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ABSTRACT
Being able to transform an analog audio circuit into a digital model
is a big deal for musicians, producers, and circuit benders alike. In
this paper, we address some of the issues that arise when attempt-
ing to make such a digital model. Using the canonical state vari-
able filter as the main point of interest in our schematic, we will
walk through the process of making a signal flow graph, obtaining
a transfer function, and making a usable digital filter. Additionally,
we will address an issue that is common throughout virtual analog
literature; reducing the very large expressions for each of the filter
coefficients. Using a novel factoring algorithm, we show that these
expressions can be reduced from thousands of operations down to
tens of operations.

1. INTRODUCTION

The Weeping Demon may be one of the most versatile wah ped-
als on the market. Much like the Dunlop Crybaby, the Weeping
Demon offers control over the center frequency and Q of the fil-
ter. Due to the design of the Weeping Demon’s filter circuit, there
is independent control over both of these features, as well as a
controllable low range boost and a mode switch that changes the
frequency range of the wah making it more suitable for the bass
guitar. In this work, we model the filter circuit by obtaining its
transfer function parameterized by its electrical components. The
transfer function is then digitized via the bilinear transform [1]1.

The transfer function is obtained by reverse-engineering the
circuit, which happens to be very similar to the canonical state
variable filter (SVF) [2] consisting of four op-amp circuits in feed-
back with each other. The low impedance output of each op-amp
allows us to treat each op-amp circuit independently and form a
block diagram consisting of adds and multiplies. The transfer
function at any node of the circuit can be obtained via Mason’s
rule. SVFs, which will be discussed in more detail later, have the
interesting property that the high-, band-, and low-passed outputs
are produced at each of three op-amps. In the Weeping Demon,
a fourth op-amp combines the band- and low-pass outputs to pro-
duce a resonant low-pass filter, as is common for wah pedals.

Unfortunately, the transfer function that we obtain from Ma-
son’s rule has extremely complicated coefficients. In the case of
the Weeping Demon, a product-of-sum coefficient can have as many
as one hundred addends, each consisting of about five multiplica-
tions. We present a method of polynomial simplification capable
of reducing the number of add/multiply operations for a single co-
efficient from several hundred down to 50 or fewer. Using com-
mon subexpression extraction, a typical compiler trick, we can re-
duce this even further.

1https://ccrma.stanford.edu/~jos/pasp/Bilinear_
Transformation.html

Wah pedals have previously been studied in virtual analog.
Models based on fitting biquads to measured filter responses can
capture a wah pedal’s basic global behavior2, but they lack the
detail of virtual analog physical models. Holters and Zölzer stud-
ied the Dunlop Crybaby in a nodal DK framework, handling ef-
ficient parameter update in the context of changing coefficients
by exploiting a Woodbury identity—their technique is applicable
to state-space systems where the number of variable parts is low
compared to the total number of parts [3]. This is closely related
to a technique used by Dempwolf et al., who handle complicated
coefficient updates by exploiting a certain minimized matrix for-
mulation [4]. Falaize-Skrzek and Hélie studied the Crybaby pedal
from a port-Hamiltonian perspective [5].

Figure 1: The filter stage for the Weeping Demon with all compo-
nents labeled.

2. MODELING THE CIRCUIT

The filter stage of the Weeping Demon is shown in Figure 1. The
switching circuit, which offers a bypass mode that turns on once
the pedal has not been used for some programmed amount of time,
will not be covered in this paper, mainly because there is no need
for this in the digital model. The implementation of a timer that
turns the effect off after a given time is trivial in software. Perhaps
the most interesting bit about this circuit is the choice of sensors
used to detect the angle of the foot pedal. Rather than using the
common choice, a potentiometer, an optical sensor is used. An

2https://ccrma.stanford.edu/realsimple/faust_
strings/Adding_Wah_Pedal.html
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opaque fin is mounted to the bottom of the moving foot piece di-
rectly between an LED and a photoresistor. As the pedal is rocked,
the fin allows more light to pass from the LED to the photoresis-
tor, decreasing its resistance. The advantage of this is that unlike
a potentiometer, the optical element will not accumulate dirt and
become noisy with time and use. The modeling of the optical ele-
ment will be discussed in section 3.

2.1. Overview

Prior to entering the shown circuit, the signal is passed through a
buffer stage. It consists of two cascaded emitter followers, which
provide a low impedance signal to the filter. The emitter follower
stages act as a high-pass filter with cutoff of about 4 Hz. Because
this is way below the audio range, will exclude it from the model.

The coupled network of op-amps shown is known as a state
variable filter (SVF). It is rather complicated as a whole, but bro-
ken into components, it is much more easily understood. This de-
composition will be used when deriving the transfer function. The
first important observation is that op-amps B and C (labeled in the
figure) are configured as integrators. The other two op-amps, A
and D, are differential amplifiers. This is nearly enough informa-
tion to dive into finding the transfer function, but it is insufficient
for understanding how the circuit works.

We will start our analysis by noting that the important me-
chanics of the circuit can be realized by removing op-amp D from
the circuit completely. This is because there is no feedback from
D to any of the other stages. We can therefore ignore op-amp D,
and remove the paths containing R120 and the potentiometer la-
beled LOW . This leaves us with a differential amplifier with non-
inverting inputs from the filter input and from the output of C. Let
us assume for now that the output of C is not feeding back to A.
Equivalently, set the resistance of the potentiometer labeled Q to
be arbitrarily high. We will relax this assumption later. This leaves
with two cascaded integrators whose output is providing negative
feedback to A. In essence, we are subtracting the original signal
from itself.

The output of A and the output of B have a constant phase re-
lationship: they are always 180 degrees out of phase. This should
be easy to see, because the output of B appears at the inverting
terminal of A. The integrators, B and C, are simply low-pass fil-
ters, each with a cutoff associated with some RC time constant.
Without the feedback from B to A (basically ignoring the effects
of A entirely), we can expect the output of B to have a low-pass
characteristic. Now, considering the feedback, we note that we are
adding an inverted, low-passed version of the input signal to itself.
At low frequencies, we should expect a very minimal output of
A. At high frequencies, the inverting terminal of A is very small
in magnitude, so we see a high-pass behavior at the output of A.
An important step in getting comfortable with this circuit may be
to realize that by twice integrating a second order high-pass filter
(A), we obtain a low-pass filter (C). As we reintroduce the feed-
back from the band-pass filter (B), we bring with it lower, more
reasonable Q values [2].

2.2. Signal Flow Diagram

Using some basic topological information and superposition, we
will represent the circuit as a block diagram with only adds and
multiplies. First, lets simplify the component values, combining
series and parallel elements into impedance terms, Zi. We can

see the reduced circuit in Figure 2. This will simplify the arith-
metic quite a bit. The substitutions are shown in Table 1. It should
be clear that we will derive a separate set of equations based on
whether the mode switch is open or closed, designating Bass or
Normal mode.

To figure out the global filtering properties of the SVF, it is
useful to consider the op-amp stages individually. For each op-
amp stage, we can derive how each of the other stages and the
input voltage Vin contribute. These contributions, based on com-
bined impedance values from Table 1 and the op-amp configu-
rations, are summed together by superposition. This derivation,
which is shown in detail for each stage in the next section, yields a
global signal flow graph, as shown in Figure 3. We will show the
derivation for the gains in the graph (the Ki’s in Figure 3) in the
next section.

Figure 2: The filter stage for the Weeping Demon with the compo-
nents combined into impedance terms.

Figure 3: A signal flow graph view of the SVF.

2.3. Operational Amplifier Stages

Let’s look at the four operational amplifier stages of the Weeping
Demon Filter individually. These are the input summer, the first
integrator, the second integrator, and the output summer.
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Zi
Combined Components

Bass Normal

ZA R108 R108 +R111|| 1
sC118

ZB RQ +R114

ZC R110

ZD R109

ZE
1

sC105

ZF R117

ZG R120

ZH RLEVEL

ZI RLO +R112

ZJ R123

ZK
1

s(C104+C119)
1

s(C104)

ZL (RVR7 +R113)||RWAH +RVR6 +R115 +RRANGE

Table 1: Substitutions for Zi. Due to the switch in the circuit, we
have different components for ZA and ZK depending on whether
Bass or Normal mode is currently being used.

Each stage can be analyzed by assuming ideal op-amps, in-
voking superposition, and using the equations for inverting am-
plifier and difference amplifiers. Ideal op-amps have zero output
impedance—their outputs can be treated as ideal voltage sources.
Furthermore, they are linear, so the output of each op-amp can
be found by summing its response to each voltage source input.
When finding the response to one voltage source input, the others
are shorted. Under this condition, each op-amp acts as either a dif-
ferential amplifier (with only non-inverting input) or an inverting
amplifier to each input.

Figure 4: Differential (left) and inverting (right) amplifiers with
generalized impedances.

Differential and inverting amplifiers with generalized impedances
are shown in Figure 4. The output of each amplifier depends on the
ratios between connected impedances. The output of a differential
amplifier is given by:

Vo = −Zf

Z1
V1 +

(
Z1 + Zf

Z1

)(
Zg

Zg + Z2

)
V2 (1)

and the output of an inverting amplifier is given by:

Vo = −Zf

Z1
V1. (2)

In all of our cases, when considering superposition, the inverting
input V1 of the differential amplifier will be grounded, so a simpler

version of Eqn. (1) applies:

Vo =

(
Z1 + Zf

Z1

)(
Zg

Zg + Z2

)
V2. (3)

Table 2 shows the gains for the transfer function, op-amp, in-
put voltage, configuration (inverting or differential), and impedances
for each case of superposition.

op TF Vin i/d Z1 Z2 Zf Zg

A K1 Vin d ZD ZA ZC ZB

A K5 VB i ZD ZC

A K2 VC d ZD ZB ZC ZA

B K6 VC i ZF ZE

C K3 VA i ZL ZK

D K7 VB d ZG ZI ZH ZJ

D K4 VC i ZG ZH

Table 2: For each case of superposition, configuration and
impedances seen by the op-amps.

2.3.1. Input Summer

The input summer is the circuitry around op-amp A that combines
Vin, the input to the SVF, with feedback from the first and second
integrators (VC and VB). By superposition, we can get its output
in terms of the partial transfer functions K1, K5, and K2,

VA = K1Vin +K5VB +K2VC , (4)

whereK1,K5, andK2 are found in terms of the combined impedances
using Eqns. (2)–(3) with values from Table 2 as appropriate:

K1 =

(
ZC + ZD

ZC

)(
ZB

ZB + ZA

)
(5)

K5 = −ZC

ZD
(6)

K2 =

(
ZC + ZD

ZD

)(
ZA

ZA + ZB

)
. (7)

In a standard SVF, this input stage would be purely resistive—
the magnitude response would be flat and the resistances chosen
to get the desired circuit response. In the Weeping Demon, there
is a reactive component when the pedal is set in “normal mode.”
Since this is part of ZA, it has implications for K1 and K2—how
the summer affects the input signal Vin and also the feedback from
the first integrator VC . We can speculate about why this capacitor
is put in place for “normal mode.” Perhaps for a guitar input, the
circuit designers wanted to damp down low frequencies for noise
reasons; perhaps it is just an ad hoc voicing choice.

The output of the input summer (A) is the high-pass output of
the SVF.

2.3.2. First Integrator

The first integrator is the circuitry around op-ampC that integrates
the output VA of the input summer. Its output VC is applied to
the second integrator, through a feedback path to the non-inverting
input of the input summer, and to the inverting input of the output
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summer. In terms of the circuit generalized impedances, its output
is

VC = K6VA, (8)

where
K6 = −ZK

ZL
. (9)

Impedance ZK changes depending on whether the pedal is set in
“normal mode” or “bass mode.” An extra capacitor is placed in
parallel for “bass mode,” shifting the response of the integrator.
The integrator response is also shifted when the wah pedal’s posi-
tion changes, changingRWAH and henceRL; this is mechanism by
which RWAH shifts the output resonant filter’s center frequency.

The output of the first integrator (VC ) is the band-pass output
of the SVF.

2.3.3. Second Integrator

The second integrator is the circuitry around op-amp B that inte-
grates the output VC of the first integrator. Its output VB is applied
through a feedback path to the inverting input of the input sum-
mer and to the output summer. In terms of the circuit generalized
impedances, its output is

VB = K3VC , (10)

where
K3 = −ZE

ZF
. (11)

The output of the second integrator (B) is the low-pass output
of the SVF.

2.3.4. Output Summer

The output summer sums contributions from the band-pass (VC )
and low-pass (VB) outputs of the SVF. By superposition, its output
is:

Vout = K7VB +K3VC (12)

where

K7 =

(
ZG + ZH

ZG

)(
ZJ

ZI + ZJ

)
(13)

K3 = −ZH

ZG
. (14)

This combination of the band-pass (C) and low-pass(B) SVF out-
puts forms a resonant low-pass filter, a typical goal of wah pedal
design. We note that it would be possible to modify the output
summer circuitry (or the digital model) so that the output summer
combined different SVF outputs, yielding other filter configura-
tions like resonant high-pass, etc.

3. MODELING THE OPTICAL ELEMENT

The optical element that controls the center frequency of the wah
resonance is the most difficult element in the circuit to model.
Whereas resistors and capacitors in the circuit are well modeled
in the audio band by their ideal generalized impedances and oper-
ational amplifiers can be considered ideal, the effect of the optical
element is more complex.

The current–voltage (i–v) characteristics of the stationary LED
and photoresistor pair depends in complex ways on the internal ge-
ometry of the pedal as well as the electrical characteristics of the

LED and photoresistor. The optical/geometric properties of the
enclosure are too complex to predict from first principles. Lacking
datasheets or documentation for the LED and photoresistor, and
even access to a good model of this photoresistor’s behavior, the
behavior of this pair of components is difficult to predict. So, we
make recourse to black-box modeling and fit a model to measured
data.

When the foot pedal is rocked, the black, metal fin that di-
vides the LED and the photoresistor moves, and is no longer an
obstruction. We cannot expect to get a useful measurement of the
mapping from pedal angle to resistance with the pedal disassem-
bled because of the ambient light for the room. We instead cut the
copper traces around the photoresistor and solder wires to each of
its terminals. The pedal is reassembled with the wires running out
of the pedal through a small hole near the battery holder. Making
no assumptions about the linearity of this element with respect to
any of its parameters, we set out to measure its i–v transfer char-
acteristic as a function of pedal angle, θ. The photoresistor is con-
nected in series with a 33kΩ resistor via the long wires as seen in
Figure 5. We sweep the voltage VDC across the series connection,
recording the voltage across the photoresistor (VDC − vR, where
vR is voltage across the 33kΩ resistance) as well as the current
through the circuit, vR/33kΩ. θ is increased in increments of 2◦,
as measured from the rotational axis. For each θ, we sweep VDC

from 0V up to around 5V. Figure 6 shows the result.
For each angle θ, we observe an approximately straight line

in the i–v characteristic, indicating that the photoresistor can be
accurately modeled as linear for any given θ value. The slope of
this line gives us the resistance of the component. The relationship
between θ and the resistance of the photoresistor is shown in Fig-
ure 7. We can now model the resistance RWAH(θ) as the pedal is
rocked by fitting a curve to these points.

Figure 5: Setup to find RWAH(θ).

4. THE TRANSFER FUNCTION

Now that we have a signal flow chart, we can get our transfer func-
tion. It is of interest to express the transfer function as a ratio of
two polynomials in s, as seen in Equation 15.

H(s) =
bms

m + · · ·+ b2s
2 + b1s+ b0

ansn + · · ·+ a2s2 + a1s+ a0
(15)

Both Matlab and Python symbolic libraries are used to obtain
and reduce the transfer function. We do this via Mason’s gain
law [6, 7], the same treatment seen in modeling the TR-808 cow-
bell [8] and as Kramer demonstrates generically [9]. In short, we
leverage a Matlab function written by Rob Walton3 that converts

3http://www.mathworks.com/matlabcentral/
fileexchange/22-mason-m
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Figure 6: Current–voltage characteristic for different pedal posi-
tions. θ = 6◦ and θ = 8◦ produced the same curve indicating that
the internal geometry didn’t change much. The maximum angle
without putting a lot of pressure on the foot pedal was θ = 17◦.

Figure 7: The curve produced for RWAH(θ). A curve fitted equa-
tion is shown. Different curve fits would change the behavior of the
model significantly. The presented equation was used for simplic-
ity and because it matched the real pedal decently well. After some
experimentation, a higher order fit was not deemed necessary.

a netlist for a network of summations and gains to a single trans-
fer function. This can be done for any chosen output of the filter,
but we perform our analysis for Vout. The transfer function seen
in Equation 16 expresses the transfer characteristic from input to
output in terms of the gain coefficients, Ki. The impedance val-
ues, Zi in Table 2, can now be substituted back for the K′s, and
in turn, the symbols designating the component values.

H(s) =
Vout

Vin
=
−K1K3(K4 +K6K7)

K2K3 +K3K5K6 − 1
(16)

We do this using the simplifyFraction function in the
Matlab symbolic library. The simplifyFraction function re-
duces a fraction such that the greatest common divisor of the nu-
merator and denominator is 1. Without this step, the equation is
quite messy and does not necessarily contain only positive powers
of s. Once we have done that, we are left with an analog filter with
coefficients that can be expressed in the form shown in Equation
15. In this form, it is clear that the normal mode filter is third order,
and the bass mode filter is only second order.

The result is something familiar from other works in virtual
analog: the coefficients are very complicated. Two examples of

this are [8] and [10], in which Werner et al. demonstrate a dis-
cretization of a band-pass filter from the TR-808 cowbell and Yeh
and Smith discretizes the ‘59 Fender Bassman Tone Stack. Each of
these works models a circuit with a relatively low component count
and results in coefficients that require, in their presented form, 82
and 280 operations. The Weeping Demon in normal mode features
a whopping 3917 operations in expanded form. Even the partially
factored result given by Matlab contains nearly 400 operations.
The worst of these coefficients, a2, in the form given by Matlab, is
shown:

a2 = R120(RLO +R122 +R123)C105R117(

C104RQR109R113R115 + C104RQR109R113RRANGE+

C104R108R109R113R115 + C104R109R111R113R115+

C104R109R113R114R115 + C104R109R113R114RRANGE+

C118R108R110R111R113 + C104R108R109R113RRANGE+

C104R109R111R113RRANGE + C118R108R109R111R113+

C104RQR109R113RVR6 + C104R109R111RRANGERVR7+

C104RQR109RRANGERVR7 + C104RQR109R113RWAH+

C104RQR109R115RWAH + C104R108R109R113RVR6+

C104R108R109R115RVR7 + C104R109R111R113RVR6+

C104R109R111R115RVR7 + C104R109R113R114RVR6+

C104R109R114R115RVR7 + C118R108R109R111RVR7+

C118R108R110R111RVR7 + C104RQR109RRANGERWAH+

C104R108R109RRANGERVR7 + C104RQR109R115RVR7+

C104R109R114RRANGERVR7 + C104R108R109R113RWAH+

C104R108R109R115RWAH + C104R109R111R113RWAH+

C104R109R111R115RWAH + C104R109R113R114RWAH+

C104R109R114R115RWAH + C118R108R109R111RWAH+

C118R108R110R111RWAH + C104R108R109RRANGERWAH+

C104R109R111RRANGERWAH + C104RQR109RVR6RWAH+

C104RQR109RVR6RVR7 + C104R109R114RRANGERWAH+

C104RQR109RVR7RWAH + C104R108R109RVR6RVR7+

C104R109R111RVR6RVR7 + C104R109R114RVR6RVR7+

C104R108R109RVR6RWAH + C104R108R109RVR7RWAH+

C104R109R111RVR6RWAH + C104R109R111RVR7RWAH+

C104R109R114RVR6RWAH + C104R109R114RVR7RWAH

)

5. COMPARISON TO SPICE AND REAL DATA

When we compare the (analog) frequency response to the SPICE
model, they are a perfect match. The digital frequency response,
which is obtained via a third order bilinear transform [11], is shown
in Figure 8 alongside the SPICE model. As expected, we see a
sharp roll-off associated with the frequency warping characteris-
tic of the bilinear transform near the Nyquist limit. This gives us
assurance that we are modeling the schematic effectively. Indeed,
we see that when we compare using any set of parameters, we have
a model that is consistent with SPICE.

Though a full discussion is outside the scope of this paper, the
match between the model and measurements of the real pedal is
not as good. In general, the match is only approximate, showing
discrepancies in center frequency, Q, and overall gain of the trans-
fer function. This error can potentially be ascribed to limitations
in our model of the optical element, which shows sensitivity to
curve-fitting of the RWAH(θ) relationship. 5% changes in curve
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Figure 8: Comparison to the SPICE Model. The curve for our
model is the solid line, and the SPICE model is shown as a dashed
line. The curves are shown for a pair of different parameter val-
ues. The curves are no longer overlapping in the high frequencies
because of the frequency warping due to the bilinear transform.

parameters resulted in changes of RWAH on the order of tens of
megaohms. Board-tracing errors are also possible, but unlikely
since both authors independently traced the same schematic, and
the schematic shows such a close match to a standard and sensible
design (the SVF). Component, manufacturing, and trimpot tuning
tolerances seem to be a likely source of error. Comparisons be-
tween 3 different Weeping Demon pedals showed that each pedal
had a very different voicing, and that 2 of the 3 even exhibited in-
stability when the Q knob was turned past about 2 o’clock. This
was discovered within minutes of taking the pedals out of the box
and is strongly in support of either a wide degree of variation be-
tween pedals or just a poor filter design.

Though we lack a strong case that the digital model matches
the real-world circuit with a high degree of accuracy, the digitiza-
tion scheme remains valid for the traced schematic, as shown by
the correspondence with SPICE. In fact, a main finding of this pa-
per is not the digital model itself, but a more general technique for
minimized computation effort of digital filter coefficients which
will be presented in the next section.

6. COEFFICIENT REDUCTION

The reduction process is done in two steps and was implemented
using the symbolic Python library, SymPy [12]. First, there is a
factoring step, and second is the common subexpression extrac-
tion step. To further motivate the need for the factoring step, it is
important to mention that neither Matlab nor Python’s symbolic
packages would provide adequate simplification to the some of the
more difficult factoring problems. If there was, say, a resistance
value that was included in every term of a long coefficient com-
putation, however, it would successfully factor it out. As a result,
the coefficients returned by Matlab are not completely expanded
and do have minimal amounts of factoring. The coefficient above,
a2, is an example of this. Our algorithm provides a much more

satisfactory result, though no claims of optimality will be made.
The factoring step is a recursive algorithm that is shown in

pseudocode in Algorithm 1. Before getting into the details of the
main algorithm, it is necessary to introduce some supplementary
functions (most of which are built into SymPy).

// Expands any parenthetical groupings;
function expand(expression)

// Finds all symbols that are included in ‘expression’;
function getVariables(expression)

// Finds the order of ‘expression’ with respect to ‘var’;
function orderOf(expression, var)

// Collects the coefficients of ‘expression’ for all power;
// of the variable ‘var’;
function collectTerms(expression, var)

// Picks a variable from a list ‘vars’ given some heuristic;
function chooseVar(vars)

// The main factoring algorithm;
function factored(exp)

terms = [];
// get all variables contained in exp;
vars = getVariables (exp);
if length(vars) ≤ 1 then

terms.append( (exp,1) );
else

pickVar = chooseVar (vars);
N = orderOf (exp, pickVar);
// pows: array of descending powers of pickVar;
// coeffs: coefficients to terms in pows;
(coeffs, pows) = collectTerms (exp, pickVar);
for i=0 to N do

coeffs[i] = factored (coeffs[i]);
terms.append( (pows[i], coeffs[i]) );

end
end
recombine = 0;
for i=0 to length(terms) do

recombine += terms[i][0]*terms[i][1]
end
return recombine;

Algorithm 1: The factoring algorithm used to reduce the expres-
sions to a more computationally efficient form.

The first, expand, is used to remove all parenthetical expres-
sions by expansion. For example, f(a, b, c) = (a + b)(c + b)
is expanded to get ac + ab + bc + b2. If we would like to find
the variables involved in f(a, b, c), we can access them via the
getVariables function. getVariables will, in this case,
return the list [a, b, c].

The orderOf function returns the highest power of an ex-
pression with respect to a single variable.

The collectTerms function is used to factor out a single
variable. For example, collectTerms(f(a, b, c), b) will re-
turn two lists; the first of which containing the coefficients for
each power of b contained in f(a, b, c), and the second contain-
ing those powers of b. For f(a, b, c) and (b), the returned lists
are [1, a + c, ac] and [b2, b, 1]. The inner product of these two
lists will, by definition, give an expression that is mathematically
equivalent to f(a, b, c). However, without additional expansion,
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they are not identically equivalent and the inner product of the re-
sult is guaranteed to have at most the same number of operations
as f(a, b, c).

Algorithm 1 shows the process by which we reduce the equa-
tions. The basic premise of the algorithm is that we pick a variable
vi from the expression using some heuristic and factor it out. This
choice is accomplished using the chooseVar function, whose
implementation will be discussed shortly. We then factor by per-
forming collectTerms on the expression. For each coefficient
of vi’s powers (including v0i = 1), we recurse. A list of the terms
that are being factored is kept. Once each coefficient to vi’s pow-
ers is factored, we will recombine them using an inner product as
previously mentioned, noting that this form is guaranteed to have,
in the worst case, just as many operations as it started with. Once
the expression is a function of only a single variable, nothing more
can be factored out and the recursion ceases.

For a given expression that is completely expanded, we are
guaranteed to get a result that is at least as good as the original.
However, we note that the choice of vi will change the amount
of possible simplification. Thus, a good heuristic for choosing
vi is needed to ensure that partially factored input will still be
improved by this algorithm. Three heuristics were tested for the
chooseVar implementation: choosing the first variable found,
choosing the most common variable, and choosing the least com-
mon variable. The most common variables is taken to mean “most
common from the original set of expressions” and not from the
current subexpression (the symbol, exp, from Algorithm 1). In the
event that the most common variable is not in the subset, vars, it
chooses the most common variable from the expression that does
appear in vars. The same method was used for the least common
variable heuristic. Choosing the first variable is subject to what-
ever ordering that Matlab may put on the variables, but we will
assume that this heuristic is making a fairly arbitrary choice. Of
the three, choosing the most common variable performed the best
on each of the tested sets of coefficients and will be used when
reporting results, followed closely by the arbitrary choosing of the
first variable.

Once the factoring algorithm has completed, the common subex-
pression extraction (CSE) step is performed. This step relies com-
pletely on the cse function built into SymPy. This function takes
an expression or group of expressions and replaces any calcula-
tions that happen multiple times with a temporary variable whose
value is computed only once. This creates several more expres-
sions than we started with, but the total number of operations will
be reduced with every substitution. The algorithm then stores a
copy of the expressions and counts the operations. The results at
each step are shown in Table 3. The calculations for the coeffi-
cients are shown in Equations 17 and 18. The initial state of the
coefficients (partially factored or not) was not observed to change
the final operation counts. By inspection, we see that the Weeping
Demon could be simplified slightly further, saving a few opera-
tions. For instance, the b2 coefficient contains the term x2x3x5,
which should have been replaced with x6. This is clearly a fault
of the CSE algorithm, but it does not change the fact that taking
the approach of factoring and using CSE, even with off-the-shelf
software, leads to dramatic reductions in the required computation.

It is interesting to note that we see much larger reductions from
the fully expanded form of the Weeping Demon equations than for
the tone stack and cowbell. It is speculated that the reason is due
to the isolation between op-amps in the circuit topology. The tone
stack was an impedance network with no “stages” to be treated

Operations Count
Initial Expanded Factored CSE

WD: Normal Mode 383 3917 140 66
WD: Bass Mode 75 2410 64 40
Tone Stack 280 312 160 86
808 Cowbell 82 82 57 32

Table 3: The number of operations for the analog coefficients
of several virtual analog models. Initial counts for the Weeping
Demon use the forms given by Matlab and initial counts for the
Fender Bassman tone stack and TR-808 cowbell are for the form of
the equations presented in each authors’ original work. Expanded
operation counts are obtained by completely expanding each co-
efficient. The operation count after the factoring algorithm shows
modest improvement and finally after the CSE step the operation
count is much lower.

separately. Similarly, the band-pass filter of the cowbell was only
a single op-amp. There was less to condense and no isolated stages
to prevent terms from combining in complicated ways.

x0 = RLO +R122 +R123

x1 = C105R111R117x0

x2 = RQ +R114

x3 = R109 +R110

x4 = R113 +RVR7

x5 = RWAH + x4

x6 = x2x3x5

x7 = C118R111R123

x8 = C105R117

x9 = x0x8

x10= R108 + x2

x11= R115 +RRANGE +RVR6

x12= RWAH(x11 + x4) + x11x4

x13= R110R111

x14= C118R108x5

x15= C104x12

x16= R120x0x5

x17= R108 +R111

b2 = C118RLEVELx1x2x3x5

b1 = x6(RLEVEL(x7 + x9) +R120x7)
b0 = R123x6(RLEVEL +R120)
a3 = C104C118R109R120x1x10x12

a2 = R120x9(R109(R111(x14 + x15) + x10x15) + x13x14)
a1 = x16(C118x10x13 + x17x3x8)
a0 = R110x16(x17 + x2)

(17)

x00= RLO +R122 +R123

x1 = C105R117x0

x2 = RQ +R114

x3 = R109 +R110

x4 = R113 +RVR7

x5 = RWAH + x4

x6 = R108 + x2

x7 = R115 +RRANGE +RVR6

b1 = RLEVELx1x2x3x5

b0 = R123x2x3x5(RLEVEL +R120)
a2 = R109R120x1x6(C104 + C119)(RWAH(x4 + x7) + x4x7)
a1 = C105R108R117R120x0x3x5

a0 = R110R120x0x5x6

(18)
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7. CONCLUSIONS

We have presented a method for going from a schematic of a state
variable filter to a numerical model that well replicates the behav-
ior of the SPICE model. Though much of the analysis was specific
to the state variable filter, these methods could easily be adapted to
other linear circuits. Additionally, we tackled the common prob-
lem of having very large expressions for the filter coefficients by
doing a factoring algorithm followed by common subexpression
extraction. The results of this factoring were quite promising as
they can reduce the operation count for the filter coefficients from
thousands down to tens. It is now much more computationally effi-
cient to repeatedly compute coefficients for component values that
may change as a function of time.

8. SOURCE CODE

Full schematics, SPICE models, source code, and illustrated doc-
umentation can be found on the web:
http://www.chetgnegy.com/projects/weepingdemon.html.
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