the calcula-
tion of the implemented models and a standard Personal Computer
where a C#-program acts as a user interface for controlling the pa-
rameters of the physical model. The block diagram of the Banjo
model depicted in figure 2] gives a schematic overview of the core
functionality.

3.4.1. Parallel Computation Kernels

To fully utilise the processing capabilities of the FPGA all core ele-
ments of the FDM model are calculated in parallel. The calculation
kernel of the 1-dimensional wave equation consists of 20 discrete
points that are calculated in parallel, in other words if a string is
discretized with eighty points the kernel is executed four times.
The other entities are modelled similarly. The parallel membrane
kernels have a 8x8 grid size, this means for a membrane discretized
with 64x64 nodes, the parallel membrane kernels runs 8 times. A
similar approach for 3-dimensional structures can be found in [32],
[271.

3.4.2. Hardware Resources

The utilisation of hardware resources and clock speed on a FPGA
directly depends on the complexity of the implemented design. On
a Virtex-6 FPGA one string including a bow model, as described in
[] discretised with 80 points uses approximately 3% of the FPGAs
resources and runs with a clock speed of ~ 80 Mhz. More complex
designs, like a complete Violin geometry consume nearly 85% of
the resources, but still run with a clock speed of ~ 80 Mhz.
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Figure 2: A schematic overview of the described model. The black dots symbolize the parallel calculation kernels

4. RESULTS

In the following section a description of three FDM instrument
models implemented in real-time on a Virtex-6 ML605 FPGA board
is given. Sound examples for all three models can be found on the
website of the Institute for Systematic Musicology Hamburg| .

4.1. Five string Banjo

The first instrument model that is implemented on the FPGA is a
American Five String Banjo. Due to its comparatively plain geo-
metrical features (a string coupled to a membrane), a model of the
banjo is a instructive starting point for modelling musical instru-
ments. The current model consists of two strings, a wooden bridge,
the membrane and the coupling air underneath the membrane. The
FPGA model of the banjo is devided into four entities:

1. The strings (1-dimensional Wave Equation)

2. The membrane (2-dimensional Wave Equation)
3. The air (3-dimensional Wave Equation)

4. The bridge (2-dimensional Equation)

As mentioned in section [3] each entity has a parallel computation
structure that can best be illustrated on the string-enity. The string
is dicretized into N points (/N is dependant on the length of the
string and the desired accuracy). In the next step, the string is
fragmented into the maximal length of the parallel computation
kernel np. In the case of the banjo string N = 80 and n, = 20.
This means that for the calculation of one timestep At of the
whole string the parallel kernel runs 4 times.

4.1.1. Non-Linearities of the Membrane

In a recent work, done by the authors the nonlinear tension distri-
bution of a Banjo membrane was measured and calculated qual-
itatively [13]. It was shown that these non-linearities arise from
the exerted force of the bridge and the non-symmetrical tension
distribution at the tension hoop of the Banjo head. The measured
tension distribution on the mebrane of the authors banjo is depicted
in figure[3] In the current design, the membrane of the Banjo phys-
ical model is discretized with 32x32 grid points with the non-linear
tension distribution mapped on every point. The modeshapes of a
membrane with non-linear tension and the modeshapes of a real
banjo can be found in figure[5]in Appendix A.

4.2. Ruan

The Ruan is one of the oldest Chinese string instruments and is
often rederred to as the predecessor of the Pi’Pa. The playing style
resembles the plucked tremolo playing style of the Italian Man-
dolin. The front- and back-plate of the Ruans round body is made
of Paulownia tomentosa wood. Additionally there are two orifices
on the front-plate, acting as sound holes. So the model of this in-
strument extends the Banjo model in several ways, instead of the
two-dimensional, second order wave equation of the membrane,
the sound radiating front-plate is now modelled as a round wooden
plate.

4.2.1. Orthotropic Wood Plate

The front plate is modelled as a modified form of the fourth-order
Kirchhoff Plate Equation and is dicretized with 64x64 points. The
two frontal orifices are implemented into the formulation of the
front plate, coupling the air volume inside the cavity (instrument
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Figure 3: Non-linear tension distribution on a membrane (lighter
colors indicates higher tension)

body) to the air outside of the instrument. The orthotropic quality
of wood can be accounted for with a different Young’s modulus
in each of the three grain directions [44]] which directly influences
the transversal wave speed in the respective direction. The specific
material property of the wood is considered in the model of the
Ruan and the Violin.

4.3. Violin

The building blocks of the physical model of the violin are essen-
tially the same as in the other two instrument models: a wooden
resonance body, several metal strings and a wooden bridge. In
comparison to the Ruan and the Banjo, two plucked lutes, ob-
viously a major difference of the Violin model is the excitation
mechanism of the string. The implemented model of the Vio-
lin bow is based on a bow string FDM-model by Bader [38]] that
has been extended in several ways for the real-time version on the
FPGA.

4.3.1. String-Bow Interaction Model

The typical and well known Helmholtz motion of the Violin string
is caused by the nonlinear excitation by the Violin bow. The in-
teraction of the bow and the string can be described by a stick-slip
model [43]] dividing the excitation of the Violin string into two
phases:

1. the strings sticks to the bow and is teared in the bowing
direction

2. the strings slips off the bow until it sticks to the bow again.

As shown in [38]] the stick-slip motion of the bow-string sys-
tem can be controlled by three physical parameters: the bow ve-
locity, the bow pressure and the bow position on the string. A
large expressive range of the violin excitation can be simulated
fully with the variation of these three parameters. In addition to

these parameters, the real-time model of the bow-string interac-
tion includes a variable for the bow stiction (amount of rosin on
the string) and the number of points of contact of the bow on the
string [11]]. Thereby the amount of the bow-noise in the produced
sound and the response of the violin string can be regulated. A dia-
gram of the bow-string model can be found in figuref]in Appendix
A.

5. CONCLUSIONS

In this work we have presented three physical models of musical
instruments with non-linear material properties, non-linear cou-
pling or non-linear excitation mechanisms. All three instruments
have been implemented on a FPGA development board and can be
configured, modified and played in real-time. The intensive work
with the three mentioned instrument models has already lead to
many interesting insights into the vibrational behaviour and phys-
ical properties of each instrument, for instance the importance of
non-linearities in the tension of the Banjo membrane. Further work
will include the implementation of a MIDI protocol and the devel-
opment of other instrument models. Eventhough the implementa-
tion time for physical models on a FPGA are higher than for C or
MATLAB implementations, the capabilities of a real-time physical
model highly outweigh the initial work.
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8. APPENDIX A
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Figure 4: Bow-string interaction model.
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