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ABSTRACT

Rhythm is a fundamental aspect of music and metrical structure is
an important rhythm-related element. Several mid-level features
encoding metrical structure information have been proposed in the
literature, although the explicit extraction of this information is
rarely considered. In this paper, we present a method to extract
the full metrical structure from music recordings without the need
for any prior knowledge. The algorithm is evaluated against ex-
pert annotations of metrical structure for the GTZAN dataset, each
track being annotated multiple times. Inter-annotator agreement
and the resulting upper bound on algorithm performance are eval-
uated. The proposed system reaches 93% of this upper limit and
largely outperforms the baseline method.

1. INTRODUCTION

Rhythm is a fundamental aspect of music and extraction of its
properties from audio is a wide field of research. In this paper, we
focus on the metrical structure of music. The model we use char-
acterises the metrical structure by the hierarchical organisation of
the underlying metrical levels and is described in more details in
section 2. This model takes inspiration from music theory works
such as [1], [2] or [3].

Information about metrical structure has been approached in
different ways in Music Information Retrieval research. Various
mid-level features such as beat spectrum [4], fluctuation pattern
[5], inter-onset histograms [6], or periodicity spectra [7] have been
used to perform specific tasks such as tempo estimation and beat
tracking [8, 9] or classification and similarity [10, 11, 12, 13, 14,
15]. These features usually represent information about periodic-
ities present in the audio signal, which are related, but not neces-
sarily equivalent, to the pulse rates of the metrical levels. In other
words, some information about the metrical structure is implicitly
encoded in these features which is then used to perform other tasks.
Information about metrical structure is not directly extracted from
these features.

On the other hand, there is a small body of work aiming at
specifically extracting some metrical information. For example,
Gouyon proposed a method to produce a dichotomy between du-
ple and triple meter [16]. The Echo Nest API1 offers as “meter”
assessment an integer number that specifies “how many beats are
in each bar”. Klapuri proposed a method to simultaneously ex-
tract three metrical levels that he describes as the “most important”
ones [17]: the tatum, tactus and the measure levels. Tatum stems

1http://developer.echonest.com/docs/v4

from ‘temporal atom’ and represents the shortest inter-onset inter-
val present in the music. The tactus is typically defined as the rate
at which listeners would tap along to the music. Tactus is also com-
monly associated with the tempo of a piece, although this view has
been challenged [18]. The measure is defined as “[...] typically
related to the harmonic change rate or to the length of a rhyth-
mic pattern” [17]. In a similar fashion, Uhle proposed a method
for estimation of tempo, “micro time” (relating the tatum period
to tempo) and time signature [19]. Srinivasamurthy performed a
study on the case of carnatic music [20], tracking the sama and
aksara in order to characterise the tala cycle. The aksara is the
smallest time unit of the cycle, so in that respect is analogous to
the tatum. The sama is “the first aksara” of the cycle, that is to say
the starting point of the cycle, which is analogous to the measure
defined by Klapuri. Similar to the feature introduced by Peeters to
perform rhythm classification in [10], Robine defines Meter Class
Profiles [21] as vectors of thirteen dimensions representing the rel-
ative strength of pulses at rates related in a fixed set of integer ra-
tios to the tempo (which is required as prior knowledge). As such,
they can contain information about more than three metrical levels,
but don’t explicitly extract such information. Moreover, their dis-
criminative power is only evaluated on the basis of time signature
classes, thereby neglecting a part of the metrical structure. Robine
notes that some information of interest is overlooked by such a re-
duction and this is a shortcoming we aim to tackle in this paper.
At the exception of Lartillot’s Matlab Toolbox [22], which we use
as a baseline, none of these methods involve the direct extraction
of the full metrical hierarchy.

The approach presented here aims at explicitly extracting the
full metrical structure of a musical piece without requiring any
prior knowledge. The structure adapts to the music and is therefore
not limited in terms of number of metrical levels represented; their
relationships only limited by the structural formalism described in
section 2.

In order to evaluate the algorithm, we collected metrical struc-
ture annotations for the GTZAN dataset2 from formally trained
professional musicians. Each track of the dataset has been anno-
tated by multiple annotators so that the inter-annotator disagree-
ment and the resulting upper limit of achievable algorithm perfor-
mance have been assessed [23].

In section 2 we introduce the formalism used to describe the
metrical structure. The extraction algorithm is described in sec-
tion 3, the evaluation using the new annotations is described in

2The annotations are publicly available for download at the following
address:
http://www.isophonics.net/content/metrical-structure-annotations-gtzan-
dataset
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Figure 1: A simple rumba clave rhythm pattern represented by
the crosses. Each horizontal line of dots represents an underlying
metrical level implied by the repetition of the pattern. Their hier-
archical organisation is used to characterise the metrical structure

section 4 and results presented and discussed in section 5.

2. FORMALISING THE METRICAL HIERARCHY

The metrical structure of a music piece will be characterised here
by the hierarchical organisation of its underlying metrical levels.
Figure 1 illustrates the derivation of metrical levels from an ex-
ample rhythm pattern. Naturally, the underlying metrical levels
structure is dependent on the rhythm content of a musical piece.
Figure 2 shows a hierarchical representation of metrical structure
for several examples. Each horizontal level of nodes on the tree ac-
counts for one metrical level (index i ∈ [0, L]), which is associated
with a frequency, or rate fi measured in BPM (Beats Per Minute).
The number of metrical levels necessary to represent the rhythm
hierarchy of a piece of music is therefore L+1. These rates can be
grouped in ascending order in a vectorM = (f0, f1, · · · , fL). Hi-
erarchical relationships are defined by the number of child nodes
λi ∈ N each level generates. This implies that λi = fi

fi−1
. A

sequence of frequency ratios Λ = 〈λ1, · · · , λi, · · · , λL〉 is de-
fined. It contains only hierarchical relationships between the met-
rical levels and therefore can be used for tempo-independent anal-
ysis. Retrieving M from Λ only requires the provision of one ab-
solute point of reference, that is one metrical rate. For instance
M = f0 ? Λ, where the symbol ? is used to represent the fact that
the frequency f0 can be recursively multiplied by the elements λi

of Λ so that fi = f0 ·
∏i

k=1 λk, with i > 0.
Metrical hierarchy is related in musical stave notation terms to

the time signature and the note values used in a composition. As an
example, a musical piece using eighth notes in a 3

4 time signature
can be represented by Figure 2 (b), with metrical level i − 1 be-
ing the bar level, level i the quarter note level (three quarter notes
in one 3

4 bar) and level i + 1 being the eighth note level (quarter
note divides into two eighth notes). Consider an example having
this metrical structure and a quarter note rate of 150BPM, it would
result in M = (50, 150, 300) and Λ = 〈3, 2〉. If this piece had
an additional layer of subdivision, such as sixteenth notes for ex-
ample, it would result in M = (50, 150, 300, 600), Λ = 〈3, 2, 2〉
and one more level of child nodes on a hierarchical tree represen-
tation. This example demonstrates that the information encoded
by this representation of the metrical structure differs from the one
encoded in a time signature notation. For instance, in the two ex-
ample we just cited, both would easily be scored as 3

4 , but their
metrical structure is different as a result of the use of an extra level
of subdivision in the latter case.

3. FEATURE EXTRACTION ALGORITHM

Our extraction algorithm is performed on the audio recording of
a piece of music and does not require any prior knowledge. The
flowchart of the algorithm given in Figure 3 can be broken down
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Figure 2: Tree representation for metrical hierarchy. (a) A simple
duple hierarchy dividing the lower level into two groups of two. (b)
A simple triple hierarchy dividing the lower level into three groups
of two. (c) A compound-duple hierarchy dividing the lower level
into two groups of three.

into three processing steps. First, an onset detection function is
computed from audio using the superflux method [24]. Then, we
perform an analysis of the periodicities present in the musical sig-
nal, with the hypothesis that some of them will correspond to met-
rical level rates. Finally the metrical structure is estimated by peak-
picking the periodicity spectrum. In this section, we describe the
two latter stages.

3.1. Periodicity analysis

In order to perform the periodicity analysis, we rely on the ap-
proach introduced by Peeters [25]. Two rhythmograms are calcu-
lated in parallel using 12s Hann windows so that low periodicity
rates are represented with good resolution and 0.36s hop size in or-
der to maintain good time resolution; the first one,RF (t, f) (with
t representing time and f frequency), computed using a Fourier
transform and the second one, RA(t, f), using an autocorrelation
function (ACF) with lags converted to a frequency scale. Given the
dataset that will be used to carry the evaluation (cf. section 4.2), a
certain metrical consistency in the music tracks is assumed. There-
fore, the Fourier transform and autocorrelation function based rhyth-
mograms,RF (t, f) andRA(t, f) respectively, can be summarised
in average spectra ΩF (f) and ΩA(f) by summing frames as given
in Equation 1.

ΩF (f) =
∑
t

RF (t, f)

ΩA(f) =
∑
t

RA(t, f)
(1)

These time-frequency transformations have the property to high-
light the periodicities present in the signal, but also harmonics re-
lated to these periodicities. In particular, the spectrum produced
using a Fourier transform of a periodic signal contains a series of
higher harmonics while the ACF of the same signal would simi-
larly contain a series of sub-harmonics. A strong hypothesis for the
work presented here is that the periodicities contained in the onset
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Audio Input

Onset Detection Function Generation

Metrical Levels Extraction

Fourier Rhythmogram ACF Rhythmogram
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Figure 3: The feature extraction algorithm is divided in three ma-
jor steps: computing an onset detection function, performing a
periodicity analysis by combining two rhythmograms and finally
extracting the metrical structure from the result.

detection function carry metrical structure information. However,
harmonics of these periodicities are artefacts of the mathematical
decomposition, which do not represent the periodicities initially
present in the signal and therefore do not represent the metrical
structure. A composite spectrum ΩC(f) is produced by calcu-
lating the Hadamard product3 of the spectra ΩF (f) and ΩA(f),
previously resampled to a common frequency axis with 0.1 BPM
resolution, and normalising the result:

ΩC(f) =

(
ΩA(f) ◦ ΩF (f)

)
max

f

(
ΩA(f) ◦ ΩF (f)

) (2)

This approach aims at cancelling out the sub and higher har-
monics so that only the periodicities present in the onset detection
function remain in the composite spectrum ΩC(f) because they
are common to the two spectra ΩF (f) and ΩA(f). Figure 4 illus-
trates the effect of this approach on an example from the GTZAN
dataset.

This track-level configuration is adopted because it suits the
dataset used here. However, in a more general setting, the multipli-
cation can be performed for every rhythmogram frame (or group of
frames), and therefore capture the temporal evolution of the metri-
cal structure.

3.2. Peak-picking algorithm

As stated earlier, our hypothesis is that metrical levels are repre-
sented by periodicities in the onset detection function, and there-
fore show up as peaks in the spectrum ΩC(f). However, expe-
rience has shown that not necessarily all the peaks in ΩC(f) are
related to metrical levels. As a consequence, the metrical structure
will be estimated in three steps: peak-picking ΩC(f), generating
one or more metrical structure candidates and then choosing the
one that best fits the data.

First, a simple algorithm detecting local maxima if an element
is larger than both of its neighbours is employed to find all the
peaks in ΩC(f). Only the peaks higher than a given threshold
(0.005) are kept.

Secondly, from this list of peaks, the biggest is selected and
its abscissa in ΩC(f) is labeled fmax (located around 200BPM in
the example of Figure 4). This represents the rate containing the

3An element by element multiplication denoted as ◦
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Figure 4: Example periodicity spectra for the track blues.00053.
Respectively from top to bottom, Fourier transform based, ΩF (f),
autocorrelation function based, ΩA(f) and the result of their mul-
tiplication, ΩC(f). Most of the harmonics in the Fourier and ACF
spectra are rejected from ΩC(f).

most energy in the spectrum and is therefore assumed to represent
a salient metrical level. The metrical structure estimation is not
sensitive to the choice fmax (i.e. it can equally correspond to any
metrical level), however picking the most energetic rate minimises
the likelihood of deriving fmax from a spurious peak and therefore
maximises the robustness of the system in that respect. By impli-
cation the rates of all other metrical levels fj should be related to
fmax by integer ratios (cf. section 2). Then, the abscissa fj of the
j th peak in ΩC(f) is compared to fmax and is kept as a candidate
level if, and only if, it satisfies one of the following conditions

∃n ∈ N :

{
fj
fmax

= n if fj > fmax
fmax
fj

= n if fj < fmax
(3)

otherwise it is rejected. Finding all the peaks that are integer ratios
of fmax is not sufficient to guarantee that they form a hierarchy
consistent with the model introduced in section 2, however. The
rate of each metrical level and its immediate neighbour must be
related by an integer ratio λi too.

As a consequence, the last peak-picking step is as follows:
starting with fmax, iterative comparison of metrical level candi-
dates fj is performed upwards (comparison with candidates with
higher rates) and downwards (comparison with candidates with
lower rates). For that purpose, the procedure described by al-
gorithm 1 is applied repeatedly to each candidate until the list
of candidates is exhausted. Algorithm 1 applies for the upwards
case. The downward case algorithm is easily obtained by symme-
try. For each candidate fj the algorithm considers its two nearest
neighbours and appends the successful candidates to the metrical
structure, rejects the others and creates additional metrical struc-
ture candidates if necessary.

Lines 1 to 3 filter out metrical level candidates not related in
integer ratio to fj . Once an integer ratio fq

fj
with q > j is found,

the second nearest neighbour fq+1 is taken in account. A spe-
cial case occurs when fq+1

fj
is an integer ratio but fq+1

fq
is not.

This means that the metrical level fj could equally be subdivided
in levels fq or fq+1 whereas these two levels can’t coexist in the
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Algorithm 1 Peak-picking kernel: K(fj ,M)

Require: fj is the level under analysis and M , the metrical struc-
ture candidates

1: while fj+1

fj
/∈ N do

2: fj+1 ← fj+2

3: end while
4: fq ← fj+1

5: if fq+1

fj
∈ N then

6: if fq+1

fq
/∈ N then

7: M1 ←M
8: M2 ←M
9: fj ← fq

10: (fj ,M1)← K(fj ,M1) {call peak-picking kernel}
11: M ← (M,M1)
12: fj ← fq+1

13: (fj ,M2)← K(fj ,M2) {call peak-picking kernel}
14: M ← (M,M2)
15: else
16: append fj+1 to M
17: fj ← fj+1

18: end if
19: else
20: append fj+1 to M
21: fj ← fj+1

22: end if
23: return fj , M

same metrical hierarchy. In such a situation, two parallel hierar-
chy candidates are generated (lines 7 and 8) and constructed inde-
pendently by calling two new instances of the peak-picking kernel
(lines 9 to 14). Unless this condition is entered, fj+1 is appended
to the metrical structure, the index of level under analysis is in-
cremented (lines 17 and 21), and the peak-picking kernel called
again.

At the end of this stage, hierarchy candidates have been gen-
erated, and are represented by their vector M . Finally, for each hi-
erarchy candidate, each one of the metrical levels fi is associated
with a weight wi = ΩC(fi) stored in W = (w0, w1, · · · , wL).
Each hierarchy candidate is graded by the sum of the weights of
its metrical levels Θ =

∑
i

wi. The hierarchy with the biggest cu-

mulated weight Θ is considered as the most salient, and is there-
fore chosen as the hierarchy that best fits the data. As an example
for the track disco.00045, for which the various periodicity spec-
tra were given in Figure 4, the metrical hierarchy extracted isM =
(30.7, 61.5, 124.5, 245, 490.1) andW = (0.05, 0.6, 1.0, 0.7, 0.9).
Considering a quarter note at 124.5 BPM, the vector M represents
a metrical structure exclusively based on duple subdivisions that
would easily be scored in 4

4 , in which case the 490.1 BPM rate
would represent sixteenth notes and the 30.7 BPM rate would rep-
resent the bar level.

3.3. Limitations

The metrical structure model used here is fit for representation of
any sort of isosynchronous metrical structure. However, it does
not enable representation of non-isosynchronous groupings. Con-
sider a meter featuring a cycle of 5 units of a given metrical level
grouped in threes and twos notated 3+2 (Dave Brubeck’s Take Five

is an example of such grouping). In our model the 3+2 group-
ing would not be accounted for. Nevertheless, the 5 ratio be-
tween the cycle and the metrical level used as a base for group-
ing fits in the model thus accounting for a meter “in five”. Ex-
panding the model to include non-isosynchronous metrical group-
ings representation is an avenue for future work, in which case the
technical implementation might need to be adapted accordingly.
Fourier transforms are probably not the best formalism to repre-
sent non-isosynchronous groupings because they decompose the
signal on a basis of sine wave functions, which are intrinsically
isosynchronous.

4. ALGORITHM EVALUATION

4.1. Evaluation metrics

Evaluation of the metrical structure extraction algorithm is per-
formed on the GTZAN dataset as follows. For each track, a pair-
wise comparison of every level of the metrical hierarchy of the
annotation (AN) and the extracted feature (EF) is performed. The
metrical level rates from a vector M of size N are converted to
a logarithmic scale. A binary matrix M of size NAN × NEF

storing the matching information between extracted feature and
annotation is built with each elementMij defined as:

Mij =

{
1 if |fAN

i − fEF
j | < ξ

0 otherwise (4)

Consequently, each match between an annotation and an extracted
metrical level is associated with the value 1 while mismatches are
associated with 0. A tolerance ξ is applied to account for the vari-
ability of human rating; its value set at 15% of the annotated value.

In this context, a false negative would be characterised by a
row of zeros in the matrix M because they correspond to levels
being present in the annotation but not in the extracted feature.
Likewise, a false positive would be characterised by a column of
zeros. The number of true positives is obtained by summing all
the coefficientsMij of the matrix. Finally, standard information
retrieval system metrics are applied. For each track, Precision,
Recall and F-measure are calculated, measuring the performance
of the system on each track. Average values of these scores across
all tracks of the dataset are then calculated.

An example of such metrics is given below. It corresponds
to the evaluation of the extracted metrical structure against one
annotation for the track rock.00029.

M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


In this case, there are four true positives, i.e. four levels matching,
indicated by the ones, one false negative indicated by the last row
of zeros and no false positive as there is no column of zeros. It
results in Precision=1.0, Recall=0.80 and F-measure=0.89.

4.2. Evaluation Dataset

We have produced expert annotations for the GTZAN dataset [26],
which is composed of 1000 music excerpts of 30 seconds duration
grouped in 10 genres (with 100 tracks in each group). This dataset
covers a range of metrical structures, although simple duple type
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Table 1: System configurations (‘methods’) under evaluation defined by three parameters: the periodicity spectrum used ‘PS’, the activation
of the second peak-picking step ‘PF’, and the activation of the peak-picking kernel ‘PPK’. Results are presented for each method as well
as for the baseline method [22] as Precision, Recall, F-measure and Performance Relative to the Upper Limit (PRUL) scores.

PS PF PPK Precision Recall F-measure PRUL
Method 1 ΩC(f) on on 0.83 0.84 0.82 93.2%
Method 2 ΩC(f) on off 0.61 0.86 0.68 77.3%
Method 3 ΩC(f) off off 0.51 0.96 0.64 72.7%
Method 4 ΩA(f) on on 0.86 0.77 0.80 90.9%
Method 5 ΩA(f) on off 0.70 0.79 0.72 81.8%
Method 6 ΩA(f) off off 0.43 0.95 0.58 65.9%

Lartillot [22] - - - 0.36 0.55 0.43 48.9%

of meter (typically scored in 4
4 ) accounts for a large part of the

distribution. Considering the short length of the tracks, it is as-
sumed that the metrical structure is relatively constant throughout
the excerpts and consequently only an overall annotation at the
track level was produced. This assumption proves right in the vast
majority of the cases. The annotators were presented with one, ran-
domly picked track from the dataset at a time and asked to annotate
the rate (measured in BPM) of every metrical level they could hear
in the music. They could achieve this either by filling in the BPM
value directly or by tapping along to automatically measure this
rate.

In order to provide an estimation of the reliability of the an-
notations, the dataset has been entirely annotated by multiple ex-
perts. Flexer showed that inter-rater disagreement results in an up-
per limit for the performance possibly achievable by an algorithm
[23]. In our case, for every track, each pair of annotators is consid-
ered and the level of inter-annotator agreement is measured using
the metrics introduced in section 4.1. Instead of comparing anno-
tation data (AN) and an extracted feature (EF), annotations pro-
duced by one annotator are compared with annotations produced
by another. The F-measure is used as a figure of merit to assess the
agreement for each track, 1 meaning perfect agreement (annotators
have annotated a structure that contains exactly the same metrical
levels) and 0 meaning complete disagreement (nothing in common
in their annotations). The average F-measure obtained across the
dataset is then 0.88. This reflects a high level of inter-annotator
agreement on average while setting the upper limit of average F-
measure possibly achievable by an algorithm on this dataset [23].
In the following, for each track, the extracted feature is evaluated
against all the annotations available ; from which are calculated
the average values presented below.

4.3. Baseline method

The mirmetre() function from the mirtoolbox4 [22] has been used
as a baseline. The metrical structure estimation proposed in [22]
comprises three steps that are very similar to the ones in the method
presented in this paper. First of all, an onset detection function is
processed using a spectral flux method. Secondly an analysis of
the periodicities present in this onset detection curve is performed
by calculating an ACF rhythmogram (labeled “autocorrelogram”
in the original publication). Finally, the metrical structure is es-
timated from the ACF rhythmogram. In our experiment, we set
the window length and hop size identical to the values used for the
algorithm described in section 3. All other parameters were set to
default values. The metrical structure is returned in the form of a

4version 1.6.1

list of metrical level pulse rates. For each metrical level rate, an
average value for the entire duration of the track is used for the
evaluation.

5. RESULTS

5.1. Experiment

In order to assess the usefulness of the different elements of the al-
gorithm, the evaluation is repeated several times leaving some ele-
ments out. The role of three elements is investigated in particular.
Firstly, the periodicity spectrum (PS) used either ΩC(f), which
results from the multiplication of the ACF and Fourier transform-
based rhythmograms (cf. section 3), or ΩA(f) in which case no
multiplication is performed and the metrical structure extraction
is performed directly on ΩA(f). This enables comparison with
the baseline method. Secondly, the peak filtering step described
by Equation 3 and labeled ‘PF’ can be turned on and off. Finally
the metrical hierarchy-constrained peak-picking step involving the
peak-picking kernel K of algorithm1 can also be turned on and off
and is referred to as PPK. The system configurations under eval-
uation are given in Table 1 and labeled as ‘methods’. Method 1
corresponds to the complete system, as presented in section 3.

5.2. Results and discussion

For all methods under evaluation, we present in Table 1 the results
as average precision, recall and F-measure scores for the entire
dataset. Only the metrical level rates in the range 30-800BPM
are considered for evaluation. The 30BPM lower limit is cho-
sen because periodicity spectra (in particular ΩF (f)) tend to be
very noisy in the 0-25BPM range. The 800BPM limit loosely cor-
responds to the fastest rate playable by virtuoso musicians5. We
also calculate the Performance relative to the upper limit (PRUL)
implied by the inter-annotator disagreement established in subsec-
tion 4.2 to an F-measure of 0.88. Consequently, for each method
we have PRUL = 100·x

0.88
where x is the corresponding average

F-measure.
Comparing the results of Method 1 and 2 clearly shows that

constraining the peak-picking algorithm with a musically mean-
ingful model for metrical structure (via the activation of step PPK)
results in a substantial increase in performance (0.14 points of F-
measure score). This is primarily achieved by increasing preci-

5Work on music perception such as [2] mention an upper threshold
around 100ms (600BPM), but virtuoso playing involves metrical rates
around 600BPM and slightly above. Consequently, we increased this limit
to 800BPM to leave some headroom.
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sion score at the expense of a very small decrease of recall, which
means that the PPK step effectively helps picking peaks that cor-
respond to metrical level rates with a very little rate of error. Com-
parison of methods 2 and 3 reveals that the peak filtering step PF
only brings a small improvement, and therefore is not sufficient to
extract a meaningful metrical structure on its own. A similar trend
emerges from comparison of methods 4, 5 and 6.

Methods 3 and 6 both have the PF and PPK steps deactivated;
only the first raw peak-picking step is active (cf. section 3). The
evaluation of method 3 enables an assessment of the metrical in-
formation captured by ΩC(f), from which tempo estimation was
performed in [25]. Methods 3 and 6 exhibit similar performance in
terms of recall with very high scores (0.96 and 0.95 respectively),
which is to be expected because all the peaks present in ΩC(f)
are still considered at this stage. It means that almost all the metri-
cal level rates are captured as peaks in the periodicity spectra. This
was a hypothesis for the design of the extraction process and is val-
idated by the present result. In addition, method 3 scores higher
than method 6 in terms of precision. Once again this result is con-
sistent with the assumption that irrelevant peaks would be rejected
by the multiplication of ΩA(f) and ΩF (f). However, the rather
low precision (0.51) also demonstrates that ΩC(f) does not only
contain peaks relating to metrical level rates. From the higher per-
formance reached by method 1, we can conclude that peak-picking
strategy materialised by steps PF and PPK is essential to perform
accurate metrical structure extraction.

Lartillot’s baseline method should be compared with methods
4, 5 and 6, as they all use ACF to estimate periodicities of the
onset detection function. In all cases, the baseline method is out-
performed. Given that the onset detection function and periodicity
estimation used in the baseline method are not largely different
from the algorithm presented in this paper, the difference proba-
bly resides mostly in the metrical structure estimation steps. As
a consequence, it corroborates the idea that the peak-picking of
the periodicity spectra is a difficult and sensitive, yet crucial step.
Lartillot’s peak picking is achieved using some heuristics that are
not strongly rooted in music theory whereas our constraining of
the metrical structure estimation with a musicologically motivated
model proves to be instrumental in achieving an optimal level of
agreement with human experts. Method 1, which involves the use
of all the processing stages, delivers the best overall performance
and achieves the highest F-measure reaching 93.2% of the upper
limit imposed by inter-rater disagreement.

6. CONCLUSIONS

We have presented a method for explicit extraction of the full met-
rical structure from music recordings without the need for any
prior knowledge. The extraction process is constrained by a model
rooted in music theory, which proves to be a critical step in achiev-
ing high performance. The algorithm is evaluated against newly
produced annotations of the GTZAN dataset. Taking in account
inter-annotator disagreement, we find that our system reaches 93%
of maximum achievable accuracy, and largely outperforms the base-
line method.

It has been shown that using metrical structure information can
help improve beat tracking [27]. The method we have introduced
in this paper conforms with expert human judgment and we envi-
sion that it could be useful in informing other MIR tasks such as
beat-tracking, downbeat estimation and transcription. Moreover,
there is evidence that the metrical structure plays an important role

in perception of musical pace [2]: “Differences in surface rhythm
and metrical structure do interfere with judgments of tempo [in
this context meaning how fast the music feels], even if two pas-
sages have the same beat rate”. The metrical structure as a feature
can therefore be useful in the assessment of pace and related tasks.
For instance, it could have applications such as automatic music
sequencing, music database navigation, or mashup creation and
complement systems such as [28].

7. ACKNOWLEDGMENTS

This work is supported by the UK Engineering and Physical Sci-
ences Research Council (EPSRC) and Omnifone Ltd.

8. REFERENCES

[1] Fred Lerdahl and Ray S. Jackendoff, A Generative Theory of
Tonal Music, MIT Press, 1983.

[2] Justin London, Hearing in time, Oxford University Press,
2012.

[3] Chunyang Song, Syncopation: Unifying Music Theory and
Perception, Ph.D. thesis, Queen Mary University of London,
2014.

[4] Jonathan Foote and Shingo Uchihashi, “The Beat Spectrum:
A New Approach To Rhythm Analysis.,” in ICME, 2001.

[5] Elias Pampalk, Andreas Rauber, and Dieter Merkl, “Content-
based organization and visualization of music archives,” in
Proceedings of the tenth ACM international conference on
Multimedia, 2002, pp. 570–579.

[6] Simon Dixon, Elias Pampalk, and Gerhard Widmer, “Clas-
sification of dance music by periodicity patterns.,” in ISMIR,
2003.

[7] Andre Holzapfel and Yannis Stylianou, “Scale transform in
rhythmic similarity of music,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 19, no. 1, pp. 176–
185, 2011.

[8] Masataka Goto, “An audio-based real-time beat tracking sys-
tem for music with or without drum-sounds,” Journal of New
Music Research, vol. 30, no. 2, pp. 159–171, 2001.

[9] Simon Dixon, “Evaluation of the audio beat tracking system
beatroot,” Journal of New Music Research, vol. 36, no. 1, pp.
39–50, 2007.

[10] Geoffroy Peeters, “Rhythm Classification Using Spectral
Rhythm Patterns.,” in ISMIR, 2005, pp. 644–647.

[11] Jonathan Foote, Matthew L. Cooper, and Unjung Nam, “Au-
dio Retrieval by Rhythmic Similarity.,” in ISMIR, 2002.

[12] Matthias Gruhne, Christian Dittmar, and Daniel Gaertner,
“Improving Rhythmic Similarity Computation by Beat His-
togram Transformations.,” in ISMIR, 2009, pp. 177–182.

[13] Maria Panteli, Niels Bogaards, and Aline Honingh, “Mod-
eling Rhythm Simirlarity For Electronic Dance Music,” in
International Society for Music Information Retrieval Con-
ference, 2014.

[14] Leigh Smith, Rhythmic similarity using metrical profile
matching, Ann Arbor, MI: MPublishing, University of
Michigan Library, 2010.

DAFX-6



Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

[15] Jouni Paulus and Anssi Klapuri, “Measuring the similarity
of Rhythmic Patterns,” in ISMIR, 2002.

[16] Fabien Gouyon and Perfecto Herrera, “Determination of the
meter of musical audio signals: Seeking recurrences in beat
segment descriptors,” in Audio Engineering Society Conven-
tion 114. 2003, Audio Engineering Society.

[17] Anssi P. Klapuri, Antti J. Eronen, and Jaakko T. Astola,
“Analysis of the meter of acoustic musical signals,” Audio,
Speech, and Language Processing, IEEE Transactions on,
vol. 14, no. 1, pp. 342–355, 2006.

[18] Justin London, “Tactus 6= Tempo: Some Dissociations Be-
tween Attentional Focus, Motor Behavior, and Tempo Judg-
ment,” Empirical Musicology Review, vol. 6, no. 1, pp. 43–
55, Jan. 2011.

[19] Christian Uhle and Juergen Herre, “Estimation of tempo,
micro time and time signature from percussive music,” in
Proc. Int. Conference on Digital Audio Effects (DAFx), 2003.

[20] Ajay Srinivasamurthy and Xavier Serra, “A supervised ap-
proach to hierarchical metrical cycle tracking from audio mu-
sic recordings,” in Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on. 2014,
pp. 5217–5221, IEEE.

[21] Matthias Robine, Pierre Hanna, and Mathieu Lagrange,
“Meter Class Profiles for Music Similarity and Retrieval.,”
in ISMIR, 2009, pp. 639–644.

[22] Olivier Lartillot, Donato Cereghetti, Kim Eliard, Wiebke J.
Trost, Marc-Andre Rappaz, and Didier Grandjean, “Estimat-
ing tempo and metrical features by tracking the whole metri-
cal hierarchy,” in Proceedings of the 3rd International Con-
ference on Music & Emotion (ICME3), Jyvaskyla, Finland,
11th-15th June 2013. Geoff Luck & Olivier Brabant (Eds.).
2013, University of Jyvaskyla, Department of Music.

[23] Arthur Flexer, “On inter-rater agreement in audio music sim-
ilarity,” in International Society for Music Information Re-
trieval Conference, 2014.

[24] Sebastian Bock and Gerhard Widmer, “Maximum filter vi-
brato suppression for onset detection,” in Proc. of the 16th
Int. Conf. on Digital Audio Effects (DAFx). Maynooth, Ire-
land (Sept 2013), 2013.

[25] Geoffroy Peeters, “Time variable tempo detection and beat
marking,” in Proceedings of the ICMC, 2005.

[26] George Tzanetakis and Perry Cook, “Musical genre classifi-
cation of audio signals,” Speech and Audio Processing, IEEE
transactions on, vol. 10, no. 5, pp. 293–302, 2002.

[27] Norberto Degara, Antonio Pena, Matthew EP Davies, and
Mark D. Plumbley, “Note onset detection using rhyth-
mic structure,” in Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on. 2010,
pp. 5526–5529, IEEE.

[28] Matthew EP Davies, Philippe Hamel, Kazutomo Yoshii, and
Misako Goto, “AutoMashUpper: automatic creation of
multi-song music mashups,” Audio, Speech, and Language
Processing, IEEE/ACM Transactions on, vol. 22, no. 12, pp.
1726–1737, 2014.

DAFX-7


	1  Introduction
	2  Formalising the metrical hierarchy
	3  Feature extraction algorithm
	3.1  Periodicity analysis
	3.2  Peak-picking algorithm
	3.3  Limitations

	4  Algorithm evaluation
	4.1  Evaluation metrics
	4.2  Evaluation Dataset
	4.3  Baseline method

	5  Results
	5.1  Experiment
	5.2  Results and discussion

	6  Conclusions
	7  Acknowledgments
	8  References

