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ABSTRACT

Musical recordings, when performed by non-proficient (amateur)
performers, include two types of tempo fluctuations–intended
“tempo curves” and non-intended “mis-played components”–due
to poor control of instruments. In this study, we propose a method
for estimating intended tempo fluctuations, called “true tempo
curves,” from mis-played recordings. We also propose an au-
tomatic audio signal modification that can adjust the signal by
time-scale modification with an estimated true tempo curve to re-
move the mis-played component. Onset timings are detected by an
onset detection method based on the human auditory system. The
true tempo curve is estimated by polynomial regression analysis
using detected onset timings and score information. The power
spectrograms of the observed musical signals are adjusted using
the true tempo curve. A subjective evaluation was performed to
test the closeness of the rhythm, and it was observed that the mean
opinion score values of the adjusted sounds were higher than those
of the original recorded sound, and significant differences were
observed for all tested instruments.

1. INTRODUCTION

User-generated content (UGC) publishing through the internet
has been increasing, since this easy method of publishing inspires
many musicians. However, most musicians need to fix and/or
modify their performance before publishing their creation. Al-
though the performances may be of poor quality, many of the
notes are roughly performed as intended but with erroneous de-
viances in the rhythm (tempo and timing), amplitude, timbre, and
pitch of a few notes. In the case of rhythm, the only way by
which the error can be automatically modified is by timing with a
metronome, making the result too artificial. If we want to modify
it more naturally, we have to manually adjust by trial and error.

Automatic tempo detection from a tempo-varying piece of mu-
sic is one of the most important issues in music information re-
trieval (MIR). Note onset timings are detected [1, 2], and then the
tempo fluctuation, called the “tempo curve,” is analyzed to detect
recurring patterns and quasi-periodic pulse trains [3, 4]. Recently,
a novel “tempogram” that uses musically meaningful local pulse
information has been presented [5].

These studies for MIR target only recordings that are per-
formed as intended by sophisticated players. Low-proficiency per-
formances have not only fluctuations from the intended tempo but
also deviances caused by erroneous notes being played. We pro-

Fig. 1. Examples of actual tempo fluctuation from monophonic
violin recordings played by professional and amateur musicians.
The musicians played a violin phrase from “Tannhauser Act II
‘Grand March’ ” by R. Wagner.

pose a tempo-curve estimation method for monophonic audio sig-
nals (with included performance errors) by polynomial regression
analysis to prevent over-fitting. Here we define the interpreted
tempo fluctuation as the “true tempo curve.”

We also propose an automatic audio signal modification that
canadjustthe signal by time-scale modification with the estimated
true tempo curve. The estimation method requires accurate onset
detection. We also propose an onset detection method based on
the human auditory system to cover the various sound generation
mechanisms of musical instruments.

Recently, attempts have been made to analyze intended tempo
fluctuation separately intomicro–andmacro–, [6]. Macro–tempo
is the tempo experienced by listeners; it can change rather slowly.
Micro-Tempoconsists of slight anticipations of note events fol-
lowed by a deferral of the subsequent events in such a way that
the result does not contribute to macro-tempo changes. Since this
study focus on the separation of the performance error, it does not
discuss separation of the intended fluctuations.

2. MODELING AND ADJUSTMENT OF DEVIANCE
FROM MUSICAL SCORES

In this paper, the method, which corrects audio that has been
recorded as interpreted by the player, is discussed.

In an actual performance, the tempo is not constant. Sophis-
ticated players control the tempo “smoothly” to convey their in-
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Fig. 2. Flowchart of the proposed method

terpretation of a musical score during a performance (Fig.1 left).
This means that a “tempo curve” exists, which has been described
in many previous studies. Meanwhile, in the performances of low-
proficiency players, the tempo is not smoothly changed; in other
words, it is changed “discretely” (Fig. 1 right).

We assume that if the composer does not notate extreme tempo
changes in a phrase, then the amateur player as described above
tries to smoothly control the tempo. However, in reality, these
musicians cannot control their instruments as intended; thus, de-
viances from the interpretation are included, as seen in Fig. 1 right.
We consider these deviances to be one of the factors that makes a
listener interpret “poor playing” and removes a sense of rhythm.
Here we define this deviance as “mis-played components.”

In the following sections, the “note onset timing” of mis-
played performances in monophonic recordings is modeled. The
“true tempo curve,” which is the interpreted tempo, is fitted as a
smooth curve (as undertaken by Takeda et al. [7]) by polynomial
regression analysis. The mis-played recordings are adjusted by
time-scale expansion and contraction using the true tempo curve.

Fig. 2 shows the overview of the proposed method. First, a
mis-played audio signal and the “note numbers1” and “note val-
ues2” are used as score information inputs. Next, onset timing
candidates and the fundamental frequency (F0) contour are ana-
lyzed from the audio signal. Then, brief onset timing is detected
by score alignment to theF0 contour. Accurate onset timing is
selected from the candidates using the brief onset timing. Finally,
the true tempo curve is estimated using accurate onset timing, and
the audio signal is adjusted by stretching.

2.1. Onset timing modeling for mis-played audio signals

Although there are various definitions of note duration depending
on the type of instrument, here we define note duration as the in-
terval between an onset time of the target note and the next onset
time of a following target note; more correctly, we do not consider
rest notes. Namely, if the score shows an eighth note and an eighth

1“Note numbers”are the unique numbers assigned to each note. In this
study, “Middle C” (261.6 Hz) is defined as note number 60, and note A3
(440 Hz) is number 69. These definitions are the same as the MIDI note
numbers.

2“Note values” are the normal length of notes. Here for example, a
note value of a quarter note is defined as 1, that of half note is 2, and that
of eighth note is 0.5

rest note, these are treated as a quarter note. This enables the note
duration to be expressed using a note value and a tempo as follows:

duration (s)=
60 (s/min)

tempo (beats/min)
× notevalue (beats). (1)

Hence, thenth note onset timing without mis-playing becomes the
note duration sum of 1st through(n− 1)th as follows.

onset timing[n] =
n−1∑
m=1

60

tempo[m]
× note value[m]. (2)

Here the onset timing vector is defined asy = (y[1], ..., y[N ])T

whose components denote observed onset times ofN notes in-
cluding mis-played components as follows:

y[n] =

n−1∑
m=1

60

b[m]
h[m] + e[n] (3)

whereh[m] is the note value of themth note,b[m] is the value
of the true tempo curve of themth note,e[n] is the value of mis-
played deviance of thenth note. To Simplify of regression issue,
we assume thate[n] has a normal distributionN (0, σ2).

2.2. Musical signal adjustment

The intended note duration̂z[n] can be written using the estimated
true tempo curveb = (b[1], ..., b[N ])T as follows:

ẑ[n] =
60

b[n]
h[n]. (4)

The observed note duration of thenth note can also be calculated
from y[n+1]−y[n]. Herey[N +1] = Lx/fs, whereLx denotes
the data length of an acoustic signal, andfs is the sampling rate.

Note duration adjustment is achieved by stretching the note
duration using an expansion–contraction factorα, which is defined
as follows:

α[n] =
ẑ[n]

y[n+ 1]− y[n]
. (5)

3. ONSET DETECTION

Many acoustic features can be used for onset detection, for exam-
ple, changes in phase [8], complex spectra [9], and spectral flux
[10]. An appropriate acoustic feature depends on the type of in-
strument and the playing style [2]. Especially difficult is onset de-
tection from recordings of bowed string instruments played with a
legatostyle.

Other approaches consider the alignment between the ob-
servedF0 contour and note numbers using dynamic time warping
(DTW) [11, 12] for aligning the audio signal and the score. How-
ever, accurate onset detection by DTW is difficult, because an
accurateF0 contour is often not calculated around the onset time
due to an inharmonic spectrum.

In this study, to adjust diverse types of recordings, an acous-
tic feature that is valid for many types of instruments and playing
styles must be used. Moreover, accurate alignment between the
onset timing and the score is required.

To cover the various sound generation mechanisms of differ-
ent musical instruments, complex mel spectra, which can consider
aural characteristics, are used to detect candidate onset times. In
addition, for accurate onset detection, a DTW alignment method
is used to select the best onset time from the candidates.
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3.1. Detecting candidate onset times

In any performance of a musical score, the onsets of notes are rec-
ognizable to the audience. Therefore, the modeling of an acoustic
feature for aural characteristics, complex mel-spectrum KL diver-
gence, is used for onset detection. The mel scale is a perceptual
scale of pitches based on a log-frequency scale [13].

For the cognitive modeling of sharp changes in the spectra,
the difference between an observed mel spectrumSψ,k at a target
time framek and a predicted spectrum̂Sψ,k from the previous
short time frameτ is calculated, whereψ is the mel-log frequency.
For a auditory difference scale based on signal features, Kullback-
Leibler Divergence (KLD) for onset detection [14] is extended to
the complex frequency domain.

Each mel spectrum is calculated using

Sψ,k = mel

[
|Xω,k|+ C∑
ω |Xω,k|+ C

]
ejmel[ϕω,k], (6)

Ŝψ,k = mel

[
|Xω,k−τ |+ C∑
ω |Xω,k−τ |+ C

]
ejmel[ϕ̂ω,k], (7)

whereτ is the time used for spectrum prediction,ω is the lin-
ear frequency,|Xω,k| andϕω,k are an amplitude spectrum and a
phase spectrum, respectively, obtained by the short-time Fourier
transform (STFT),̂ϕω,k is a predicted phase spectrum by a previ-
ous method [8],C is a constant that reduces the uncertainty of the
white noise spectrum, and mel[·] denotes the spectral transforma-
tion to the mel-scale [15]. Here to detect the onset time with high
resolution, the step size of the STFT is0.001×fs point (i.e. 1 ms),
and the number of data points used in the STFT is0.01× fs point
(i.e., 10 ms). A value ofτ = 10 ms (i.e.,0.01×fs point) was used
in accordance with the length of the STFT. The constantC(= 0.2)
was decided in accordance with a preliminary experiment.

Complex mel-spectrum KLD (CMKLD)D[k] at k is calcu-
lated using

D[k] =
∑
ψ

∣∣∣∣∣Ŝψ,k log Ŝψ,k
Sψ,k

∣∣∣∣∣ , (8)

=
∑
ψ

∣∣∣Ŝψ,k∣∣∣
√√√√√log

∣∣∣Ŝψ,k∣∣∣
|Sψ,k|

2

+
(
ϕ̂ψ,k − ϕψ,k

)2

. (9)

As can be seen in Eq. 9, the CMKLD can consider a difference
in the amplitude spectra and phase spectra. The first term in the
square rootlog(Ŝψ,k/Sψ,k) is appropriate for the detection of
a relative amplitude increase on the harmonic frequency bin due
to the note onset, because it is more sensitive to an increase in
the denominator than a decrease. The second term in the square
root (ϕ̂ψ,k − ϕψ,k)

2 is also appropriate for the detection of sharp
changes inF0, because almost all phases depend onF0.

Next, by selecting the peak value ofD, a set of candidate onset
timesY is generated. To determine the dynamic threshold for peak
picking,dk denotes a time series of CMKLD that closed-interval
[k − T /2, k + T /2] by centering on the indexk as follows:

dk =

(
D
[
k − T

2

]
, · · · ,D

[
k +

T
2

])T
. (10)

In this study, T = 100 ms (i.e. 0.1 × fs point) was selected
to ensure sufficient data points for the threshold calculation. The

Fig. 3. An example of onset selection in the case of note values
= (0.5, 0.5, 2, 0.5, ...) and note numbers= (64, 69, 69, 71, ...) .
The x-axis of both figures is time (s).

times that have aD peak larger than the dynamic thresholdδ[k]
are selected as onset time candidatesY. The threshold is defined
building on a previous study [2] as follows:

Dth[k] = λ(σd + Median(dk)) +
Median(D)

2
, (11)

whereσd is the standard deviation ofdk, andλ is set so as to
satisfy|Y| ≥ N . In the preliminary experiments using the onset
detection of a plucked string instrument and a bowed string in-
strument, a sufficient detection performance ofλ = 0.9 or 1 was
obtained.

3.2. Onset selection

The next step was onset selection from the candidate setY
First, theF0 contour was analyzed from the audio signal using

a F0 estimation method YIN [16]. Next, the scoreF0 contour
was created using input note values and note numbers, which is
aligned to the observedF0 contour by the DTW method [11] (Fig.
4 middle figure). Heret[n] was selected as the pitch switch timing
in the stretched scoreF0 contour by DTW.

If note numbers of successive notes do not change,t[n] was
calculated by scaling with respect to the note value ratios of these
notes. For example, in Fig. 3,t[3] was not selected by the pitch
switch algorithm; hence,t[2] andt[4] are scaled by the note value
ratio of 0.5:2 to calculatet[3]. If, successively in note values exist
above three or more notes,t[n] values were calculated in the same
scaling manner. Finally, the onset times were selected as the times
that had minimum values of CMKLD weight distance (Fig. 3)
determined as follows:

y[n] = argmin
Y [i]∈Y

|Y [i]− t[n]|
D [Y [i]]

. (12)
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Fig. 4. Detected onsets inlegato(left) andmarcato(right) phrases. The top figures show the waveforms, the middle figures depict theF0

contour and aligned scoreF0 contour, and the bottom figures show the complex mel spectra KLD and selected onset times (circles).

Fig. 4 shows examples of onset detection from monophonic
violin recordings of alegatophrase and amarcatophrase. Onset
detection in thelegato phrase, which has been traditionally dif-
ficult, is resolved by the proposed onset detection method. On-
set timing in themarcatophrase was also successful using this
method.

4. AUDIO SIGNAL ADJUSTMENT USING AN
ESTIMATED TEMPO CURVE

In this section, the true tempo curveb, which is the tempo fluctua-
tion intended by the performer, is estimated by the estimated onset
timing vectory. In addition, the automatic audio signal adjusting
method using the estimated true tempo curve is also described.

4.1. Tempo curve estimation

Polynomial regression was undertaken on the true tempo curve to
fit the curve to a model. This modeling is an extension of the
curve fitting presented by Takeda et al. [7]. The proposed model
is defined as follows:

b[n]−1 =

P∑
p=0

wpg[n]
p, g[n] =

n−1∑
m=1

h[m], (13)

whereP is the degree of polynomial regression. Hereg[n] denotes
the accumulated note value. Thus, from Eq. 1, 2, 3 and 13,nth

note duration∆y[n] can be written as

∆y[n] = y[n+ 1]− y[n] =
60

b[n]
h[n] + e[n+ 1]− e[n],

= 60

P∑
p=0

wpg[n]
ph[n] + e[n+ 1]− e[n]. (14)

Here the explanatory variable matrixG is defined as

G =


h[1] g[1]h[1] . . . g[1]Ph[1]
h[2] g[2]h[2] . . . g[2]Ph[2]

...
...

. . .
...

h[N ] g[N ]h[N ] . . . g[N ]Ph[N ]

 , (15)

and then the observed note duration vector∆y = (∆y[1], ...,∆y[N ])T

is rewritten as
∆y = 60Gw +∆e, (16)

wherew is the regression coefficient vectorw = (w0, ..., wP )
T

and ∆e is the delta vector of mis-played components∆e =
(e[2] − e[1], e[3] − e[2], ...,−e[N ])T . From the regeneration
of normal distribution, each component of∆e is also normally
distributed.

Accordingly, by calculating the regression coefficient vector
w by the least-squares method (LSM), the true tempo curve can be
calculated using Eq. 13. Selecting the optimal polynomial degree
P is an issue when using LSM, and in this study, the polynomial
degree was determined the by minimization of Akaike information
criterion (AIC) [17].
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Fig. 5. An example of an adjusted tempo fluctation. Observed
tempo (left bar plot), estimated tempo curve (line), and adjusted
tempo (right bar plot).

Fig. 6. Observed tempos (bar plot) and estimated true tempo
curves (line). The tempo of the left figure was estimated from a
professional recording and that of the right figure was estimated
from an amateur recording that mimicked the professional one.

4.2. Musical signal adjustment by expansion and contraction

By using the true tempo curve estimated as described in the pre-
vious sections, each note is stretched. Expansion and contraction
were performed by a time-scale modification method based on the
expansion and contraction of the step size of an inverse Fourier
transform of the power spectrogram [18]. Phase inconsistency
caused by varying the width of the frame shift is removed using
a phase reconstruction method, as proposed by Griffin et al. [19].
The stretch factorα[n] is calculated using Eq. 5.

In this study, the acoustic signals were expanded and con-
tracted by multiplying theα[n] obtained for each note with the
inverse Fourier transform step size (which is obtained by subtract-
ing the overlap size of overlap-add from FFT length) of each note.

Fig. 5 shows an example of a tempo that has been adjusted.
The left figure shows a tempo fluctuation including the mis-played
components, and the right figure shows this same tempo fluctua-
tion adjusted using the method described. It can be seen that the
adjusted tempo fluctuation more closely matches the true tempo
curve (red line).

4.3. Discussion

Fig 6 shows observed tempo curves and estimated true tempo
curves of a professional recording (left) and an amateur record-
ing (right). The amateur recording was played by mimicking the
professional recording.

The true tempo curve of the professional recording is quite
close to the observed tempo curve. This indicates that the tempo
is smoothly varying, as mentioned in many previous studies, and

that the professional player controls the tempo well. Meanwhile,
the observed tempo of the amateur performance deviates from the
true tempo curve. In addition, because the amateur mimicked the
professional recording, the true tempo curve is quite similar to that
of the professional recording. This result denotes suggests that a
low-proficiency amateur player cannot control the tempo well.

5. EVALUATION

5.1. Evaluation of onset detection

This section presents the experimental results of the onset detec-
tion method described in Chapter 3. In general, for the evaluation
of the onset detection method, the detected onset times are com-
pared with the true onset points that were manually selected and
labeled. Correct matches imply that the target and detected onsets
were within a 50-ms window. The detected result is evaluated on
precision, recall, and F-measure.

For the evaluation of the proposed method, these criteria are
not valid, because the method is aligned to the score information.
Accordingly, the accuracy is evaluated by the mean absolute error
(MAE) between the detected onset times and the manually selected
ones.

The experiments were performed on a database of solo violin
recordings. There were six phrases that included some expression
marks, for examplelegato, marcato, andferoce(wildly). All sig-
nals were processed as monaural signals sampled at 48 kHz and 24
bit. There were 152 onsets in total. These phrases included sim-
ple phrases (e.g., almost all notes being quarter notes) and com-
plex phrases (e.g., including many shorter notes), and the assigned
BPM of the score was 50–150. The performance duration of the
phrases was 14–30 s.

The resulting MAE was 18 ms. This error is less than 1/15
of a quarter note duration in the tempo of “Allegro (BPM≈ 120
, fast, quickly and bright).” In addition, the sound duration that is
required for pitch perception is 20–30 ms; thus, this accuracy can
be considered to be adequate.

5.2. Motion experiment for tempo adjustment

In this section, the accuracy of the proposed adjustment method
was evaluated. The BPM including the mis-played components
b̃ was calculated from pre-adjusted and post-adjusted sound onset
timings as follows:

b̃[n] =
60h[n]

∆y[n]
. (17)

The rhythm-weighted mean absolute error (weighted-MAE) be-
tween the observed BPM̃b and the true tempo curveb was calcu-
lated as

weighted-MAE=

∑
n h[n]

∣∣∣b[n]− b̃[n]
∣∣∣∑

n h[n]
. (18)

If the proposed method is successful in removing the mis-played
components, then the weighted MAE will decrease.

The experiments were performed on five solo violin record-
ings. The assigned BPM of these phrases were 50–150, and the
total number of notes was 154. The performance duration of the
phrases was 10–30 s. All signals were recorded as monaural sig-
nals sampled at 48 kHz and 16 bit with an IC recorder.
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Table 1. Weighted-MAE of BPM.
Before adjusting After adjusting

5.8677 2.6834

Table 2. Phrases used in subjective evaluations.
Violin A. Dvorak, “Symphony No. 8”

1. 1st mov. bar 244–250 1st Violin
R.Wagner, “Tannhauser Act.II ‘Grand March’ ”
2. bar 40–44 1st Violin
3. bar 64–68 1st Violin

Cello A. Dvorak, “Symphony No. 8”
1. 1st mov. bar 1–6
2. 1st mov. bar 165–169
3. 4th mov. bar 26–33

E.guitar 1.LUNKHEAD “ENTRANCE” 5–12 bars
2. MONKEY MAJIK “Aishiteru” bar 52–56
3. T. Matsumoto “Thousand Dreams” bar 2–9

Table1 shows the weighted-MAE values before and after ad-
justing. The deviation from the true tempo curve as a result of
the mis-played components is seen to be reduced by half. From
this result, it was confirmed that the proposed method successfully
decreased the mis-played components by time-scale audio signal
stretching for violin recordings.

5.3. Subjective evaluation

Finally, an opinion test was conducted. Target instruments were
the violin, cello, and electric guitar (clean tone). These experi-
ments used sound data from performances by university students
with over three years of experience playing instruments. After the
student players had practiced for 30 min while listening to the per-
formance of professionals, they tried to mimic the intended repre-
sentation of the performance without using a metronome. There-
fore, the true tempo curve should resemble the mimicked recording
tempo curve, and the adjusted signals should also resemble profes-
sional recordings.

There were two players for each instrument, and they played
three phrases. All sounds were recorded at a sampling rate of 48
kHz and bit quantization of 16 bit. Sounds from the violin and
cello were recorded with an IC recorder and those from the gui-
tar were recorded with a line input. The assigned BPM of these
phrases was 60–180, and the average number of notes per phrase
was 22. The performance duration of the phrases was 9–16 s.

For a subjective evaluation, five musicians each with over
five years of experience playing instruments served as evaluators.
These musicians were different people in addition to the recording
musicians. The evaluators compared the sound of the professional
performances to the original pre-adjusted sounds (ORG) and the
sounds adjusted using our method (PRO). The sound pressure
was adjusted in advance to facilitate listening to the samples. For
the recorded and adjusted sounds, the closeness of rhythm to the
professional performance was evaluated. The mean opinion score
(MOS) for each sound was used as the metric, with a scale of 1
(very far) to 5 (very close).

Figure 7 shows the MOS values and standard error for each

Fig. 7. Results of the subjective evaluation.

instrument. The MOS values of the method proposed here are
higher than those of the recorded sound for all instruments. There
were significant differences between the recorded sounds and the
adjusted sounds for all tested instruments as ascertained by the
Student’st-test (significance levels were 1 % (violin and E. guitar)
and 5 % (cello)). The musicians had played as intended for the
professional performance tempo fluctuation, and the adjustment
using the proposed method brought the sounds significantly nearer
the intended performance. Thus, our method can be concluded to
clarify the intent of the player from the acoustic signal.

6. CONCLUSION

In this paper, a “true tempo curve” estimation method was pro-
posed using monophonic audio signals including performance er-
rors. True tempo curves were estimated by polynomial regression
analysis of observed onset timings. In addition, an automatic audio
signal modification was proposed, which can adjust the signal by
time-scale modification with the estimated true tempo curve. In a
subjective evaluation, amateur performances, which tried to mimic
professional recordings, were adjusted. In terms of the closeness
of rhythm, the MOS values of these adjusted sounds were higher
than those of the pre-adjusted original sounds, and significant dif-
ferences were observed for all tested instruments. The musicians
had played with the intention of expressing a professional perfor-
mance tempo fluctuation, and the adjustment using the proposed
method brought the sounds significantly nearer the intended per-
formance. Hence, it can be concluded that the proposed method
can estimate a musician’s expressive intentions.

Evaluation of an audio signal adjustment method requires a
mis-played signal dataset whose performance intention is known.
However, such a dataset does not currently exist. In this evaluation,
a small quantity of performance expression data for violin, cello
and, guitar were used. For future experiment, it is necessary to
develop a large dataset.

In this study, rest notes were not considered. In actual musical
performances, rest notes can be a prominent part of the interpreta-
tion. In addition, “trill” and extreme “fermata” are also important
parts of the interpretation, but the DTW of theF0 contour could
not be successfully estimated for these expressions. In the future,
this method will be adapted to include these issues, for example,
by considering offset detection.

For excitation-continuous musical instruments, a musical tone
generally has three possible states:onset,steady, andoffset. In
particular, the duration of theonset-stateis closely related to the
perception of musical expression [20]. In future, we need to con-
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sider these states, and notes should be stretched only in thesteady-
state.

Moreover, intended tempo fluctuations exist; for example, in
“Swing” and “Viennese waltz style”, the tempo does not change
smoothly. In future, true tempo curve and these fluctuations should
be treated separately by considering the musical genre.

As future prospects, the estimated true tempo curve presented
here can be regarded as an extraction of the performance expres-
sion feature from recordings including background“ noise”dur-
ing the performance. Performance characterization is applied to
many applications such as automatic performer identification [21]
and musical sound synthesis [22]. We will consider to apply this
method to these applications.
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