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ABSTRACT

Most current source separation methods only target the voiced
component of the singing voice. Besides the unvoiced conso-
nant phonemes, the remaining breathiness is very noticeable to
humans and it retains much of the phonetic and timbral infor-
mation from the singer. We propose a low-latency method for
estimating the spectrum of the breathiness component, which is
taken into account when isolating the singing voice source from
the mixture. The breathiness component is derived from the de-
tected harmonic envelope in pitched vocal sounds. The separation
of the voiced components is used in conjunction with an existing
iterative approach based on spectrum factorization. Finally, we
conduct an objective evaluation that demonstrates the separation
improvement, supported also by a number of audio examples.

1. INTRODUCTION

Breathiness is an aspect of voice quality that is difficult to esti-
mate or analyze due to its stochastic nature and wideband spectral
characteristics. In western music mixture signals, this component
often overlaps with other wideband components such as drums or
transients. To our knowledge there are no music source separation
methods that have focused on this component of the singing voice.
However, in the field of speech analysis and synthesis, the decom-
position and manipulation of the breathiness component has been
done in a variety of areas such as text-to-speech synthesis, speech
encoding, and clinical assessment of disordered voices.

For example, in [1]] the authors study the relations between the
vocal tract and the glottal source in human speech signals. The
work in [2]] focuses on the analysis of the breathy component of
speech voice. It proposes a modulation-based model where the
noise component of the voice is modulated by the glottal wave-
form. This model is used to analyse, synthesize and transform
isolated voice recordings. [3] address the problem of separating
the unvoiced components of the singing voice, however the au-
thors focus on consonants and no specific breathiness models are
proposed. [4] propose an extension to the source-filter model that
takes into account turbulence at the glottal level and the radia-
tion at the lips and nostrils level. The proposed model Separa-
tion of the Vocal-tract with the Liljencrants-fant model plus Noise
(SVLN) shows benefits in pitch transformation and breathiness
control tasks for singing voice synthesis.

All of these works focus on voice signals in isolation and do
not consider the source separation problem nor the analysis of mix-
ture signals.
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2. PROPOSED ESTIMATION METHOD

Our method can be integrated into any source separation approach
that approximates the mixture spectrum as the sum of the lead
singing voice and the accompaniment spectra V' = X, + X ..
It is appropriate for both low-latency and high-latency situations
since it only requires a single audio frame.

The estimation of the breathiness component is based on the
approximation of a pitched voice spectrum (with pitch fo) as a fil-
tered composition of two additive components: a glottal excitation
X, and a wideband component (due to the glottal air flow) X,
both filtered by the vocal tract. The magnitude of the voice spec-
trum can be expressed in the following manner [4] (see Figure[I):

Xw = Xyw]+ Xorw] (1)
— LWUWSWHL + DUkl @
= LU|(SwH[w] +7) 3)

where S[w]H [w] is the spectrum of the excitation, S|w] is the ex-
citation envelope, H [w] is a harmonic comb of unity magnitude,
~U |w] is the magnitude spectrum of the breathiness, U[w] is the
magnitude of the frequency response of the vocal tract filter, v is
the gain of the breathiness spectrum relative to the pitched compo-
nent, and L[w] is the component due to lips and nostrils radiation.
Here we approximate the wideband component as a constant spec-
trum filtered by the vocal tract. This is equivalent to modeling the
glottal air flow as white noise, which is realistic specially for a
mid-range frequency region.

The human voice excitation envelope can be modeled, as pro-
posed in [5], using a linear decay in the decibel/octave scale:

S[w] =C. wm/2010g10(2) (4)

where C'is a scaling factor, w is the frequency in Hz, and m is the
slope of the excitation envelope in decibels per octave (dB/octave).

In our scenario the vocal source spectrum X, is unavailable,
only the mixture spectrum V is accessible. Therefore we can-
not directly estimate the breathiness spectrum yU [w] using Equa-
tion[I] Instead, we exploit the fact that at harmonic positions [ fo
of the singing voice pitch we can consider the vocals spectrum
predominant V[l fo] ~ X /[l fo] for all harmonic indices [ > 0.
In this work the pitch is estimated using the method presented in
[6]. If we additionally consider the vocal tract filter smooth in
frequency, as is done in previous works [7], we can then use inter-
polation between the harmonic positions to estimate the harmonic
envelope e, [w] = L{w]U[w]S[w] as done in [6]. By assuming the
magnitudes (in the decibel scale) of L|w]U [w] to be drawn from a
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Figure 1: Representation of the different components of the
singing voice model given a synthetic spectrum. Excitation spec-
trum containing harmonic and stochastic components (fop). Vocals
spectrum, filter model, vocal tract filter, lips and nostrils radiation
filter (center). Vocals spectrum and breathiness spectrum (bottom).
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Figure 2: Breathiness estimation example. Mixture spectrum, har-
monic envelope, harmonic positions, source-based whitening and
the estimated breathiness.

gaussian distribution, we can make an estimation S|w] using least
squares fitting of the model from Eq. ] on the harmonic envelope
er[w]. The least squares can be linear if the envelope and frequen-
cies are first translated to logarithmic scales. This must be done
on a limited region [wj,,, wj,;] of the spectrum where the vocals are
usually predominant and the estimated ep, [w] reliable. Finally we
whiten the harmonic envelope e, [w] using the excitation envelope
S[w] derived from the excitation slope:

Liw|Ulw] = en[w]/Sw] ©)

The model of Equation[d]is only valid for a mid frequency region
and the estimation of S|w] is based on the region where the har-
monics are present and predominant over the breathiness compo-
nent. In order to overcome this limitation, whitening is only per-
formed under wy; and is limited to S[w] = S[w;)] forw < wf. In
our proposed method, v is a parameter that is not estimated from
the data. This parameter controls the gain of the breathiness rela-
tive to the harmonic component. In Sectiond] we explore the effect
of this parameter on the separation performance.

Figure 2] illustrates the intermediate results of the breathiness
estimation on a spectrum of a song that contains pitched singing
voice. The breathiness envelope is derived from the spectral enve-
lope sampled at the harmonic partial frequencies.

At this point we have estimated the breathiness component as

Xuvr = Ljw]U[w]y. The next section describes how to use it in
conjunction with an existing separation approach to obtain the final
isolated singing voice.

3. INTEGRATION IN A SEPARATION APPROACH

The Smoothed Instantaneous Mixture Model (SIMM) introduced
by [7] is of special interest for us, because most of the work pre-
sented here is an extension of it. We have chosen SIMM as a base
due to its flexibility and simplicity. More recent methods, such
as Flexible Audio Source Separation Toolbox (FASST)[8], have
a more flexible and general spectrum model, however they also
increase the complexity and computational cost of the process.

SIMM is an iterative parameter estimation approach, based on
NMF and a source/filter model for the predominant instrument.
The code implementing it is available onlineﬂ This method ap-
proximates the mixture spectrum as the sum of the lead singing
voice and the accompaniment spectra V = X, + X These
components are further factorized.

The accompaniment is modeled as the non-negative combina-
tion of a set of Ny ,,, constant basis components X ,,, = W, H ..
The singing voice spectrum is approximated as a multiplication
of a smooth filter and a monophonic harmonic excitation X, =
Xo ® Xy,. The factor corresponding to the filter is modeled
as a combination of constant spectral shapes that are smooth in
frequency Xo = WaoHa. To ensure smoothness, the spectral
shapes W is modeled as a non-negative linear combination of
band-limited spectra W = W Hr. The monophonicity of the
excitation is achieved by modeling it as a non-negative combina-
tion of harmonic spectral templates X r, = W s, H ., where all
the gains H ,, except a region limited in frequency around the
singing voice predominant pitch, are set to O.

Some of the presented components are constant. W g, is com-
posed of harmonic spectra with a magnitude decay computed using
the Klatt glottal model. Wr is a set of band-limited filters, mod-
eled with gaussians centered at frequencies distributed uniformly
on the spectrum. In [7] a set of multiplicative update rules are de-
rived for the other components: H y,, He, Hp,, Hr, and W ,.

The reader might observe that the SIMM method already pro-
vides an estimation of the smoothed filter as X . Theoretically
this filter should have a spectral shape similar to the estimated
breathiness component found in sectio@ However, the goal of
this paper was not to extend the SIMM method but to provide
a general breathiness estimation valid for various separation ap-
proaches, even in low-latency conditions. The separation of the
vocals is done using a Wiener filter as in [[7]]. The estimated breath-
iness spectrum is added to the estimation of the harmonic part of
the voice. Using a notation similar to that used in Section [3} the
estimated mixture spectrum becomes V = X, + Xm, which
leads to the following mask:

X,
my = (6)

where X ,/[w] = X,[w] + Lw]U[w]y is the estimated vocal
source spectrum and X, is estimated following the procedure de-
scribed in Section[3] The mask is then applied to the mixture com-
plex spectrum to compute the estimated source complex spectrum

http://durrieu.ch/phd/software.html (last accessed on
January 3, 2011)
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Xy=my® V. Thena simple overlap-add technique is used to
achieve the output waveform signal.

4. EXPERIMENTS

We prepared a dataset of multitrack recordings containing singing
voice to evaluate the effect of integrating breathiness estimation
into the SIMM source separation method. The multiple tracks
of each recording were combined forming two sources: the vo-
cals, and the accompaniment music created by mixing all the other
tracks.

The evaluation material consists of a dataset of 14 multitrack
pop-rock recordings with vocals, compiled from publicly available
resources (MASﬁ SiSE(ﬂ BSS Oracleﬂ) and 2 in-house multi-
track recordings.

Measures such as SDR (Signal-to-Distortion Ratio) did not re-
flect the perceived differences due to the stochastic quality of the
breathiness. The evaluation was done by computing the percep-
tually motivated measures from the well known PEASS Toolbox
([9): OPS (Overall Perceptual Score), TPS (Target-related Per-
ceptual Score), IPS (Interference-related Perceptual Score), APS
(Artifact-related Perceptual Score).

For all the excerpts we also computed the near-optimal time-
frequency mask-based separation using the BSS Oracle framework.
The evaluation measures of the oracle versions of each excerpt
were used as references to reduce the dependence of the results on
the difficulty of each audio. Therefore the values shown are error
values (lower is better) with respect to the near-optimal version.

In the experiments we set the frequency limits for the excita-
tion slope estimation to wj, = 200Hz and w;; = 4000Hz. The
whitening limits were set to wj, = 400Hz and w}; = 15000Hz.
Audio examples have a sampling rate of 44.1kHz, and the spec-
tral analysis used a frame size of 4096 without zero-padding and a
hop-size of 512 samples respectively.

5. DISCUSSION

In an informal listening test we noticed that in the samples where
the vocals are predominant over the background music our ap-
proach achieved its objective of maintaining the breathiness in the
isolated voice. The downside, however, is that in some cases a dy-
namic low pass filtering is applied, which reduces the brightness
of drums and cymbals in the mute version. In examples where
the vocals are fast and the background is loud with relation to the
vocals, the breathiness removal is less noticeable.

Looking at the objective quantitative results (not shown here),
the BSSEval evaluation results show very little variation (< 0.2dB)
for the different values of v. However this does not reflect the
perceived differences in the informal listening procedure. This is
probably due to the fact that the differences are in frequency bands
with low energy, such as the regions between the partials.

In the PEASS results (Table [T) we observed a larger change
in the performance scores, however the differences in scores re-
mained small. This could be due to limitations of the auditory
model used in PEASS. Shrivastav and Sapienzal/10|] show the need
for special care with voice breathiness quality in objective mea-
sures based on perceptual ratings.

Zhttp://www.mtg.upf.edu/static/mass
3http://sisec.wiki.irisa.fr/
4http://bass-db.gforge.inria.fr/bss_oracle/

APS IPS OPS TPS

0.0 6403 753 2889 6032
0.1 6266 864 2841 56.83
0.2 6257 931 2815 55095
03 6244 9.89 2829 55.09
04 6261 10.12 2831 54.69
0.5 6271 10.61 2824 5446
0.6 6286 11.01 28.17 5430
0.7 63.04 1131 2820 54.03
08 63.17 11.27 2842 53.78
0.9 63.17 11.54 2842 5346
1.0 6332 11.73 2831 53.09
11 6343 11.81 2835 52.86
1.2 6373 11.84 2833 52.65
1.3 6382 1197 2845 5250
14 6399 12.14 2837 52.34
1.5 64.07 1240 2842 5219

Table 1: Average error measures for PEASS measures for various
values of 7.

Score difference relative to Oracle
for different parameters of propsed method

Score difference
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Figure 3: PEASS OPS and APS results for different parameters of
the breathiness gain .

In any case these results reflect the conclusions extracted from
the informal listening tests rather than the BSSEval results. We
see a separation improvement for the OPS, APS and TPS mea-
sures, with an optimal parameter value of around v = 0.2 for
the breathiness estimation gain. While the improvement on the
Overall Perceptual-related Score error is small (0.74 decrease), the
proposed method does perform significantly better with respect to
other measures such as APS and TPS.

Figures [3] and [4] show the trends of the different perceptually-
motivated separation performance measures. Figure ] shows the
tradeoff between the interference and the target scores can be con-
trolled with this gain parameter. OPS and APS curves in Figure 3]
show a global minimum corresponding to the optimal gain for the
breathiness estimation, after which the errors slowly increase with
7. The OPS curve has several local minima which could mean that
the optimal value of v depends on the song. From the results
of the individual songs in Figure [5] we observe that for excerpts
5, 6 and 10 there is a clear improvement in OPS. On the other
hand excerpts 2 and 12 show a significant decrease in performance
when using the proposed method. Manual inspection of these in-

DAFX-3


http://www.mtg.upf.edu/static/mass
http://sisec.wiki.irisa.fr/
http://bass-db.gforge.inria.fr/bss_oracle/

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Score difference relative to Oracle
for different parameters of propsed method

Score Difference

60 — IPS (right)
PS 12

Score difference
5

7
0.0 0.2 0.4 06 10 12 14 16

0.8
Residual Gain

Figure 4: PEASS TPS and IPS results for different parameters of
the breathiness gain.
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Figure 5: PEASS OPS error score (relative to Oracle) for individ-
ual songs.

stances reveal that excerpts 5 and 6 belong to the same song, with
a voice containing a high degree of breathiness. Excerpt 2 shows
a large number of pitch errors that could explain the large increase
in errors. Finally, excerpt 12 presents a vocal track with almost no
breathiness component, which would imply, as the results show, a
gradual increase in errors with the increase in the parameter .

Another observation is that each excerpt presents a point of
minimum error at a different value of ~, this shows the desirability
of developing methods for estimating the optimal value -, and thus
the strength of the breathiness, from the mixture data. In a practical
implementation, we suggest a user-controllable parameter ~ that
can be adapted to the audio content. To demonstrate the subjective
improvement in the singing voice separation of our approach, we
prepared a web pagcﬂ with several audio examples.

6. CONCLUSIONS

We have proposed a method to estimate the breathiness compo-
nent of the singing voice from a profesional music mixture. The
method extends the source-filter model in a way similar to [4]. The
spectrum model for the source is decomposed into harmonic de-
terministic narrowband and stochastic wideband components. The
harmonic envelope of singing voice and a regression with a Klatt
model is used to estimate the spectral shape of the breathiness. The

Shttp://www.dtic.upf.edu/~rmarxer/dafx13/breath

breathiness is estimated up to a scaling factor, and a parameter is
used to empirically control the gain of the breathiness spectrum.
An experiment shows that this breathiness estimation method can
be used in conjunction with the SIMM method to improve the iso-
lation of the singing voice. Additionally, the parameter exploration
of the breathiness shows that estimating the scale of the breathi-
ness from the mixture could further improve the performance of
the separation process. Future work could also be dedicated to es-
timating the optimal high-pass filter that models the radiation ef-
fect from lips and nostrils as well as the distribution of the glottal
turbulence noise which are currently empirically parametrized.
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