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ABSTRACT

It is well known that one of the challenges in musical instruments
analysis is to obtain relevant signal characteristics and information
for sound description and classification. In this paper we study
the Peruvian quena flute by means of the Harmonic Band Wave-
let Transform (HBWT), a convenient representation for the sound
content based on its 1/f fractal characteristics. In order to identify
a relationship between fractal characteristics of musical sounds,
we developed two sound transformations and establish a compar-
ison between quena, a recorder and melodica wind instruments.
The sound transformations implemented were noise filtering and
pitch-shifting while the sound classification was focused on the γp
fractal attribute. Our work led us to the conclusion that the HBWT
quena representation favored the implementation of sound trans-
formations and that the γp fractal feature had great potential in
musical instruments recognition and classification applications.

Keywords: sound fractal analysis; quena; 1/f noise; noise fil-
tering; pitch-shifting.

1. INTRODUCTION

Fractal sound analysis/synthesis are techniques that aim to de-
velop sound decomposition and reconstruction using a minimum
set of relevant fractal attributes. Recently, fractal sound analysis
techniques have obtained improved results in musical instruments
recognition and classification compared to traditional state of the
art methods [1, 2, 3].

Despite most of the fractal techniques use the box counting
method to analyze the fractal characteristics of musical sound [4],
a method called the Harmonic Band Wavelet Transform (HBWT)
proposed a different approach inspired on Multirate Filter Banks
(MFB) and Perfect Reconstruction (PR) digital signal processing
techniques [5]. The HBWT provides a formal representation of
musical sound in terms of harmonic noise sources with 1/f fractal
properties that accurately follow the spectral behavior of a sound
signal in the frequency domain. Moreover, the HBWT is based in
solid PR and MFB techniques that use overlapping filters in order
to achieve distortion-free signal reconstruction [6].

Despite the HBWT was applied as a relevant synthesis tool
in audio coding and compression, our purpose was to contribute
with the study of the Peruvian quena flute (Fig. 1) in the areas of
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Figure 1: Traditional Peruvian quena with tuning in G major.
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Figure 2: Pitch ranges of the analysis instruments where the over-
lap between them can be seen.

fractal sound analysis and sound transformations. The implemen-
tation of two sound transformation techniques were described and
discussed: the Harmonic band 1/f noise filtering and the pitch-
shifting. Additionally, we performed a sound comparison between
the quena, recorder and melodica wind instruments based on γp
fractal parameter in order to illustrate the potential of our method-
ology in sound content description, musical instruments recogni-
tion and classification problems.

2. METHOD

It was generated a database with sound of quena, recorder, and
melodica. The dataset was conformed by individual notes of one
second duration played with mezzo-forte intensity, mono channel,
sample rate fs = 44100 Hz and 16 bits of resolution. The dataset
characteristics are depicted in Fig. 2. A total of 27 sounds samples
were collected: 8 for quena, 9 for recorder and 10 for melodica.

2.1. Sound decomposition

The HBWT belongs to the family of Spectral Modeling Synthe-
sis (SMS) techniques [7]. Related to the representation of relevant
sound components, the sound noise is indispensable in the per-
ception of musical sound and inherent to the sound of musical in-
struments (see Fig. 4). Nevertheless, SMS contributions showing
an explicit model for the stochastic component of sound (noise)
are scarce [8]. In contrast, the HBWT provides a specific pseudo-
periodic 1/f noise model for noise characterization [9]. A block
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Figure 3: Structure of filters implementing the Harmonic Band
Wavelet Transform. (a) Analysis bank. (b) Synthesis bank.

diagram of HWBT implementation is depicted in Fig. 3. As il-
lustrated in Fig. 4, the HBWT model matches the sound signal
fractal characteristics by decomposing the frequency harmonics in
separated sidebands.

2.2. HBWT Analysis

The HBWT analysis structure is composed by perfect reconstruc-
tion filter banks of Modified Discrete Cosine Transform (MDCT)
[6] and Discrete Wavelet Transform (DWT) [10]. In Fig. 5 it
is shown the frequency response characteristic of an 8-channel
MDCT and DWT with Daubechies order 11 filters.

The purpose of MDCT filters is to decompose the signal har-
monics into two sidebands, each one containing half of a band that
approximates the 1/f noise behavior. For MDCT implementation
it was used cosine modulated type IV bases [11]:

gp,r(k) = gp,0(k − rP ) (1)

gp,0(k) = w(k) cos

[(
k − P + 1

2

)(
p+

1

2

)
π

P

]
(2)

w(k) = sin

[(
k +

1

2

)
π

2P

]
, (3)

where p = 0, . . . , P − 1; r ∈ Z; k = 0, . . . , 2P − 1. Con-
sidering an input signal x(k) with fundamental frequency f0 and
average period P measured in number of samples then, the num-
ber of MDCT channels is equal to P = fs/f0. For instance, in
Fig. 4 it is represented the spectrum of the first three harmonics of
an A4 quena sound with f0 = 444.8 Hz and the MDCT channels
synchronized to the average period of the signal P = 99.

Each sideband is immediately decomposed by a bank of the
Discrete Wavelet Transform (DWT). In wavelet theory, the wave-
let representation bases execute shift and scaling operations of a
wavelet function ψ(t) defined as:

ψα,τ (t) =
1√
α
ψ

(
t− τ
α

)
, (4)

where τ is called the shifting factor and α > 0 is the scaling factor.
Following the recommendations in [9], the DWT filter bank was
implemented using Daubechies wavelets of order 11. The number
of wavelet analysis levels N varies according to the instrument. In
case of the quena, recorder and melodica, it was found N = 4 to
be a proper number of levels for analysis.

The overall HBWT analysis procedure was implemented as
follows:
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Figure 4: Quena A4 signal and MDCT channels synchronized to
the average period P .
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Figure 5: Frequency responses of MDCT and DWT filter banks.

Step 1
Decomposition of input signal x(k) via aP -channel MDCT
filter bank. Each MDCT filter F̃p(z) is band-pass type with
bandwidth equals to π/P .

Step 2
Decimation bank of factor P 1.

Step 3
Wavelet decomposition via a P -channel DWT filter bank at
the output of the decimation bank.

As a result, it is obtained the decomposition of the sidebands
of the harmonics into two components: A deterministic compo-
nent, represented by the scale coefficients ap,N and a stochastic
component, represented by the wavelet coefficients bp,n, where p

1The P decimation rate does not cause aliasing since the MDCT chan-
nels have a bandwidth equals to π/P .
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is the MDCT channel index, n the DWT level index, and N the
DWT total number of levels.

2.3. HBWT Synthesis

Step 1
Wavelet Reconstruction via a P -channel filter bank imple-
menting the inverse of the DWT (IDWT)2.

Step 2
Expansion bank of factor P 3.

Step 3
Output signal x̂(k) reconstruction via a P -channel IMDCT
(inverse of MDCT)4.

By means of HBWT decomposition and reconstruction, a sound
signal is modeled by a set of periodic 1/f noise-like stochastic
processes. A formal definition of 1/f noise-like processes can
be found in [12]. One of the benefits of using the 1/f noise-like
model is that only two parameters are needed to describe the com-
plete behavior of a sound signal: The parameter σ2

p that controls
the amplitude of the 1/f spectrum and the parameter γp that con-
trols the slope of the pseudo-periodic 1/f noise-like sidebands of
the spectrum.

The discrete-time harmonic band wavelets (DT-HBW), as de-
fined in [13], are:

ξn,m,p(k) =

∞∑
r=−∞

ψn,m(r)gp,r(k) (5)

ζN,m,p(k) =

∞∑
r=−∞

ϕN,m(r)gp,r(k), (6)

where n = 1, 2, . . . , N ; m ∈ Z; p = 0, 1, . . . , P − 1; ψn,m
and ϕN,m are the discrete-time ordinary wavelets and the corre-
sponding scale residue function, respectively; gp,r are the MDCT
functions of Eq. 2. Therefore, a signal x(k) ∈ l2 can be expanded
on a discrete-time harmonic band wavelet set according to:

x(k) =

P∑
p=1

(
N∑
n=1

∞∑
m=−∞

bp,n(m)ξn,m,p(k)+

∞∑
m=−∞

ap,N (m)ζN,m,p(k)

)
,

(7)

where the bp,n(m)’s and ap,N (m)’s are the expansion coefficients
and the corresponding harmonic-band scale residue coefficients at
scale N , respectively. From Proposition 3.4 in [13] it was de-
ducted the resultant energy for the bp,n(m) analysis coefficients:

V ar{bp,n(m)} = σ2
p2
nγp (8)

Considering the logarithm of the energies of each n-subband of a
single p-sideband it was found a linear relationship for γp (1/f
noise slope) at each harmonic band wavelet analysis level n:

log2(V ar{bp,n[m]}) = γpn+ const, (9)

2This step performs the reconstruction of the sidebands.
3This step returns the properly bandwidth for the reconstructed spec-

trum of each sideband.
4The IMDCT filter bank selects the appropriate frequency range for the

sidebands on each channel.
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Figure 6: Above: First five harmonics of quena A4 sound. Below:
Synthesis results of experiments A and B.

where the spectral component γ is directly related to the self-
similarity attribute Hp (Hurst exponent) according to Eq. 10.

γp = 2Hp + 1 (10)

In case of 1/f noise signals, or fractional Brownian motion
processes (fBm), the typical values for the Hurst exponent are in
the interval 0 < H < 1, for a corresponding 1 < γ < 3 [12].

3. RESULTS

3.1. Harmonic band 1/f noise filtering

We performed two sets of experiments in order to filter the har-
monic band 1/f noise. The results are shown in Fig. 6. In the first
experiment, called Synthesis A, the wavelet expansion coefficients
bp,n were used as input to the synthesis bank with up to N = 3
scale levels. Separately, in experiment Synthesis B, the wavelet
scale coefficients ap,N (N = 3) were used as input to the syn-
thesis bank. Synthesis A resulted in the isolation of the harmonic
band 1/f noise content associated to the sidebands of harmonics.
In Synthesis B, the result was the 1/f noise-free harmonic signal
(purely deterministic content).

These experiments benefited the study of the sound signal fluc-
tuations related to the 1/f noise. It was found that the harmonic
band 1/f noise content provided an important contribution to the
sound in terms of perception. For instance, in Synthesis A, it was
found that the harmonic band 1/f noise was related to the action
mechanism of the instrument. In case of the quena, from the 1/f
signal it was the retrieved the sound of the blowing air.

3.2. Pitch-shifting via HBWT

In sound synthesis, pitch-shifting is a technique that consists in
modification (shift) of the fundamental frequency f0 (pitch) of a
sound. In terms of HBWT decomposition, pitch-shifting was in-
terpreted as a frequency modulation process: The frequency con-
tent extracted in the initial signal analysis was transferred to new
frequency bands in the synthesis.
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Figure 7: Pitch-shifting of A4 note (above) to D5 (below).

The pitch-shifting implementation via HBWT consisted of two
main steps: Step 1: Design of the MDCT synthesis filter bank (Eq.
2) with an appropriate number of channels equals to P2 =

⌊
fs
f2

⌋
.

This step allowed the modulation of the original signal pitch to
a new f

′
0 frequency. Step 2: Apply the original HWBT analysis

coefficients as input to the synthesis bank. In Fig. 7, it can be ap-
preciated the modification of the A4 quena note (f0 = 445 Hz) to
D5 (f

′
0 = 587 Hz). This technique resulted in high-quality pitch-

shifted signals that preserved the acoustical characteristics of the
original quena sound.

3.3. Quena fractal analysis and comparison

The comparison between wind instruments quena, melodica and
recorder was established by analysis of the fractal parameter γp
(1/f slope). In the experiments we compared the fractal charac-
teristics of the frequency harmonics (1/f noise) for all instruments
playing the same note. The parameters γp were computed by lin-
ear regression according to Eq. 9.

In Fig. 8 are shown the results for the f0 harmonic of C5
note (f0 = 523.25 Hz). The results showed a strong 1/f fractal
behavior for the main harmonics of all instruments. This fact was
corroborated by a strong Pearson correlation coefficient (greater
than the 80%) between the variables of the linear regression.

By including the analysis of the Hurst exponent, we found be-
tween 7 to 12 fractal harmonics on the quena, 12 to 19 fractal
harmonics on the recorder and 20 to 40 fractal harmonics on the
melodica. Additionally, it was found that the quena fractal slopes
γp were closer to the recorder rather than the melodica. The latter
was supported by the fact that the quena and recorder shared sim-
ilar physical characteristics like the typical resonator tube of the
flutes. In contrast, the melodica analysis returned greater differ-
ences with respect to the quena that were probably caused due to
the differentiated free-reeds action mechanism and other distinc-
tions in execution like the blowing air pressure or articulations.
Based on the 1/f fractal analysis, these findings supported our
initial hypotheses that γp fractal parameter was a useful attribute
for the description of musical sound with potential as a feature for
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Figure 8: Quena (Q), melodica (M), and recorder (R) analysis of
the left and right sidebands (channels p = 1, 2) for the first har-
monic of C5 note with six subbands (wavelet scales n = 1, . . . , 6).

musical instrument recognition and classification applications.

4. CONCLUSION

In this article it was presented an analysis of the quena by means
of the pseudo-periodic 1/f noise model by using the Harmonic
Band Wavelet Transform. The method and analysis described in
this paper were performed for the first time on the andean wind
instrument quena. By means of HBWT, it was obtained a suit-
able quena sound representation that enabled the development of
interesting sound transformations and sound analysis applications.

The two sound transformation techniques we presented were:
The harmonic band 1/f noise filtering, applied to the 1/f noise
isolation or to the pure harmonic content reconstruction and the
pitch-shifting, a modulation technique used to create new sound
signals with a different fundamental frequency based on the anal-
ysis of a previous source. Both transformation techniques demon-
strated acoustically interesting results. The last experiment was
a comparison between the quena, recorder and melodica in terms
of the fractal parameter γp. The results of the analysis pointed
out that the γp fractal parameter was a useful attribute for sound
description and characterization and a potential tool for musical
instruments recognition and classification applications.

The results presented in this paper were part of a research
project focused on the quena signal analysis and characterization
based on distinctive fractal attributes. The methodology presented
in this paper is scalable to the analysis of other types of musical
instruments, thus we considered the study of additional andean in-
struments for the future. The source code of our Python implemen-
tation of the sound analysis/synthesis method described in section
2 and the sound examples to the experiments described in section
3 are available at the URL: https://sites.google.com/
site/aldodiazsalazar/.
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