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ABSTRACT els, through standard time stepping procedures such as finite dif-
ference schemes [12].

A model of spring vibration is presented in Sec{idn 2, accom-
panied by dispersion analysis, illustrating regions of coherent and

Virtual analog modeling of spring reverberation presents a chal-
lenging problem to the algorithm designer, regardless of the par-

ticular strategy employed. The difficulties lie in the behaviour . X : L X
gy employ dispersive wave propagation. Finite difference schemes are intro-

of the helical spring, which, due to its inherent curvature, shows duced in Sectiohl3, and simulation results and performance analy-
characteristics of both coherent and dispersive wave propagation. ’ P y

Though itis possible to emulate such effects in an efficient manner S'S 8¢ presented in Sectigh 4.

using audio signal processing constructs such as delay lines (for

coherent wave propagation) and chains of allpass filters (for dis- 2 HELICAL SPRING MODELS
persive wave propagation), another approach is to make use of di- ’

rect numerical simulation techniques, such as the finite difference
time domain method (FDTD) in order to solve the equations of

motion directly. Such an approach, though more computationally o / A

intensive, allows a closer link with the underlying model system— at Iefé_m Flgur_e[]., ang na_lmﬁlyR,lthe Cg" Ladlus n md,r, th_e

and yet, there are severe numerical difficulties associated with SucquethlgmeterAlln M, the pitch angle, an ’tt N ;nwo_t:)n stahrlng t
designs, and in particular anomalous numerical dispersion, requir- .enlg In rInE 30 ne(,:essagy Iare_papramie_rs e§cr| tl_ng € mate-
ing some care at the design stage. In this paper, a complete modeﬂ'hae' nngﬁgl d’encs)li{[n%: F?Fnu :s (Ier;erz(lymc?cliseslloor; ?hr: Ilizleg??j )

of helical spring vibration is presented; dispersion analysis from namics of such hel);cal sgt]ru-cturgs is due to Wittrick([5, 6] an)clj is
an audio perspective allows for model simplification. A detailed most easily written in terms of timeand a curved co-c.)r’dinate

description of novel FDTD designs follows, with special attention - - i ;
is paid to issues such as numerical stability, loss modeling, numer-along the axis of the spring (see Figlie 1 at right) as a system of

A helical structure of the type found in typical spring reverberation
units, is characterized by its geometrical parameters as illustrated

ical boundary conditions, and computational complexity. Simula- 12 variables:
tion results are presented. cos?(a) 1
0s& = J¢E+EO0+ —Kp (1a)
R GA~
1. INTRODUCTION cos(a) 1

) ) ) ) 0:0 = JO + —Lm (1b)
Virtual analog modeling, for electronic effects and synthesis mod- 123 E1
ules has seen an enormous amount of work in recent years [1]. _ cos’(a)
Somewhat less investigated has been the case of electromechanical Osm = Jm + Ep + pIM0:.6 (1)
effects, especially when the mechanical components involved have cos?(a)
a distributed character (i.e., they cannot be modelled as lumped). osp = R Ip + pAdug (1d)
Prime examples are plate reverberation, and the system of interest
in this paper, spring reverberatian [2[3, 4]. Here, the vector variables 8, m andp,

Part of the difficulty in adequately simulating spring reverber-

ation lies in the complexity of the model of a helical spring which, u 0., M Pu
even in the linear case, possesses features which are very much t=|v| 6=160.] m=|m,| p=|p @)
unlike those of what might seem to be similar systems in mu- w 0. M Do

sical acoustics, such as the string, or ideal bar. Seel [5,[6, 7, 8]
for presentations of the dynamical system governing spring vibra- represent, respectively, displacements, rotation angles, moments

tion. Helical _structures, due to their inherent curv_ature_p_osse_ssand forces relative to orthogonal local coordinates, v, 7. ) at
the (;haracterlstlcs of both _coher(_ant wave propagatl_on, gVvINg 1IS€y - ation s along the spring axisA = =r? is the cross sectional
to discrete ec_hoes, and dispersive wave propagation, gving the rea of the spring, ands and 9; represent partial differentiation
response a d|ﬁu§e character as well. Neverthele_ss, quelmg 0ﬁ/ith respect to the coordinatesandt, respectively (and;; =
spring reverberation has proceeded apace, with simulation meth-, Th . "

L . m matr ndE ar n
ods based on allpass networks[9,[10, 11], and, for simplified mod- 9:). The syste atricebandE are given by
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Figure 1: A helical spring. Left, side view illustrating the coil radiug, wire radiusr and pitch anglen. Right, view illustrating the
orthogonal coordinate$y., v+, yw] at curvilinear coordinates along the spring wire axis.

andK, L andM are diagonal matrices given by This system in 12 variables (i.e., in 4 three-vector variables)
can be reduced to a system in eight variables, as:

10 o0 1 0 0 1 0 0
K=1|o 1 olnL=1]0 1 o|mM=10 1 o
00 % 0o o0 FE o o0 2 2t _ - i1 5
AdC=Q'p p=Qm DIm=Q¢d ¢=QC¢
whereG = E/2(1 + v) is the shear modulusy is a shear area e~ . i (®)
correction, and wheré andI,, are transverse and polar moments where the reduced variabl§s¢, m andp are defined as
of inertia, respectively. For a spring of circular cross sectioe; ~ o1 - 0 m
0.88, I = 7r*/4, andl, = 2I = 7r/2. C=0 { } ¢ =0 [Q"} m = [m”} p= B‘} ©)
2.1. Scaled Form and where the matrix differential operatds Qf, A, andD are
In nondimensional form, i.e., introducing defined as
r_ S /_i /_£ ’r /_8(2)_1) ;_ Som Q = l:ias 7M85:| QT=|: H as:|(:|.0)
S = t—to €—80 0 =0 P=77 M="F —p 1+ Oss —1—0.s pos
(5) 1 0 1 0
whereso = R/ cos?(a) andty = \/pA/EIR?/ cos* () yields A= g - Oss D=1y v- Oss (11)
the scaled system (after removing primes):
EI Note that the displacementmay be recovered from the system as
0, = JE+EO+ pr (6a) u = dsw. The scaled system as a whole now depends only on the
750 three parameters, b and )\, defined as
8,0 = JO+Lm (6b)
I _ _ Er _
Osp = Jp+0u€ (6d) This system is similar to that presentedlin [8]; as a prelude to

This model is quite refined, and can be classified as thick—indeedNumerical implementation, note that by eliminationfoandp the
it reduces to the thick model of beam vibration, due to Timoshenko SyStém can be rewritten in termsofandm as

[23], in the limit of vanishing curvature. AdE = O.Rin Doy = .RE aR=Q'Q (13)

2.2. Reduction toa Thin Model whereR may be written explicitly as

The model described in the previous sections is a complete de- —2u 1— 42+ 0ss

scription of the linear vibration of a helical spring; for audio rate R = 1— 4% +0ss 2u(1+ds) (14)
simulation of spring reverberation, however, it is unneccesarily

complex. To this end, note that the factdrgAs3 in (&d) and Finally, by elimination ofri2, a system iré = [v w]” alone

(69) are proportional te?/R?, and are thus extremely small for may be written as
springs typically found in reverberation units. Neglecting these

terms leads to the form: Ad, € = 0., RD 'RE (15)
06 = JE+E6 050 = J6 + Lm (7a) where hereD ! is to be interpreted as the inverse of the differen-
Osm = Jm+ Ep Osp =Jp + 0::& (7b) tial operatoD.
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2.3. Dispersion Relations be perceived. For more on the interpretation of dispersion rela-

e o tions for the helical spring system, seel|[14].
As a justification for the use of the simplified modg] (8), as op-

posed to the full mode[{1), it is useful to examine the two <=
tems assuming wave like solutions—which is appropriate, a

systems are constant coefficient linear systems. To this enc 8
tions with harmonic time/space dependeat&!*?*) for all com
ponents in both cases, wheteis temporal frequency, and is
wavenumber (both nondimensional). Partial differential opel
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0 andd, thus behave as multiplicative factors, i.e. )
0y = jw 0s = jf3 (16 00'[ 50 100 150‘#1/13)0'0 0 % 50 100 150, 200 250
Under this assumption, systef (1) reduces 1@ & 12 sys- Figure 3:Left: Principal dispersion relations (dimensional) for the

tem of equations inu and 3, and thus possesses 12 dispersion nelical spring of parameters given in the caption to Fidtre 2, under
relations of the formw(53); these are generally grouped in pairs  yariation in the pitch anglen, as indicated. Right: Associated
(corresponding to leftward and rightward propagation), so there group velocities, .
are essentially six independent such relations.

Consider now a spring of dimensions typical to spring rever-
beration units. As shown in Figuté 2, the six dispersion relations
for the full system span a large range of frequencies; there are only2.4. Energy, Boundary Conditions, Forcing and Output
two, however, which lie comfortably within the audio range, with The total tored in th R ful tity i s
the other four in the range above 100 kHz. The reduced model. € total energy stored In the Spring 1S a Usetul quantity in numer
(@) very accurately models the two relations in the audio range, ical design—see, e.gl [15]. f(_)r more on this topic. In the present
as shown in FigurE]2. It is safe to use the reduced model underca@se of a lossless system, it is conserved, provided boundary con-

virtually any spring configuration to be found in a reverberation ditions are chosen as lossless as well.

unit. An energy balance for the syste (8) may be written as
iH =Bs—x—B a7
dt — Ps=A s=0

0 - where the total energ¥t is defined as

10 -

f (kHz)

1 A
107+ H= 5 / C?f +<i + (3st)2+m3 +bm12u +(85mw)2 ds (18)
0
w0 o ) o where the first three terms under the integral correspond to kinetic
energy density in the three coordinate directions, and the latter

Figure 2: Log-log plot of dispersion relationg(/3), in Hz, in di- three to potential energy. The boundary term consists of six terms:
mensional form, for a steel spring of coil radius Bf= 5 mm, a
wire radius ofr = 1 mm, with a pitch angle of = 5°. Black: B = (opo + (0sCw) Pu + Cw (ppo — Ospu + 050:Cw)  (19)
the six dispersion relations corresponding to the full mo@) o Do
with the upper two indistinguishable in this plot. Red: the two dis- _ b
persion relations for the reduced systd@. The limit of human Fmugy +M¢“ + M (v — Ocbu + b0,0im-)

hearing atf = 20 kHz is indicated by a blue line. M, dw

When evaluated at the endpoints of the domain, as1h @ has

The two principal dispersion relations of interest possess sev-the interpretation of power supplied at the boundaries. Under un-
eral general features. See Figlile 3 at left, showing such rela-forced conditions, if8 = 0 at the boundaries, then the system
tions for a typical spring under variation in the pitch angle is lossless—i.e.dH/dt = 0. Natural boundary conditions are
Both curves exhibit a main *hump"; the curves track each other that one constituent of each of the six products in the boundary
closely, but one of the two falls to zero at dimensionless wavenum- term above vanish, generalizing frequently occurring conditions
bers = /1 4 p?; this wavenumber corresponds to a wavelength such as free, clamped or simply supported to the case of a heli-
of exactly one full turn of the spring, and at this wavenumber, rigid cal structure. There are obviously many combinations (4096, in
body rotation (i.e., at frequeney = 0) is permitted. The second fact, considering that there are 64 possible choices of such natural
curve shows increasing deviation from the first in this region as the boundary conditions at each end of the spring)!
pitch angle« is increased. Above this critical wavenumber, both The terms in(¢, p) above correspond to power supplied through
curves approach those corresponding to dispersive wave propagaforcing along the coordinate directions, and thosegrn ¢) to
tion in an ideal thin bar. power supplied through twisting action about the three coordi-

More useful, from the perceptual standpoint, is the examina- nate directions. Under forced conditions in a spring reverberation
tion of group velocity curves, = dw/dg3 (see the right panel of  unit, though a combination of linear and rotational forcing is cer-
Figure[3); flat regions of the curves correspond to coherent wavetainly present, the assumption here will be that the forcing occurs
propagation, and thus to spectral regions over which echoes willthrough the former mechanism, so that one may spezify., or
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pw (through the implicit expression ih (1L9)) as an input signal, and

. . - sy Ao Du ¢, bu ¢ du bu
leave the corresponding velocity component unspecified. (=t Dk " © ) © ‘ °
A simple means of taking output is by directly reading values =k @R 5o 2 7, By RN -
of tht_a spr_ing velocity¢ at th_e chations = X (or, if_wc_;rking V\_/ith_ e b g TP TP
the simplified systeni(15) in displacements, their time derivatives, Y. - . - . !
. . . . » oy “Pu M, Py s Pu My Py
which will scale roughly with observed output signals). t= 7 "¢t "¢ O
MRS Go @l L
2.5. Losses R (IR N LI e L
. _ . . ; 6,6 Gu ¢, Gu ¢, Gu
The question of losses within the spring, due to viscothermal ef- =@~k o e o
fects is an important one for reverberation purposes; however, it eoOh ah h o= o oo

has not seen any investigation, experimental or otherwise, to the
knowledge of this author. A basic three parameter loss model, al-

lowing for uncoupled damping effects is as follows: Figure 4: Computational grids for FDTD schemes for the helical

§Qring. Black points indicate a regular lattice for displacements

o 0 ~ &, and white points indicate an interleaved lattice in velocities

S g
A0y€ = 0:sRD™"RE 0 0w — 0udas 0:€

(20) ants - n :
¢ and momentsn;’ .. A scheme for the full system requires
2
an additional lattice of points, indicated in green.
whereo,, 0y, 0, > 0 are loss parameters corresponding to vibra-
tion in the~., v, and~,, coordinates respectively (and taking into

account the relationship betweerandw in the reduced form). ~n+i

JUP | .

wheregbv;r2 andpy, , are defined fot = 0, ..., N, (":lndgbu“l/2

andfozl+l forl =0...,N — 1. The lattices of grid points cor-
T

3. FINITE DIFFERENCE TIME DOMAIN METHODS responding to these grid functions are as indicated in F[gure 4.

There are several different equivalent systems presented in Sectio
[Z; the full model in eight variable§](8), a system in four variables
(13) and finally a system in two displacements algné (15) (as well For a given grid functiory;* (where here] andn are either integer

as the lossy systerii (20)). The first is useful in the construction or half-integer), forward and backward approximatigs and
of simulation methods, and in properly modeling boundary condi- §,_ to the time derivativeé); are defined as
tions; the latter are the forms which are most useful in a practical

'}2. Difference Operators

impiementation et fi° = % (f] o ) - fi"' = T (fi" =1 1) (23)
3.1. Grid Functions Similarly, forward and backward approximatiofis, andéd,_ to

) ) ) ] ] ) _ the spatial derivativé, are defined as
In moving to a discrete time formulation, the first step is the choice

of sample ratd’s, and the resulting time stép= 1/Fs.

First consider systeni{1l5), in the displacemehi@lone. A
grid spacingh may be chosen, such thafh = N, for integer
N, and subject to stability conditions (see Secfiod 3.4). The grid
function £, then represents an approximationgie, t) at times

Sl = =) Sl = T (= ) (29

Approximations to higher derivatives may be obtained through
composition of the above operations. For example, centred ap-
proximations to the second time and space derivatiyesand

t = nk, for integern, and at locations = lh, for! =0,..., N. :

! N i . N S 0ss may be obtained as the operator produgis= d:+0:— and
See Figur&l4, showing the lattice of grid point correspondingi'to  5~° _ 6y+6 P produsts= .+
in black. L ST

The main spatial differential operators for the spring system

_ The system[(13) in velocities and momentsn permits an 4y a5 given ir{J0), and may be directly transferred to spatial dif-
interleaved discretization, similar to that which occurs in FDTD  tarence operators as

schemes for electromagneti¢s [16] 17]. One may define the grid

functions 5 —us 5
_ s+ HOs+ t _ y2 s+
bl - Qus = { —pu 14 ng Qas = {—1 — ss uésJ
Cl = C't:(n-&-%)k,s:lh m?+% = fh’lt:nk,s:(l-&-%)h A _ 1 0 D. — 1 0 (25)
. (21) ‘ 0 1-d. =10 b4
as illustrated by white points in Figufé 447 2 is defined for _ _ _
1=0,...,N,andm}, , forl =0,...,N — L. Note that due to the interleaved character of the grid functions, the
2

differential operator€d and Q' have been replaced by forward
and backward difference operatio@s;, +, andQIl’ _ respectively.

If the reduced systemis{11.3) €r{15) are to be used, then the dif-
ference operatdR 4, corresponding t®R may be defined in terms
of either of these pairs of operators as

Pii Pl (22) §s+Ra = Q} 1 Qu.+ (26)

Finally, for the complete systeinl(8), grid functions correspond-
ing to ¢ andp are necessary. It is appropriate, given the structure
of system|[(B), to split the components of these vector variables
onto distinct grids as:

Srd g
v,l

¢u,z+1/2 ¢
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and takes the explicit form

1-— Mg + 635
2”(1 + 653)

—2u

Rd: 1_M2+6ss

@7)

3.3. Interleaved Scheme

Assembling the various difference approximations to the operators

hmin (k), such that the above condition is satisfied for/all>
hmin (k)—in audio applications, for best results, for a given time
stepk, it is best to choosé as close tQh.m,:» as possible [15].
Unfortunately, such a closed form condition is not available in the
present case, and this,;, must be determined numerically.

In the limit of high sample rates (or small time steps), the min-
imal grid spacing approaches the following bound:

in () leads immediately to the following interleaved form: Iyn% Bmin (k) = V2k (34)
Adde-C = QL,—p p=Q4-m (28) The square root dependence is typical of schemes for stiff systems
Dy = QL +g, ¢ = Qd,+€“ such as the ideal bar (indeed, at high frequencies, the helical spring
’ system approaches that of the ideal bar). See, e.g., [15].
Reduced forms corresponding [0}(13) and (15) can be written Energy conservation methods [19] are a more powerful means
as B ~ of obtaining stability conditions, as proper numerical boundary
Ay0t-C =ds-Ram Daids+m = 0s+RaC (29) conditions may also be determined (though the difficulty in ob-
and taining a closed form expression fay.;, remains). The idea is
Adbii€ = 6..RsD;'Rué (30) to obtain an energy balance analogou$ i (17), such that numerical

energy is conserved from one time step to the next—numerical sta-
bility then amounts to finding conditions under which the numeri-
cal energy is positive semi-definite in the grid functions, allowing
solution growth to be bounded.

Though there is not space here to give a full treatment of en-
y methods, a discrete energy balance can be shown to be:

O0¢+Hag = Ba,o — Ba,n (35)

where as beforeD;1 is to be interpreted as the inverse of the
difference operatoD (i.e., in implementation it will become a
matrix inversion or linear system solution).

Notice in particular that the single variable scheméid (30) de-
pends only on centered difference operators and is thus secon%rg
order accurate. All of the above schemes are necessarily implicit,
due to the action of the operatafs; andD,; (in implementation,

these lead to sparse linear system solutions to be carried out at each . n .
where one expression fdr;, the discrete conserved energy at

time step). h :
time stepn, is
3.4. Stability and Numerical Boundary Conditions h(i ( )2 ( )2 No1 ( )2
. . . - " i=7 Coa)” + (Co)” + D 73 (Gl — G,
The determination of explicit numerical stability conditions for ! 2\~ o ! — h? ol e
the scheme above is considerably more difficult in the case of the N1
present scheme (or indeed any scheme fqr this s_ystem)_ than for + Z m"+§1 m"TI 4 bm"% ) mn*% )
other related systems (such as, e.g., the ideal string or ideal bar it wits g wltg
[15]). The difficulty is fundamental: for a given time stépone N
would like to find a minimum valué...,, of the grid spacing such _~_i Z’ ( nty  ntg ) ( "y ))
that the scheme does not exhibit explosive growth. h? & \wilt w,l—3 w,l+3 w,l—3

One approach to finding a numerical stability condition is the i e ]
familiar frequency domain approach due to von Neumann [18]. where the primed sum lndlcatgs a ff'slctor of 1/2 appliet &t 0 _
In this case all grid functions are assumed to exhibit harmonic @hd/ = N. Such an expression mirrors that [n}(18), though in
time/space dependence of the foeti"#+™+<) for angular fre- th!s case, the terms im are not necessarlly positive. T_he (_1eter-
guencyw and wavenumbe8, and for half integet andn. Con- mination of conditions under which the above expression is non-

sidering, for simplicity, the centred one-variable fofml(30), the op- negative as a whole (by relating back to¢ through [29)) is dif-
eratorss;; andss,, transform according to ficult, and amounts to the same problem discussed with reference

to frequency domain methods above.

The boundary term#,,, and —Bg, ~ again indicate power
supplied at the endpoints of the domain] at 0 andl = N; the
expressions are rather lengthy, and will not be included here—the
general form, however, is the same as that for the continuous sys-
., f A g tem from [19), and is made up of six products of grid functions
72 Sin (Bh/2)A; RiD; Ry (32) evaluated at the boundary. The important point is that one may

o A ensure numerical losslessness, under unforced conditions, by re-
wherel; is the2 x 2 identity matrix, and wheré\ ;, D, andR4 quiring that one member of each of the six pairs vanishes. See
are the wavenumber-dependent matrices obtained through replaceSectiorf4.R. It is important to point out that, in contrast to the con-
ment of§,, by the factor,% in the definitions[{25) and ~ tinuous case, the expression for the numerical engfgyis not

@7). As such, the necessary stability condition follows as uniqgue—each choice leads to a distinct set of numerical boundary

conditions.
k‘2
ig (ﬁ

for all B with 0 < 3 < = /h. Ideally, one would like to be ableto  The schemel(28) (or the equivalent reduced forms) for the heli-
determine a closed form expression for the minimal grid spacing cal spring exhibits numerical dispersion—i.e., propagation speeds

4sin®(wk/2) 4sin?(Bh/2)
kR Rz
and thus the schemg{30) possesses the characteristic equation

O =— Oss = (31)

sin?(wk/2)I2 =

sinQ(@h/z)A;Rdf);le) <1 (33)

3.5. Numerical Dispersion
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deviate from those of the model system. Such behaviour may be

analyzed through the characteristic equation (32), which possesses R
two solutionsw(3). See Figur€l5, showing numerical dispersion ¢t =0.0021¢
relations at a variety of audio sample rates. The dispersion curves
converge (with increasing sample rate) rather slowly to those of the
model system. An appeal to more delicate modeling is in order—

see Sectioh A for some more involved numerical designs targeting
this deficiency.

25

T
model

F, =44.1 kHz
200 —— F, =88.2 kHz
F, =176 kHz

[ (kHz)

0 I I I = — 1

0 50 100 150 45 (1 ) 200 250 300

Figure 5: Numerical dispersion relations, for a variety of audio
sample rates, for schenf@8) for the helical spring system, for a
steel spring of coil radiuR = 5 mm, wire radius of- = 1 mm,
and pitch anglex = 5°.

4. SIMULATION RESULTSAND PERFORMANCE
ANALYSIS

In this section, some simulation results are presented, for springs
of dimensions typically found in reverberation units.

4.1. Responsetoan Impulsive Excitation

Figure[® shows snapshots of the time evolution of the state of a he-Figure 6:Shapshots of the time evolution of a helical spring, sub-
lical spring, when subjected to a short impulsive excitation aligned ject to an impulsive excitation, at times as indicated. The spring
nearly with the coil axis (at right), and transverse to it (at leff)—in iS steel, with? = 4 mm, andr = 0.2 mm and a pitch angle of
this case, the values of the forcing functipnin the appropriate @ = 5°. Left: excitation along coordinate directiof,. Right:
direction specified at the boundary lat= 0. Note in particular excitation along coordinate direction,,. Displacements are ex-
the conversion of the vibrational energy almost instantaneously toaggerated, for visibility.

vibration in the other coordinate directions.

x10™°

4.2. Energy Conservation 15

The schemd(28), as discussed in Sedfioh 3.4, conserves energy to
machine accuracy under lossless conditions, as long as appropriate
conservative boundary conditions are applied. See Figure 7, illus-
trating the variation in numerical energy for a spring subjected to s
an impulsive excitation—note that energy is quantized to multi- B — ‘ ‘ ‘ ‘ ‘ ‘ ‘
ples of machine precision. Such a property, beyond being useful CoE e e

in stability analysis, serves as an excellent debugging tool—any ) o ]

errors in the implementation will almost certainly lead to anoma- Figure 7:Numerical energy variation for the spring of parameters
lous variation in the numerical energy. When losses are present2S given in the caption to Figufé 6, using sche(@8) at a sample
numerical energy, at least under the model will be monotonically 'ate of 44.1 kHz. Multiples of machine epsilon are shown as grey

decreasing. Ines.

Normalized energy variation
o

4.3. Spring Responses . . . . N
Spring Resp output is drawn from velocity,, in the,, coordinate direction.

In this section, spectrograms of simulated spring output responsegOther parameters will be varied here.
are shown. In all cases here, the spring is steel, of lehgth 5 The most important consideration, given the discussion of nu-
m, with R = 4 mm, » = 0.2 mm, and with a pitch angle of 1°7 merical dispersion in Sectién 3.5, is that of anomalous wave speed,

DAFX-6



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

particularly for echoes. Figuid 8 shows spectrograms for spring 4.4. Computational Cost
output under successively larger sample rates. In general, the spec-

trograms exhibit a complex region, under a cutoff frequency (the
frequency at the top of the hump in the plot of the dispersion rela-
tion in FigureB), over which multiple families of dispersive echoes
are visible. Above the cutoff, a single family of dispersive chirp-
It is this family which is most affected by
numerical dispersion, as should be evident in the plots in Figure
[, and at 44.1 kHz, wave speed is anomalously slow. Thus, unles
a scheme with reduced dispersive properties can be devised, suc
schemes will produce anomalous results at low audio rates (thoughF

like ec

hoes persists.

Computational cost for the scheme given in Seciionh 3.3 is high,

but not extreme; clearly it depends strongly on the sample rate, so
there is some motivation to look for schemes with reduced dispersion—
see SectiolA. As an example, consider a spring of dimensions
typical to a reverberation device. In Taljfe 1, simulation times,

for one second output are given, for a single core Matlab imple-
Smentatlon on a standard laptop computer. Notice in particular that
H’]G grld size scales roughly witF;, and computation time with

—reflecting the limiting stability condition froni (34).

they may be used at oversampled rates). See Sédction A for some

Dossible variants on the scheme presented in Sdcfibn 3.3.

Figure 8: Spectrograms of output responses, under different

choice

Loss, though discussed only in passing in this article, obvi-
ously plays a major role in determining the characteristic sound of
a spring reverberation unit. Considering the simple lossy model in
(20), it is simple to arrive at a generalization of scheimé (30), by re-
placing instances df, by a centered approximati@f.+ + d:—) /2,
andd,s by ds. It is also possible to show that such a perturbation

Table 1: Number of grid pointd” and calculation time, in seconds,
for one second output at various sample rates, for a spring with

TREER00 t(g( R=4mm,r =02mm,L =5manda = 1.7°
N = ;7 =0. L= a=1.7°.
\\\\\\\‘&:.gs.siﬁ
s F, N | calculation time (s)
g 6 07 08 09 44100 | 1257 18.13
le rate: 88. 2 kH ¢ (s) 88200 | 1639 50.90
“\\\\\\\ \\\\\\\\\ r6000| 2208|1410
l \\ S
e 05 RE 3 OF G5 5. CONCLUDING REMARKS
t(s)
le rat \\\\\\ = A model for a helical spring has been presented here; the continu-
\\ \\ — \{\\‘\\‘ ous model[(B) presented, while extremely accurate in the case of a
AP lossless, unforced spring of dimensions typical in spring reverber-
% o1 02 03 04 05 08 07 08 08 ation units, is still lacking in several features which are necessary

t(s)

s of the sample rate, as indicated.

leads to monotonic energy loss.

Consider two cases, as illustrated in Fiddre 9, selecting for loss
along one of the two coordinate directiofs or ,,; as is easily
visible, loss along the transverse coordinatédias a much greater

if one is to arrive at a complete model of a spring reverberation
device.

Loss has not been considered here in any depth; as has been
mentioned, models of loss in helical structures are not readily avail-
able. Even an empirical study of losses (by measuring, say, band-
withdths of spectral peaks, as in the case of a string of vibrating
bar) is complicated, as there are two overlapping families of modal
frequencies (corresponding to the two distinct dispersion relations
for the system); furthermore, each mode is itself a mixture of lon-
gitudinal and transverse vibration, so a direct association with loss
characteristics of simpler non-curved systems such as strings and
bars is not immediately forthcoming.

The forcing mechanism also has not been described here. In
a typical spring reverberation unit, the excitation is a permanent
magnet attached to one end of the spring, and driven by an electro-

effect in terms of energy decay. magnetic field (the strength of which is proportional to the input
signal). The exact details of the forcing, and how it couples to
2ol T the various components of displacement and rotation is as yet un-
§4 \\\\\\\\\\\\\m\\\\mw\u\--fif‘ ‘ known, and is in need of experimental investigation. The analysis
éz of boundary conditions for the spring system given in Se¢fioh 2.4,
- however, does at least provide a framework for arriving at a com-
5 - patible fo_rcing term, which will certainly have the character of a
%, 97 e ¢ (s) mass-spring system.
= ‘“\\\\\\\\\ ) The numerical method presented here is well-behaved numer-
EN “\\\\\\\\\ \\\\\\\ \ . ically under all possible boundary terminations, which may be eas-
kit \\\\\\\\ N ily associated with those of the underlying model system; energy

Figure 9: Spectrograms of output responses, under different
choices of loss coefficients, and o,,, as indicated. The sample

rate is

25

1.5
t(s)

88.2 kHz.

conservation, in the lossless case, has been used as a design prin-
ciple. In terms of accuracy, however, other problems emerge—
all are due to the appearance of a new length scale in the case
of a tightly curved structure such as a spring found in a typical
reverberation unit. The dispersion characteristics possess impor-
tant features at relatively high wavenumbers (corresponding to the
length of one turn of the helix); in uncoiled structures, such high
wavenumbers are associated with high temporal frequencies, and
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thus there is less perceptual importance associated with thel
this case, however, the temporal frequencies of interest lie dir
in the low audio range, and thus great care is necessary in nt
ical design over the whole range of wavenumbers. One sit
remedy is to operate at oversampled rates; but certain appro
based on parameterized FDTD methods (see Séction A) offer:
degree of control over such perceptually important features.

Given that the input and output locations for the spring re'
beration system is generally always taken from the same locations

f (kHz)

model
simple scheme
parameterized scheme

I
150 300

8 (1/m)

(i.e., the ends of the spring), and also that the system is linear andrigure 10: Numerical dispersion relations, at 44.1 kHz, for a
time invariant, an interesting alternative to FDTD methods might spring with R = 5 mm andr = 1 mm, and with pitch an-
involve modal approaches, as in, e.g., the standard helical springgle o = 5°: for the simple scheme (in red) and for a param-
literature [6], and also as used in sound synthésis [20, 21, 22]. Theeterized scheme (in green), fer = 0.084, e = —0.291 and
obvious advantages relative to FDTD methods are (a) reduced run<; = —0.364.

time cost, (b) the possibility of obtaining exact behaviour, and (c)
better control over loss. There are disadvantages as well; one must
precompute the modal shapes and frequencies offline, which is po- [g]
tentially a very large undertaking, as well as store them, for each
new set of parametersandy, and for a particular set of boundary
conditions; still, though, this would seem to be one of the most
suitable systems for modal-based effects modeling.

(7]

(8]

A. IMPROVED FDTD DESIGNS

Numerical dispersion is a strong effect for the scheme presented [
in Sectior 3.8, which is the simplest possible choice for the helical
spring system. Other choices are possible, including free parame 10]
ters allowing for tuning of the algorithm. To this end, consider the
following modifications of the spatial difference operators given in

(25) and[(21): [11]
R, — —2u L—p? + (14 e1h?)dss
T =P+ (U ah®dss 2u(1+ (1 + e1h?)dss) [12]
1 0 1 0
Ad = {0 1— (1+62h2)5sj Da = {0 d— (1+63h2)6sj 13

Three parametess, e2 andes have been introduced—note that all
three are multiplied by factors ¢, so that the resulting scheme [14]
(29), when the above operators are employed, remains consistent
with the helical spring systern [1.8].

Under appropriate choices of the free parameters (perhaps chol™®]
sen through an optimization procedure), much better behaviour
can be obtained at audio sample rates. See Figdre 10. Interest16]
ingly, such schemes can also be cheaper computationally than the
unparameterized scheme,/as;., is generally larger (leading to a [17]
smaller grid size).

(18]
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