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ABSTRACT

Virtual analog modeling of spring reverberation presents a chal-
lenging problem to the algorithm designer, regardless of the par-
ticular strategy employed. The difficulties lie in the behaviour
of the helical spring, which, due to its inherent curvature, shows
characteristics of both coherent and dispersive wave propagation.
Though it is possible to emulate such effects in an efficient manner
using audio signal processing constructs such as delay lines (for
coherent wave propagation) and chains of allpass filters (for dis-
persive wave propagation), another approach is to make use of di-
rect numerical simulation techniques, such as the finite difference
time domain method (FDTD) in order to solve the equations of
motion directly. Such an approach, though more computationally
intensive, allows a closer link with the underlying model system—
and yet, there are severe numerical difficulties associated with such
designs, and in particular anomalous numerical dispersion, requir-
ing some care at the design stage. In this paper, a complete model
of helical spring vibration is presented; dispersion analysis from
an audio perspective allows for model simplification. A detailed
description of novel FDTD designs follows, with special attention
is paid to issues such as numerical stability, loss modeling, numer-
ical boundary conditions, and computational complexity. Simula-
tion results are presented.

1. INTRODUCTION

Virtual analog modeling, for electronic effects and synthesis mod-
ules has seen an enormous amount of work in recent years [1].
Somewhat less investigated has been the case of electromechanical
effects, especially when the mechanical components involved have
a distributed character (i.e., they cannot be modelled as lumped).
Prime examples are plate reverberation, and the system of interest
in this paper, spring reverberation [2, 3, 4].

Part of the difficulty in adequately simulating spring reverber-
ation lies in the complexity of the model of a helical spring which,
even in the linear case, possesses features which are very much
unlike those of what might seem to be similar systems in mu-
sical acoustics, such as the string, or ideal bar. See [5, 6, 7, 8]
for presentations of the dynamical system governing spring vibra-
tion. Helical structures, due to their inherent curvature possess
the characteristics of both coherent wave propagation, giving rise
to discrete echoes, and dispersive wave propagation, giving the
response a diffuse character as well. Nevertheless, modeling of
spring reverberation has proceeded apace, with simulation meth-
ods based on allpass networks [9, 10, 11], and, for simplified mod-

∗ This work was supported by the European Research Council, under
grant StG-2011-279068-NESS.

els, through standard time stepping procedures such as finite dif-
ference schemes [12].

A model of spring vibration is presented in Section 2, accom-
panied by dispersion analysis, illustrating regions of coherent and
dispersive wave propagation. Finite difference schemes are intro-
duced in Section 3, and simulation results and performance analy-
sis are presented in Section 4.

2. HELICAL SPRING MODELS

A helical structure of the type found in typical spring reverberation
units, is characterized by its geometrical parameters as illustrated
at left in Figure 1, and namely:R, the coil radius in m,r, the
wire diameter in m,α, the pitch angle, andL, the unwound spring
length in m. Also necessary are parameters describing the mate-
rial, namelyE, Young’s modulus in Pa,ν, Poisson’s ratio, andρ
the material density in kg/m3. A general model of the linear dy-
namics of such helical structures is due to Wittrick [5, 6] and is
most easily written in terms of timet and a curved coordinates
along the axis of the spring (see Figure 1 at right) as a system of
12 variables:

∂sξ =
cos2(α)

R
Jξ + Eθ +

1

GAγ
Kp (1a)

∂sθ =
cos2(α)

R
Jθ +

1

EI
Lm (1b)

∂sm =
cos2(α)

R
Jm + Ep + ρIM∂ttθ (1c)

∂sp =
cos2(α)

R
Jp + ρA∂ttξ (1d)

Here, the vector variablesξ, θ, m andp,

ξ =





u
v
w



 θ =





θu

θv

θw



 m =





mu

mv

mw



 p =





pu

pv

pw



 (2)

represent, respectively, displacements, rotation angles, moments
and forces relative to orthogonal local coordinates(γu, γv, γw) at
locations along the spring axis.A = πr2 is the cross sectional
area of the spring, and∂s and∂t represent partial differentiation
with respect to the coordinatess and t, respectively (and∂tt =
∂2

t ). The system matricesJ andE are given by

J =

[
0 tan(α) −1

− tan(α) 0 0
1 0 0

]

E =

[
0 1 0
−1 0 0
0 0 0

]

(3)
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Figure 1: A helical spring. Left, side view illustrating the coil radiusR, wire radiusr and pitch angleα. Right, view illustrating the
orthogonal coordinates[γu, γv, γw] at curvilinear coordinates along the spring wire axis.

andK, L andM are diagonal matrices given by

K =

[
1 0 0
0 1 0

0 0 Gγ
E

]

L =

[
1 0 0
0 1 0
0 0 EI

GIφ

]

M =

[
1 0 0
0 1 0

0 0
Iφ
I

]

(4)
whereG = E/2(1 + ν) is the shear modulus,γ is a shear area
correction, and whereI andIφ are transverse and polar moments
of inertia, respectively. For a spring of circular cross section,γ =
0.88, I = πr4/4, andIφ = 2I = πr4/2.

2.1. Scaled Form

In nondimensional form, i.e., introducing

s′ =
s

s0
t′ =

t

t0
ξ
′ =

ξ

s0
θ
′ = θ p

′ =
s2
0p

EI
m

′ =
s0m

EI
(5)

wheres0 = R/ cos2(α) andt0 =
√

ρA/EIR2/ cos4(α) yields
the scaled system (after removing primes):

∂sξ = Jξ + Eθ +
EI

GAγs2
0

Kp (6a)

∂sθ = Jθ + Lm (6b)

∂sm = Jm + Ep +
I

As2
0

M∂ttθ (6c)

∂sp = Jp + ∂ttξ (6d)

This model is quite refined, and can be classified as thick—indeed
it reduces to the thick model of beam vibration, due to Timoshenko
[13], in the limit of vanishing curvature.

2.2. Reduction to a Thin Model

The model described in the previous sections is a complete de-
scription of the linear vibration of a helical spring; for audio rate
simulation of spring reverberation, however, it is unneccesarily
complex. To this end, note that the factorsI/As2

0 in (6a) and
(6c) are proportional tor2/R2, and are thus extremely small for
springs typically found in reverberation units. Neglecting these
terms leads to the form:

∂sξ = Jξ + Eθ ∂sθ = Jθ + Lm (7a)

∂sm = Jm + Ep ∂sp = Jp + ∂ttξ (7b)

This system in 12 variables (i.e., in 4 three-vector variables)
can be reduced to a system in eight variables, as:

A∂tζ̃ = Q
†
p̃ p̃ = Qm̃ D∂tm̃ = Q

†
φ̃ φ̃ = Qζ̃

(8)
where the reduced variablesζ̃, φ̃, m̃ andp̃ are defined as

ζ̃ = ∂t

[
v
w

]

φ̃ = ∂t

[
θu

θv

]

m̃ =

[
mv

mw

]

p̃ =

[
pu

pv

]

(9)

and where the matrix differential operatorsQ, Q†, A, andD are
defined as

Q =

[
−∂s −µ∂s

−µ 1 + ∂ss

]

Q
† =

[
µ ∂s

−1 − ∂ss µ∂s

]

(10)

A =

[
1 0
0 1 − ∂ss

]

D =

[
1 0
0 b − ∂ss

]

(11)

Note that the displacementu may be recovered from the system as
u = ∂sw. The scaled system as a whole now depends only on the
three parametersµ, b andλ, defined as

µ = tan(α) b =
EI

GIφ
λ = L/s0 (12)

This system is similar to that presented in [8]; as a prelude to
numerical implementation, note that by elimination ofφ̃ andp̃ the
system can be rewritten in terms ofζ̃ andm̃ as

A∂tζ̃ = ∂sRm̃ D∂tm̃ = ∂sRζ̃ ∂sR = Q
†
Q (13)

whereR may be written explicitly as

R =

[
−2µ 1 − µ2 + ∂ss

1 − µ2 + ∂ss 2µ (1 + ∂ss)

]

(14)

Finally, by elimination ofm̃, a system iñξ = [v w]T alone
may be written as

A∂ttξ̃ = ∂ssRD
−1

Rξ̃ (15)

where here,D−1 is to be interpreted as the inverse of the differen-
tial operatorD.
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2.3. Dispersion Relations

As a justification for the use of the simplified model (8), as op-
posed to the full model (1), it is useful to examine the two sys-
tems assuming wave like solutions—which is appropriate, as both
systems are constant coefficient linear systems. To this end, solu-
tions with harmonic time/space dependenceej(ωt+βs) for all com-
ponents in both cases, whereω is temporal frequency, andβ is
wavenumber (both nondimensional). Partial differential operators
∂t and∂s thus behave as multiplicative factors, i.e.

∂t =⇒ jω ∂s =⇒ jβ (16)

Under this assumption, system (1) reduces to a12 × 12 sys-
tem of equations inω and β, and thus possesses 12 dispersion
relations of the formω(β); these are generally grouped in pairs
(corresponding to leftward and rightward propagation), so there
are essentially six independent such relations.

Consider now a spring of dimensions typical to spring rever-
beration units. As shown in Figure 2, the six dispersion relations
for the full system span a large range of frequencies; there are only
two, however, which lie comfortably within the audio range, with
the other four in the range above 100 kHz. The reduced model
(8) very accurately models the two relations in the audio range,
as shown in Figure 2. It is safe to use the reduced model under
virtually any spring configuration to be found in a reverberation
unit.
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Figure 2: Log-log plot of dispersion relationsf(β), in Hz, in di-
mensional form, for a steel spring of coil radius ofR = 5 mm, a
wire radius ofr = 1 mm, with a pitch angle ofα = 5◦. Black:
the six dispersion relations corresponding to the full model(1),
with the upper two indistinguishable in this plot. Red: the two dis-
persion relations for the reduced system(8). The limit of human
hearing atf = 20 kHz is indicated by a blue line.

The two principal dispersion relations of interest possess sev-
eral general features. See Figure 3 at left, showing such rela-
tions for a typical spring under variation in the pitch angleα.
Both curves exhibit a main “hump"; the curves track each other
closely, but one of the two falls to zero at dimensionless wavenum-
berβ =

√

1 + µ2; this wavenumber corresponds to a wavelength
of exactly one full turn of the spring, and at this wavenumber, rigid
body rotation (i.e., at frequencyω = 0) is permitted. The second
curve shows increasing deviation from the first in this region as the
pitch angleα is increased. Above this critical wavenumber, both
curves approach those corresponding to dispersive wave propaga-
tion in an ideal thin bar.

More useful, from the perceptual standpoint, is the examina-
tion of group velocity curvesvg = dω/dβ (see the right panel of
Figure 3); flat regions of the curves correspond to coherent wave
propagation, and thus to spectral regions over which echoes will

be perceived. For more on the interpretation of dispersion rela-
tions for the helical spring system, see [14].
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Figure 3:Left: Principal dispersion relations (dimensional) for the
helical spring of parameters given in the caption to Figure 2, under
variation in the pitch angleα, as indicated. Right: Associated
group velocitiesvg .

2.4. Energy, Boundary Conditions, Forcing and Output

The total energy stored in the spring is a useful quantity in numer-
ical design—see, e.g., [15] for more on this topic. In the present
case of a lossless system, it is conserved, provided boundary con-
ditions are chosen as lossless as well.

An energy balance for the system (8) may be written as

d

dt
H = Bs=λ −Bs=0 (17)

where the total energyH is defined as

H =
1

2

∫ λ

0

ζ2
v +ζ2

w +(∂sζw)2+m2
v +bm2

w +(∂smw)2 ds (18)

where the first three terms under the integral correspond to kinetic
energy density in the three coordinate directions, and the latter
three to potential energy. The boundary term consists of six terms:

B = ζvpv + (∂sζw)
︸ ︷︷ ︸

ζu

pu + ζw (µpv − ∂spu + ∂s∂tζw)
︸ ︷︷ ︸

pw

(19)

+mvφv + (∂smw)
︸ ︷︷ ︸

mu

φu + mw (µφv − ∂sφu + b∂s∂tmw)
︸ ︷︷ ︸

φw

When evaluated at the endpoints of the domain, as in (17),B has
the interpretation of power supplied at the boundaries. Under un-
forced conditions, ifB = 0 at the boundaries, then the system
is lossless—i.e.,dH/dt = 0. Natural boundary conditions are
that one constituent of each of the six products in the boundary
term above vanish, generalizing frequently occurring conditions
such as free, clamped or simply supported to the case of a heli-
cal structure. There are obviously many combinations (4096, in
fact, considering that there are 64 possible choices of such natural
boundary conditions at each end of the spring)!

The terms in(ζ, p) above correspond to power supplied through
forcing along the coordinate directions, and those in(m,φ) to
power supplied through twisting action about the three coordi-
nate directions. Under forced conditions in a spring reverberation
unit, though a combination of linear and rotational forcing is cer-
tainly present, the assumption here will be that the forcing occurs
through the former mechanism, so that one may specifypu, pv or
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pw (through the implicit expression in (19)) as an input signal, and
leave the corresponding velocity component unspecified.

A simple means of taking output is by directly reading values
of the spring velocitỹζ at the locations = λ (or, if working with
the simplified system (15) in displacements, their time derivatives,
which will scale roughly with observed output signals).

2.5. Losses

The question of losses within the spring, due to viscothermal ef-
fects is an important one for reverberation purposes; however, it
has not seen any investigation, experimental or otherwise, to the
knowledge of this author. A basic three parameter loss model, al-
lowing for uncoupled damping effects is as follows:

A∂ttξ̃ = ∂ssRD
−1

Rξ̃ −
[
σv 0
0 σw − σu∂ss

]

∂tξ̃ (20)

whereσu, σv, σw ≥ 0 are loss parameters corresponding to vibra-
tion in theγu, γv andγw coordinates respectively (and taking into
account the relationship betweenu andw in the reduced form).

3. FINITE DIFFERENCE TIME DOMAIN METHODS

There are several different equivalent systems presented in Section
2; the full model in eight variables (8), a system in four variables
(13) and finally a system in two displacements alone (15) (as well
as the lossy system (20)). The first is useful in the construction
of simulation methods, and in properly modeling boundary condi-
tions; the latter are the forms which are most useful in a practical
implementation.

3.1. Grid Functions

In moving to a discrete time formulation, the first step is the choice
of sample rateFs, and the resulting time stepk = 1/Fs.

First consider system (15), in the displacementsξ̃ alone. A
grid spacingh may be chosen, such thatλ/h = N , for integer
N , and subject to stability conditions (see Section 3.4). The grid
function ξ̃

n

l then represents an approximation toξ̃(s, t) at times
t = nk, for integern, and at locationss = lh, for l = 0, . . . , N .
See Figure 4, showing the lattice of grid point corresponding toξ̃

n

l

in black.
The system (13) in velocities̃ζ and momentsm̃ permits an

interleaved discretization, similar to that which occurs in FDTD
schemes for electromagnetics [16, 17]. One may define the grid
functions

ζ̃
n+ 1

2

l ≅ ζ̃|t=(n+ 1

2
)k,s=lh m̃

n
l+ 1

2

≅ m̃|t=nk,s=(l+ 1

2
)h

(21)

as illustrated by white points in Figure 4.̃ζ
n+ 1

2

l is defined for
l = 0, . . . , N , andm̃n

l+ 1

2

for l = 0, . . . , N − 1.

Finally, for the complete system (8), grid functions correspond-
ing to φ̃ andp̃ are necessary. It is appropriate, given the structure
of system (8), to split the components of these vector variables
onto distinct grids as:

φ̃
n+ 1

2

u,l+1/2 φ̃
n+ 1

2

v,l p̃
n
u,l p̃

n
v,l+ 1

2

(22)

ξ̃, p̃u

ξ̃, p̃u

ξ̃, p̃u

ξ̃, p̃u

ξ̃, p̃u

ξ̃, p̃u

ξ̃, p̃u

ξ̃, p̃u

ξ̃, p̃u

m̃, p̃v

m̃, p̃v

m̃, p̃v

m̃, p̃v

m̃, p̃v

m̃, p̃v

m̃, p̃v

m̃, p̃v

m̃, p̃v

ζ̃ , φ̃v

ζ̃ , φ̃v

ζ̃ , φ̃v

ζ̃ , φ̃v

ζ̃, φ̃v

ζ̃, φ̃v

ζ̃, φ̃v

ζ̃, φ̃v
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x = 0h x = h

2 x = h x = 3h

2 x = 2h x = 5h

2

t = (n − 1)k

t = (n −

1
2
)k

t = nk

t = (n + 1
2 )k

t = (n + 1)k

t = (n + 3
2
)k

t = (n −

3
2
)k

Figure 4:Computational grids for FDTD schemes for the helical
spring. Black points indicate a regular lattice for displacements
ξ̃

n

l and white points indicate an interleaved lattice in velocities

ζ̃
n+ 1

2

l and moments̃mn
l+ 1

2

. A scheme for the full system requires

an additional lattice of points, indicated in green.

whereφ̃
n+ 1

2

v,l andp̃n
u,l are defined forl = 0, . . . , N , andφ̃

n+ 1

2

u,l+1/2

andp̃n
v,l+ 1

2

for l = 0 . . . , N − 1. The lattices of grid points cor-

responding to these grid functions are as indicated in Figure 4.

3.2. Difference Operators

For a given grid functionfn
l (where here,l andn are either integer

or half-integer), forward and backward approximationsδt+ and
δt− to the time derivative∂t are defined as

δt+fn
l =

1

k

(
fn+1

l − fn
l

)
δt−fn

l =
1

k

(
fn

l − fn−1
l

)
(23)

Similarly, forward and backward approximationsδs+ andδs− to
the spatial derivative∂s are defined as

δs+fn
l =

1

h
(fn

l+1 − fn
l ) δs−fn

l =
1

h
(fn

l − fn
l−1) (24)

Approximations to higher derivatives may be obtained through
composition of the above operations. For example, centred ap-
proximations to the second time and space derivatives∂tt and
∂ss may be obtained as the operator productsδtt = δt+δt− and
δss = δs+δs−.

The main spatial differential operators for the spring system
are as given in (10), and may be directly transferred to spatial dif-
ference operators as

Qd,± =

[
−δs± −µδs±

−µ 1 + δss

]

Q
†
d,± =

[
µ δs±

−1 − δss µδs±

]

Ad =

[
1 0
0 1 − δss

]

Dd =

[
1 0
0 b − δss

]

(25)

Note that due to the interleaved character of the grid functions, the
differential operatorsQ andQ† have been replaced by forward
and backward difference operationsQd,±, andQ†

d,±respectively.
If the reduced systems (13) or (15) are to be used, then the dif-

ference operatorRd, corresponding toR may be defined in terms
of either of these pairs of operators as

δs±Rd = Q
†
d,±Qd,± (26)
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and takes the explicit form

Rd =

[
−2µ 1 − µ2 + δss

1 − µ2 + δss 2µ(1 + δss)

]

(27)

3.3. Interleaved Scheme

Assembling the various difference approximations to the operators
in (8) leads immediately to the following interleaved form:

Adδt−ζ̃ = Q
†
d,−p̃ p̃ = Qd,−m̃ (28)

Ddδt+m̃ = Q
†
d,+φ̃ φ̃ = Qd,+ζ̃

Reduced forms corresponding to (13) and (15) can be written
as

Adδt−ζ̃ = δs−Rdm̃ Ddδt+m̃ = ∂s+Rdζ̃ (29)

and
Adδttξ̃ = δssRdD

−1
d Rdξ̃ (30)

where as before,D−1
d is to be interpreted as the inverse of the

difference operatorDd (i.e., in implementation it will become a
matrix inversion or linear system solution).

Notice in particular that the single variable scheme in (30) de-
pends only on centered difference operators and is thus second
order accurate. All of the above schemes are necessarily implicit,
due to the action of the operatorsAd andDd (in implementation,
these lead to sparse linear system solutions to be carried out at each
time step).

3.4. Stability and Numerical Boundary Conditions

The determination of explicit numerical stability conditions for
the scheme above is considerably more difficult in the case of the
present scheme (or indeed any scheme for this system) than for
other related systems (such as, e.g., the ideal string or ideal bar
[15]). The difficulty is fundamental: for a given time stepk, one
would like to find a minimum valuehmin of the grid spacing such
that the scheme does not exhibit explosive growth.

One approach to finding a numerical stability condition is the
familiar frequency domain approach due to von Neumann [18].
In this case all grid functions are assumed to exhibit harmonic
time/space dependence of the formej(lhβ+nkω), for angular fre-
quencyω and wavenumberβ, and for half integerl andn. Con-
sidering, for simplicity, the centred one-variable form (30), the op-
eratorsδtt andδss transform according to

δtt =⇒ −4 sin2(ωk/2)

k2
δss =⇒ −4 sin2(βh/2)

h2
(31)

and thus the scheme (30) possesses the characteristic equation

sin2(ωk/2)I2 =
k2

h2
sin2(βh/2)Â−1

d R̂dD̂
−1
d R̂d (32)

whereI2 is the2 × 2 identity matrix, and wherêAd, D̂d andR̂d

are the wavenumber-dependent matrices obtained through replace-

ment ofδss by the factor− 4 sin2(βh/2)

h2 in the definitions (25) and
(27). As such, the necessary stability condition follows as

eig

(
k2

h2
sin2(βh/2)Â−1

d R̂dD̂
−1
d R̂d

)

≤ 1 (33)

for all β with 0 ≤ β ≤ π/h. Ideally, one would like to be able to
determine a closed form expression for the minimal grid spacing

hmin(k), such that the above condition is satisfied for allh ≥
hmin(k)—in audio applications, for best results, for a given time
stepk, it is best to chooseh as close tohmin as possible [15].
Unfortunately, such a closed form condition is not available in the
present case, and thushmin must be determined numerically.

In the limit of high sample rates (or small time steps), the min-
imal grid spacing approaches the following bound:

lim
k→0

hmin(k) =
√

2k (34)

The square root dependence is typical of schemes for stiff systems
such as the ideal bar (indeed, at high frequencies, the helical spring
system approaches that of the ideal bar). See, e.g., [15].

Energy conservation methods [19] are a more powerful means
of obtaining stability conditions, as proper numerical boundary
conditions may also be determined (though the difficulty in ob-
taining a closed form expression forhmin remains). The idea is
to obtain an energy balance analogous to (17), such that numerical
energy is conserved from one time step to the next—numerical sta-
bility then amounts to finding conditions under which the numeri-
cal energy is positive semi-definite in the grid functions, allowing
solution growth to be bounded.

Though there is not space here to give a full treatment of en-
ergy methods, a discrete energy balance can be shown to be:

δt+Hd = Bd,0 − Bd,N (35)

where one expression forHn
d , the discrete conserved energy at

time stepn, is

Hn
d =

h

2

( N∑

l=0

′ (
ζn

v,l

)2
+

(
ζn

w,l
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)(
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2

))

where the primed sum indicates a factor of 1/2 applied atl = 0
and l = N . Such an expression mirrors that in (18), though in
this case, the terms iñm are not necessarily positive. The deter-
mination of conditions under which the above expression is non-
negative as a whole (by relating̃m back toζ̃ through (29)) is dif-
ficult, and amounts to the same problem discussed with reference
to frequency domain methods above.

The boundary termsBd,0 and−Bd,N again indicate power
supplied at the endpoints of the domain, atl = 0 andl = N ; the
expressions are rather lengthy, and will not be included here—the
general form, however, is the same as that for the continuous sys-
tem from (19), and is made up of six products of grid functions
evaluated at the boundary. The important point is that one may
ensure numerical losslessness, under unforced conditions, by re-
quiring that one member of each of the six pairs vanishes. See
Section 4.2. It is important to point out that, in contrast to the con-
tinuous case, the expression for the numerical energyHd is not
unique—each choice leads to a distinct set of numerical boundary
conditions.

3.5. Numerical Dispersion

The scheme (28) (or the equivalent reduced forms) for the heli-
cal spring exhibits numerical dispersion—i.e., propagation speeds
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deviate from those of the model system. Such behaviour may be
analyzed through the characteristic equation (32), which possesses
two solutionsω(β). See Figure 5, showing numerical dispersion
relations at a variety of audio sample rates. The dispersion curves
converge (with increasing sample rate) rather slowly to those of the
model system. An appeal to more delicate modeling is in order—
see Section A for some more involved numerical designs targeting
this deficiency.
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Figure 5: Numerical dispersion relations, for a variety of audio
sample rates, for scheme(28) for the helical spring system, for a
steel spring of coil radiusR = 5 mm, wire radius ofr = 1 mm,
and pitch angleα = 5◦.

4. SIMULATION RESULTS AND PERFORMANCE
ANALYSIS

In this section, some simulation results are presented, for springs
of dimensions typically found in reverberation units.

4.1. Response to an Impulsive Excitation

Figure 6 shows snapshots of the time evolution of the state of a he-
lical spring, when subjected to a short impulsive excitation aligned
nearly with the coil axis (at right), and transverse to it (at left)—in
this case, the values of the forcing functionp̃ in the appropriate
direction specified at the boundary atl = 0. Note in particular
the conversion of the vibrational energy almost instantaneously to
vibration in the other coordinate directions.

4.2. Energy Conservation

The scheme (28), as discussed in Section 3.4, conserves energy to
machine accuracy under lossless conditions, as long as appropriate
conservative boundary conditions are applied. See Figure 7, illus-
trating the variation in numerical energy for a spring subjected to
an impulsive excitation—note that energy is quantized to multi-
ples of machine precision. Such a property, beyond being useful
in stability analysis, serves as an excellent debugging tool—any
errors in the implementation will almost certainly lead to anoma-
lous variation in the numerical energy. When losses are present,
numerical energy, at least under the model will be monotonically
decreasing.

4.3. Spring Responses

In this section, spectrograms of simulated spring output responses
are shown. In all cases here, the spring is steel, of lengthL = 5
m, with R = 4 mm, r = 0.2 mm, and with a pitch angle of 1.7◦;

Figure 6:Snapshots of the time evolution of a helical spring, sub-
ject to an impulsive excitation, at times as indicated. The spring
is steel, withR = 4 mm, andr = 0.2 mm and a pitch angle of
α = 5◦. Left: excitation along coordinate directionγv. Right:
excitation along coordinate directionγw. Displacements are ex-
aggerated, for visibility.
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Figure 7:Numerical energy variation for the spring of parameters
as given in the caption to Figure 6, using scheme(28) at a sample
rate of 44.1 kHz. Multiples of machine epsilon are shown as grey
lines.

output is drawn from velocityζw in theγw coordinate direction.
Other parameters will be varied here.

The most important consideration, given the discussion of nu-
merical dispersion in Section 3.5, is that of anomalous wave speed,
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particularly for echoes. Figure 8 shows spectrograms for spring
output under successively larger sample rates. In general, the spec-
trograms exhibit a complex region, under a cutoff frequency (the
frequency at the top of the hump in the plot of the dispersion rela-
tion in Figure 3), over which multiple families of dispersive echoes
are visible. Above the cutoff, a single family of dispersive chirp-
like echoes persists. It is this family which is most affected by
numerical dispersion, as should be evident in the plots in Figure
5, and at 44.1 kHz, wave speed is anomalously slow. Thus, unless
a scheme with reduced dispersive properties can be devised, such
schemes will produce anomalous results at low audio rates (though
they may be used at oversampled rates). See Section A for some
possible variants on the scheme presented in Section 3.3.

Figure 8: Spectrograms of output responses, under different
choices of the sample rate, as indicated.

Loss, though discussed only in passing in this article, obvi-
ously plays a major role in determining the characteristic sound of
a spring reverberation unit. Considering the simple lossy model in
(20), it is simple to arrive at a generalization of scheme (30), by re-
placing instances of∂t by a centered approximation(δt+ + δt−) /2,
and∂ss by δss. It is also possible to show that such a perturbation
leads to monotonic energy loss.

Consider two cases, as illustrated in Figure 9, selecting for loss
along one of the two coordinate directionsγv or γw; as is easily
visible, loss along the transverse coordinateγv has a much greater
effect in terms of energy decay.

Figure 9: Spectrograms of output responses, under different
choices of loss coefficientsσv andσw, as indicated. The sample
rate is 88.2 kHz.

4.4. Computational Cost

Computational cost for the scheme given in Section 3.3 is high,
but not extreme; clearly it depends strongly on the sample rate, so
there is some motivation to look for schemes with reduced dispersion—
see Section A. As an example, consider a spring of dimensions
typical to a reverberation device. In Table 1, simulation times,
for one second output are given, for a single core Matlab imple-
mentation on a standard laptop computer. Notice in particular that
the grid size scales roughly with

√
Fs, and computation time with

F
3/2
s —reflecting the limiting stability condition from (34).

Table 1: Number of grid pointsN and calculation time, in seconds,
for one second output at various sample rates, for a spring with
R = 4 mm,r = 0.2 mm,L = 5 m andα = 1.7◦.

Fs N calculation time (s)
44 100 1257 18.13
88 200 1639 50.90
176 000 2205 141.0

5. CONCLUDING REMARKS

A model for a helical spring has been presented here; the continu-
ous model (8) presented, while extremely accurate in the case of a
lossless, unforced spring of dimensions typical in spring reverber-
ation units, is still lacking in several features which are necessary
if one is to arrive at a complete model of a spring reverberation
device.

Loss has not been considered here in any depth; as has been
mentioned, models of loss in helical structures are not readily avail-
able. Even an empirical study of losses (by measuring, say, band-
withdths of spectral peaks, as in the case of a string of vibrating
bar) is complicated, as there are two overlapping families of modal
frequencies (corresponding to the two distinct dispersion relations
for the system); furthermore, each mode is itself a mixture of lon-
gitudinal and transverse vibration, so a direct association with loss
characteristics of simpler non-curved systems such as strings and
bars is not immediately forthcoming.

The forcing mechanism also has not been described here. In
a typical spring reverberation unit, the excitation is a permanent
magnet attached to one end of the spring, and driven by an electro-
magnetic field (the strength of which is proportional to the input
signal). The exact details of the forcing, and how it couples to
the various components of displacement and rotation is as yet un-
known, and is in need of experimental investigation. The analysis
of boundary conditions for the spring system given in Section 2.4,
however, does at least provide a framework for arriving at a com-
patible forcing term, which will certainly have the character of a
mass-spring system.

The numerical method presented here is well-behaved numer-
ically under all possible boundary terminations, which may be eas-
ily associated with those of the underlying model system; energy
conservation, in the lossless case, has been used as a design prin-
ciple. In terms of accuracy, however, other problems emerge—
all are due to the appearance of a new length scale in the case
of a tightly curved structure such as a spring found in a typical
reverberation unit. The dispersion characteristics possess impor-
tant features at relatively high wavenumbers (corresponding to the
length of one turn of the helix); in uncoiled structures, such high
wavenumbers are associated with high temporal frequencies, and
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thus there is less perceptual importance associated with them. In
this case, however, the temporal frequencies of interest lie directly
in the low audio range, and thus great care is necessary in numer-
ical design over the whole range of wavenumbers. One simple
remedy is to operate at oversampled rates; but certain approaches
based on parameterized FDTD methods (see Section A) offer some
degree of control over such perceptually important features.

Given that the input and output locations for the spring rever-
beration system is generally always taken from the same locations
(i.e., the ends of the spring), and also that the system is linear and
time invariant, an interesting alternative to FDTD methods might
involve modal approaches, as in, e.g., the standard helical spring
literature [6], and also as used in sound synthesis [20, 21, 22]. The
obvious advantages relative to FDTD methods are (a) reduced run-
time cost, (b) the possibility of obtaining exact behaviour, and (c)
better control over loss. There are disadvantages as well; one must
precompute the modal shapes and frequencies offline, which is po-
tentially a very large undertaking, as well as store them, for each
new set of parametersd andµ, and for a particular set of boundary
conditions; still, though, this would seem to be one of the most
suitable systems for modal-based effects modeling.

A. IMPROVED FDTD DESIGNS

Numerical dispersion is a strong effect for the scheme presented
in Section 3.3, which is the simplest possible choice for the helical
spring system. Other choices are possible, including free parame-
ters allowing for tuning of the algorithm. To this end, consider the
following modifications of the spatial difference operators given in
(25) and (27):

Rd =

[
−2µ 1 − µ2 + (1 + ǫ1h

2)δss

1 − µ2 + (1 + ǫ1h
2)δss 2µ(1 + (1 + ǫ1h

2)δss)

]

Ad =

[
1 0
0 1 − (1 + ǫ2h

2)δss

]

Dd =

[
1 0
0 d − (1 + ǫ3h

2)δss

]

Three parametersǫ1, ǫ2 andǫ3 have been introduced—note that all
three are multiplied by factors ofh2, so that the resulting scheme
(29), when the above operators are employed, remains consistent
with the helical spring system [18].

Under appropriate choices of the free parameters (perhaps cho-
sen through an optimization procedure), much better behaviour
can be obtained at audio sample rates. See Figure 10. Interest-
ingly, such schemes can also be cheaper computationally than the
unparameterized scheme, ashmin is generally larger (leading to a
smaller grid size).
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