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ABSTRACT

Separating the singing voice from a musical mixture is a problem
widely addressed due to its various applications. However, most
approaches do not tackle the separation of unvoiced consonant
sounds, which causes a loss of quality in any vocal source separa-
tion algorithm, and is especially noticeable for unvoiced fricatives
(e.g. /8/ in thing) due to their energy level and duration. Fricatives
are consonants produced by forcing air through a narrow channel
made by placing two articulators close together. We propose a
method to model and separate unvoiced fricative consonants based
on a semisupervised Non-negative Matrix Factorization, in which
a set of spectral basis components are learnt from a training ex-
cerpt. We implemented this method as an extension of an existing
well-known factorization approach for singing voice (SIMM). An
objective evaluation shows a small improvement in the separation
results. Informal listening tests show a significant increase of in-
telligibility in the isolated vocals.

1. INTRODUCTION

In the context of musical audio source separation, we do not find
many references in the literature that address the problem of un-
voiced phonemes in singing voice. Usually, removing the unvoiced
(e.g. fricative) components of the singing voice in a polyphonic
mixture is addressed as a joint problem in the signal modeling step.
For example, NMF approaches that use harmonic basis sometimes
integrate a flat spectrum component to capture the unvoiced parts
of the lead vocals [1]]. While not specifically addressing singing
voice separation, the technique by Wong et al. [2] performs spec-
tral subtraction to obtain the enhanced vocal signal. Then a mul-
tilayer perceptron (MLP) is used to segregate the vocal from the
non-vocal segments taking as input the spectral flux, the HC, the
ZCR, the MFCCs, the amplitude level and the 4Hz modulation en-
ergy. Last, the DTW algorithm is used to align the two sequences.

In Hsu and Jang [3]], the authors specifically address the prob-
lem of unvoiced singing voice separation. A first step segments the
signal into accompaniment/voiced/unvoiced predominant frames
by means of an HMM. In this case 39 MFCC features were used,
computed directly from the STFT (taking energy and the first and
second derivatives of the cepstral coefficients). A second step uses
a GMM classifier to perform an “Unvoiced-Dominant T-F Unit
Identification” within only the unvoiced frames. T-F units are com-
puted by means of a gammatone filter-bank of 128 channels. In
the training stage, each T-F unit is labelled as unvoiced-dominant
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or accompaniment-dominant. This approach seems promising af-
ter listening to the results. One drawback seems the large num-
ber of parameters to learn (39 features x 32 GMM components
x 128 channels), which requires a large amount of training data.
However, in addition to audio examples they do provide a publicly
available datasetEl

Recent work has shown that a semi-supervised variation of the
NMF can be useful for detecting and modeling individual phonemes
in speech. Schmidt and Olsson [4] approach the speech separation
problem by using semisupervised sparse NMF. The basis compo-
nents are previously learned from training data in this technique.
The authors show an improvement in the separation when the ba-
sis components learned are phoneme-specific. Raj et al.[5] pro-
posed a phoneme-dependent, exemplar-based NMF modeling for
speech enhancement of monoaural mixes. The authors created a
set of basis components for each phoneme by drawing spectral
vectors from segments of speech recordings that contained the tar-
get phoneme.

Lately NMF constraints have been widely used in music sep-
aration tasks. Various authors[6, [7| 8] have proposed harmonicity
and monophonicity constraints by initializing to zero basis or gain
bins where the target source is known to have a low or no energy
contribution. Ewert and Miiller[9] used musical scores to apply
harmonicity, fundamental frequency and note-start constraints on
the basis and gains of an NMF decomposition of the mixture spec-
trum. Note attacks were modelled using wideband learned basis
components with the gains initialized to O at all time frames ex-
cept those where the notes started.

We propose a method to detect and suppress unvoiced frica-
tive consonants of the singing voice in music mixture recordings.
The method extends SIMM with semi-supervised NMF and addi-
tional constraints on the factors in order to take into account un-
voiced fricative consonants during the singing voice separation.
This technique serves as a proof of concept and could be extended
to other singing voice components as well as unvoiced components
of other musical instruments. The method is tested on a dataset of
multitrack music recordings and shows an improvement on the ob-
jective perceptual-based separation measures.

2. SPECTRUM MODEL AND FACTORIZATION

The Smoothed Instantaneous Mixture Model (SIMM) introduced
by Durrieu et al.[1] is of special interest to us for its flexibility and
simplicity. Most of the work presented here can be regarded as an
extension of it.

Uhttp://sites.google.com/site/unvoicedsoundseparation
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SIMM is an iterative parameter estimation approach, based on
NMF exploiting a source/filter model for the predominant instru-
ment. The code implementing it is available onlinﬂ

This method approximates the mixture magnitude spectrum V'
as the sum of the lead singing voice and the accompaniment spec-
traV = X, + Xm. These components are further factorized.
The accompaniment is modeled as the non-negative combination
of a set of Ny, constant basis components X, = W,,H,,.
The singing voice spectrum is approximated as an element-wise
multiplication (®) of a smooth filter and a monophonic harmonic
excitation X, = Xo ® X fo- The factor corresponding to the fil-
ter is modeled as a combination of constant spectral shapes that are
smooth in frequency X o = W o H . To ensure smoothness, the
spectral shapes W s is modeled as a non-negative linear combina-
tion of band-limited spectra W ¢ = W Hr. The monophonicity
of the excitation is achieved by modeling it as a non-negative com-
bination of harmonic spectral templates X r, = Wy, H f,, where
all the gains H j,, except a region limited in frequency around the
estimated predominant pitch fo, are set to 0. In this study, we use
a low-latency method with timbre classification for singing voice
[10] to estimate the predominant pitch fo.

Some of the presented components are constant. W g, is com-
posed of harmonic spectra with a magnitude decay computed using
the Klatt glottal model. Wr is a set of band-limited filters, mod-
eled with gaussians centered at frequencies distributed uniformly
on the spectrum. The author derives a set of multiplicative update
rules to estimate iteratively the other lead-voice components H ,,
Hy, Hr, as well as the accompaniment components H ,, and
Won.

3. PROPOSED METHOD

We propose an extension to SIMM that approximates the frica-
tive consonants as an additive wideband component to the singing
voice spectra. Using the same notation as the SIMM spectrum
model results in V = (XU + Xfric) + X, where Xfric
is interpreted as the spectrum of the fricative consonants of the
singing voice, and X, = X, +X fric 18 the full spectrum
of the singing voice comprising voiced and fricative components.
Similarly to what is done for the accompaniment spectra X, in
SIMM, we use an NMF decomposition to model the fricative spec-
tra Xfric = WricH pric. However in this case the W ;. are
learned during a training stage and set constant during the separa-
tion stage.

The proposed method contains two steps: 1) training a model
of NMF basis; and 2) separating the fricatives with the learned
NMF basis. To train the NMF basis we provide a recording that
contains only the target sounds to separate. In this case we record
a sequence of several unvoiced (voiceless) fricative sounds (/s/,
/€, 1/, /8/, /h/, /t[/) by a single subject using a Shure SM-58
microphone (see Figure[T). We apply a low-shelf filter with cutoff
frequency at 200Hz to remove the blowing noise (low frequency).
We refer to the resulting processed waveform as gc?m-c[t].

We then specify the number of basis components Ny f,.;. to
be learned and perform an NMF decomposition of the training au-
dio spectra X%,,. = WY, HY%,;, into a set of N j,;. basis
components and the corresponding gains H ﬁcm-c. Both the basis
components Wtfm-c and the gains H tfm-c are learned from the data.

Zhttp://durrieu.ch/phd/software.html(last accessed on
January 3, 2011)

Figure 1: Spectrogram of the six unvoiced fricative sounds used in
the NMF training stage (/s/, /f/, /{/, /8/, /h/, /t[/). Frequency
y-axis shown in a logarithmic scale.

The resulting H% ;. can be disregarded, since they are only
applicable to the specific training input spectrum X icm-c. However
we can assume W’}”-c to be a good generic basis for general vocal
fricative instances.

Since the fricative spectra are assumed additive and indepen-
dent from other factors, the multiplicative update rules are trivial
to derive. The update rules of all the components except H ;.
are computed in the same manner as for SIMM. We must take into
account that in the proposed method the estimation of the mixture
spectrum V also includes the estimated fricative spectra X fric-
The multiplicative update rules for the H ;. become:

Wt”CT (V(ﬁ*Q) ® V)
Hfric — Hfric ® Wt TV(B—l) (1)

ric

Applying the multiplicative rules for a given number of iterations,
we obtain the estimated gains of the fricatives H fric.

The separation of the voice is then done by performing a Wiener
filter where the target source is composed of the voiced and frica-
tives spectra:

X,

Xv’ + X (

My

where X, [w] = X [w] + X fric[w] is the estimated vocal source
spectrum. The mask is then applied to the complex spectrum of
the mixture to compute the estimated source complex spectrum

X, = m, ® V. Then a simple overlap-add technique is used to
achieve the output waveform signal.

After initial examination of the results, we realize that the
main drawback of this approach for estimating the spectra of the
fricatives is the use of the fricatives basis components to recon-
struct other wideband sources such as hi hats, cymbals or even
snare drums. This is due to the similarity of the spectra of these
sources. The main difference between these two sources is the
transient nature of the sounds. Drums generally create sounds with
a very fast increase in energy, which are referred to as transient
sounds. On the other hand, fricatives are usually more sustained,
with a very slow onset and termination.

In order to overcome this problem we propose using the tran-
sient quality of the spectrum frames to differentiate between the
fricatives and the drums. Using the same transient estimation method
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presented in Janer et al. [11] we extract from the audio mixture a
set of N; transient timepoints t5” for j € [1... N,].

We assume that at transient positions the fricative presence
will be negligeable compared to other sources such as drums or
other attacks. These timepoints are then used as constraints on the
gains of the fricatives by initializing the corresponding columns to

Zero.

0, if|t—tf| <7Vj

H?m[mt]—{ SRR AR 3
v, else

where v > 0 is a random positive value and 7 is a parameter that
controls the size of the vicinity of the transient timepoint.

Following a similar rationale we assume unvoiced fricatives
will not be present at the same instants as the pitched singing
voice component. Therefore we can define a different initializa-
tion based on the estimated singing voice pitch p[t]. By defining
an unvoiced frame with p[t] <= 0 we can determine the initital-
ization constraint based on pitch as:

0, ifp[t] >0
v, else

Hjlfric[wv ﬂ = { (4)

Finally we propose another initialization constraint that com-
bines the two previous ones:
0, ifp[t] >0or|t—tf| <7
H}’EZC[w,t}—{ P> Oorle =1/ ®)
v, else

Each of these initialization constraints will lead to a different
factorization and separation result. From now on, we will use the
names FRIC-T, FRIC-P and FRIC-PT respectively for these sepa-
ration methods. The method that does not apply any constraint on
H f.;. will be called FRIC.

4. EXPERIMENT

We hypothesize that in the context of singing voice separation the
use of trained basis components with transient and pitch-based
gains constraints can improve the estimation of unvoiced frica-
tive consonants with the SIMM model. In the experimental set-
ting we test this hypothesis by evaluating the separation results of
the SIMM method with the proposed extensions (FRIC, FRIC-T,
FRIC-P and FRIC-PT) and without extensions (NONFRIC).

The evaluation material is a dataset of 14 multitrack recordings
with vocals, compiled from publicly available resources (MAS
SiSE(] BSS Oracld) and 2 in-house multitrack recordings.

A quantitative evaluation is done by using the perceptually
motivated objective measures in the PEASS toolbox [12]: OPS
(Overall Perceptual Score), TPS (Target-related Perceptual Score),
IPS (Interference-related Perceptual Score), APS (Artifact-related
Perceptual Score).

For all the excerpts we have also computed the near-optimal

time-frequency mask-based separation using the BSS Oracle frame-

work. The evaluation measures of the oracle versions of each ex-
cerpt were used as references to reduce dependance of the perfor-
mance on the difficulty of each audio. Therefore the values shown
are error values with respect to the near-optimal version. Hence
the results shown in the following section, shall be regarded as the

3http://www.mtg.upf.edu/static/mass
4http://sisec.wiki.irisa.fr/
Shttp://bass-db.gforge.inria.fr/bss_oracle/
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Figure 2: OPS error measures of individual audio examples (in-
dexes in the x-axis). Each columns group is the result of various
methods (form left to right): NONFRIC, FRIC-P, FRIC, FRIC-PT
and FRIC-T.

lower the better. The main parameter of the proposed method has
been set empirically to 7 = 75ms for all the tests.

5. RESULTS

As shown in Figure 2] results are better on the Overal Perceptual
Score in the singing voice isolation task with most of the fricatives
estimation methods. This improvement is present in almost all the
excerpts, and in those where the proposed methods do not improve,
the penalty on the OPS is relatively small. The FRIC-P method,
which uses the pitch as a constraint for the fricative gains is the
only method that does not improve over the no fricative estimation
(NONFRIC).

In Figure3]and in Table[T]we can observe that the overall sep-
aration improvement is mainly due to a decrease in interferences,
and the consequent reduction of the IPS error. We also note that
the different constraint methods (FRIC-T, FRIC-P, FRIC-PT) have
a large influence on the score errors. The use of pitch-based con-
straints on the fricative gains degrades significantly the separation
performance in terms of TPS and APS. Listening examination of
the results show that this is mainly due to false positive pitches at
fricative positions. Fricatives are often positioned close to voiced
phonemes and the pitch estimation used often extends the resulting
pitch tracks to these regions due to large analysis windows. Future
work could be devoted to studying the adaptation of the pitch esti-
mation and tracking methods to avoid such situations.

Transient-based constraints (FRIC-T and FRIC-PT) improve
the overall separation results in comparison to using no constraints
at all (FRIC). The improvement of the FRIC-T method comes
in the form of a tradeoff between interference and target/artifact
errors, possible due to transient constraints being binary thereby
leading to non-smooth changes in the time-frequency masks. In-
formal listening of the results shows mainly a reduction of drums
interference in the isolated singing voice, which was the desired
effect of the constraint.

We also conducted preliminary tests using basis components
trained on “plosive” and “trill” consonants, however the singing
voice separation did not improve. Possibly this was due to the lack
of characterization of the temporal evolution of their spectra.
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Figure 3: Average error measures for the vocal fricatives separa-
tion methods. Each columns group is the result of various meth-
ods (form left to right): NONFRIC, FRIC-P, FRIC, FRIC-PT and
FRIC-T.

TPS IPS APS  OPS
NONFRIC 50.01 11.10 59.77 28.72
FRIC-P 51.57 951 6042 28.96
FRIC 46.24 10.06 5791 28.27
FRIC-PT 53.07 942 6123 2772
FRIC-T 50.74 9.19 5935 27.01

Table 1: Average error measures for PEASS measures for all the
fricative estimation methods.

6. CONCLUSIONS

We have proposed an extension to the SIMM spectrum model and
separation technique that takes into account unvoiced fricative con-
sonants when isolating the singing voice. The proposed method
makes use of semisupervised NMF to train a set of basis com-
ponents on audio recordings of isolated fricative consonants, the
resulting components are then used in the separation stage. Two
types of constraints on the factorization were evaluated. Transient
analysis was used to distinguish between percussive events and
fricatives. Pitch-based constraints were proposed to restrict the es-
timation of unvoiced fricatives to regions without pitch. Although
the improvement of the objective separation measures is small the
perceived difference in informal listening tests is significant. The
proposed method is capable of retaining many of the unvoiced
fricatives present in the mixture. The transient-based constraints
improved the separation by disambiguating between fricatives and
drums. However the pitch-based constraints had a negative effect
on the separation results, probably due mainly to pitch estimation
errors. This research shows the potential of combining semisu-
pervised NMF with model-based factorization such as SIMM. Fu-
ture work could focus on non-fricative unvoiced consonants such
as “plosives” and “trills” to better understand the limitations of
the current spectrum model and factorization technique. The use
of constraints could be further studied by adapting the pitch es-
timation techniques to this particular use-case and by testing the
methods on ground-truth pitch annotations. The use of regulariza-
tion could also be an interesting alternative to the constraints, and
could reduce the musical artifacts by avoiding the binary masks on
the gains matrices.
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