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ABSTRACT

Augmented audification has recently been introduced as a method
that blends between audification and an auditory graph. Advan-
tages of both standard methods of sonification are preserved. The
effectivity of the method is shown in this paper by the example of
random time series. Just noticeable kurtosis differences are effected
positively by the new method as compared to pure audification.
Furthermore, skewness can be made audible.

1. INTRODUCTION

Sonification is still a relatively young field building up a canon
of methodologies. Two of the standard approaches to sonifica-
tion are audification and auditory graphs. Recently, the method
of augmented audification has been introduced [1] as a seamless
interpolation between these approaches. Augmented audification
combines well-known techniques of signal processing: single-side-
band modulation utilizing the Hilbert transform, and an exponential
frequency modulation. This method allows to control both the mean
position in the frequency range and the bandwidth of the sonifi-
cation by free model parameters, independently to the rate of the
data display. Fundamental properties of audification are conserved,
notably the compact temporal support and the translation of high
frequency content of the data into transient events in the sound.
Furthermore, data sets can be explored interactively at various time
scales and in different frequency ranges.

Frauenberger et al. [2] studied the audification of random data
time series with varying higher order momentums. The third mo-
ment, skewness, is a measure for the asymmetry of the probability
density function. The fourth moment is called kurtosis and serves as
a measure of the peakedness of the distribution. In the study it has
been shown that participants could discriminate a kurtosis differ-
ence in the audification of above 5. Qualitatively, they reported an
increase of roughness with rising kurtosis. Distinguishing different
values of skewness could not be proven. This is not surprising, as
skewness depends strongly on the mean of the data series which re-
sults in an indiscernible DC value, and furthermore, human hearing
does not perceive the ”sign” of a signal.

In the following section, basic properties and limits of audifi-
cation and auditory graphs are reviewed shortly. Sec. 3 introduces
the signal processing algorithms of augmented audification1. Sec. 4
discusses the use case of random time series and the generation of
data sets used in the listening experiment, which is discussed in
Sec. 5. Finally, we conclude and give an outlook to further research.

1Accompanying sound examples can be found at:
http://iaem.at/Members/vogt/augmentedaudification

2. COMPARISON OF AUDIFICATION AND AUDITORY
GRAPHS

Audification, on the one hand side, has been defined by Kramer in
1991 (cited in [3], p. 186): “a direct translation of a data waveform
to the audible domain“. Today, audification has many ”puristic”
supporters within the sonification community who are in favor of a
direct playback of data, with the only adjustable factor being the
playback rate (see [4]). This factor also determines the typical size
of data sets that are apt for audification, thus they are reasonably
large.

A crucial advantage of audification is the following: by con-
serving the time regime of the data signal, audifications of real
physical processes are usually broad-band with a pronounced pro-
portion of high frequencies during rapid transients. In the task of
identifying natural sounds, e.g., the attack of musical instruments
or speech signals, the transient parts of the signal provide features
for human hearing that serve as the basis for pattern recognition
tasks. The same is true for audified signals.

In general, audification suffers from a trade-off between the
macroscopic time scale and the frequency range of the relevant
information. The ideal audification signal has relevant auditory
gestalts within time and frequency regimes that can be well-per-
ceived by the human auditory system. Some suggestions have
been made to cope with this trade-off and argue in favor of a more
adjustable audification paradigm (e.g., [5]).

On the other hand side, auditory graphs mostly sonify reason-
ably small data sets, up to a few hundred data points, often in a
pitch-time-display. Thus, with respect to data size, we may find typ-
ical data of auditory graphs on the very other end of the scale than
audification (e.g., on opposite sides on the sonic design space map,
[6]). Obvious benefits of auditory graphs are the straightforward
analogy to visual graphs, which make them intuitively understand-
able, at least for sighted users. The Sonification Sandbox [7] was
possibly the largest effort to develop a general tool for auditory
graphs. From the experience with the toolbox it can be concluded
that most real-world sonification applications need a more flexible
adjustment between the data set and the auditory graph.

Flowers [8] discussed promises and pitfalls of auditory graphs.
He suggested that successful displays follow these strategies: nu-
meric values should be pitch-encoded; the temporal resolution of
human audition shall be exploited; loudness changes in a pitch
mapped stream shall be manipulated in order to provide contextual
cues and signal-critical events; distinct timbres shall be chosen
in order to minimize stream confusions and unwanted perceptual
grouping; and time in sound shall be used to represent time in the
data.
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Augmented audification allows to blend between audification
and auditory graphs (in the form of a pitch-time display). Advan-
tages of both methods can be combined, overcoming the time-scale
trade-off of pure audification.

3. AUGMENTED AUDIFICATION: THE MODEL

For explaining Augmented Audification (henceforth: AugAudif),
we start with a basic audification. We assume a data set x(n) with
n = 1..N data points and a playback rate or sampling frequency
fp, i.e., fp data points are displayed per second. The rendering over
a D/A converter with a reconstruction filter leads to a continuous
signal x(t) with a bandwidth B between zero and 1/2fp Hz. If the
playback rate is as low as a few hundred data points per second, the
resulting sound will be in a low frequency range, where the human
ear is not very sensitive.

3.1. Frequency Shifting

Therefore, as a first step, we perform frequency shifting by a single-
side-band modulation. Using a Hilbert transform (see, e.g., [9]),
the original audification signal x(t) becomes the complex-valued
signal xa(t),

xa(t) = x(t) + j H{(x(t)} (1)

with the imaginary constant j. This analytical signal can be written
using a real-valued envelope env(t) = |xa(t)| modulated by a
phasor with the instantaneous phase θ(t) = angle[xa(t)]:

xa(t) = env(t) ejθ(t). (2)

Performing a frequency shift by ∆f and taking the real part of
this signal leads to a SSB-modulated sound signal xSSB(t):

xSSB(t) = Re
[
env(t) ej(θ(t)+2π∆ft)

]
(3)

= x(t) cos(2π∆ft)−H{x(t)} sin(2π∆ft).(4)

The spectrum of the analytical signal, which contains (only
non-negative) frequencies between zero and B Hz, is shifted to the
range between ∆f and (∆f +B). Discarding the imaginary part
re-builds a symmetric spectrum.

The frequency shift ∆f is a free parameter of the method,
which helps to yield a perceptually optimal frequency range of the
sonification, i.e., somewhere within the range of 100 Hz and 2 kHz.
If ∆f = 0, there is no difference to a pure audification.

In the case of high playback rates, e.g., fp = 20 kHz, which
lead to a broad-banded audification, a frequency shift of ∆f =
100 Hz hardly changes the overall signal, but might make low
frequency components of the signal audible, as the spectrum is now
shifted to the range between 100 Hz and 10.1 kHz.

A strong frequency shift, especially in combination with slow
playback rates, results in a very narrow-banded signal which might
be problematic from a perceptual point of view. The frequency
shift squeezes the original - conceptually infinite - pitch range to a
range of (∆f +B)/∆f . For example, if fp = 200 Hz, hence the
bandwidth of the primary audification signal is max. 100 Hz, and
the spectrum is shifted by ∆f = 500 Hz, the resulting bandwidth
is 500 to 600 Hz. Speaking in musical terms, all frequency com-
ponents of the original data stream are now concentrated within
a minor third. Fluctuations of such narrow-banded signals are
difficult to perceive.

3.2. Exponential Frequency Modulation

Therefore the method is extended by modulating the frequency of
the phasor of the analytic signal xa(t). The instantaneous frequency
of the modulator, fi(t), exponentially encodes the numeric data
values of x(t) as pitch, following to Flowers’ recommendations:

fi(t) = 2cx(t)f0. (5)

f0 is the carrier frequency and c a freely choosable parameter that
controls the magnitude of the modulation: Setting c = 0 results
in a constant instantaneous frequency of the frequency modulation
which is then independent of the data values x(t). This results in a
pure frequency shift as described in Sec. 3.1. Setting c = 1 leads to
a transposition of one octave higher/ lower for signal values x(t) =
+1/− 1. The value of c has to be chosen carefully depending of
signal amplitude and bandwidth to prevent aliasing resulting from
strong FM sidebands.

For the AugAudif, the parameter of frequency shift is used as
carrier frequency, f0 ≡ ∆f . Integrating over the instantaneous
frequency results in the instantaneous phase φi(t), which serves as
a phase modulating term for the analytical signal.

φi(t) =

∫ t

0

2π ∆f 2cx(τ)dτ. (6)

This leads to the complete model of Augmented Audification:

xAA(t) = Re
[
env(t) ej (θ(t)+φi(t))

]
(7)

= x(t) cos(φi(t))−H{x(t)} sin(φi(t)). (8)

The model is controlled by two freely choosable model param-
eters, ∆f and c, that can be set according to the explorative goals
of the sonification.

4. USE CASE: STATISTICAL PROPERTIES OF RANDOM
DATA TIME SERIES

4.1. Data generation

As a challenging use case for augmented audification, we generated
random time series with different statistical properties. Frauen-
berger et al. [2] used a Levy alpha-stable distribution to create their
data sets. The Levy alpha-stable distribution is not defined for a dis-
tribution parameter (skewness) of < 2 and for kurtosis values that
are smaller than the Gauss distribution. Therefore, we implemented
a type IV Pearson distribution for the generation of the examples in
this section and the formal listening experiment in Sec. 5.

Neglecting a normalization constant, the type IV Pearson dis-
tribution is given as

p(x) =

[
1 +

(x− a
b

)2
]−m

∗ e−ν∗arctan( x−a
b ) (9)

where a is the location parameter (mean value), b the scale pa-
rameter (variation), and the shape parameters m (kurtosis) and ν
(skewness).

Noise samples of this distribution have been generated in Mat-
lab for a mean value of zero and given standard deviation (= 0.1),
but with various values for skewness and kurtosis. The distribu-
tions have been generated at a low sampling rate, thus limited in
bandwidth to a cutoff frequency fc.
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(a) Kurtosis = 1. (b) Kurtosis = 2.

(c) Kurtosis = 4. (d) Kurtosis = 8.

Figure 1: Spectrograms of the 4 consecutive sounds in Soundfile 1. The fixed parameters are: skewness = 0; fp = 800 Hz; c = 5/12;
∆f = 600 Hz.

Then, they have been interpolated to obtain the standard sam-
pling rate of 44.1 kHz. Due to the random character of the gen-
eration process itself and the effects caused by the subsequent
interpolation scheme, the actual statistical moments of the noise
samples deviated from the target values. Therefore, an iterative pro-
cedure has been adopted to select noise samples with the intended
preset values for skewness and kurtosis.

The actual values for skewness and kurtosis were calculated
from the zero-mean samples x(i), i = 1..N :

skew(x) =
µ3

σ3
=

1
N

∑N
i=1 x(i)3(

1
N

∑N
i=1 x(i)2

)3/2
, (10)

kurt(x) =
µ4

σ4
=

1
N

∑N
i=1 x(i)4(

1
N

∑N
i=1 x(i)2

)2 . (11)

4.2. Sound examples

A first, informal listening of the authors of this paper showed a much
lower threshold for discriminating kurtosis and even the ability to
defer different values of skewness using AugAudif as compared to
direct audification. Two sound examples shall illustrate the effect
of the method:

Soundfile 1 is an AugAudif of time series with a white noise
spectrum, zero skewness and varying kurtosis (consecutively 1, 2,
4, and 8). The playback rate of the data has been chosen as 800 Hz.

Fig. 1 shows the spectrograms of these 4 sounds. (All spectrograms
were calculated using a 4096 sample Hanning window and are
displayed on a logarithmic frequency scale up to 10 kHz.)

Soundfile 2 is an AugAudif of time series with constant kurto-
sis but varying skewness. The parameters are the same as above
(fp = 800 Hz; c = 5/12; ∆f = 600 Hz). Kurtosis is set at
12, while skewness takes the values of −2, 0, and 2, respectively.
The spectrograms shown in Fig. 2 clearly indicate the asymmetric
frequency excursions due to the different skewness.

5. EXPERIMENT

The above method has only recently been introduced. Evidence
for its usefulness have to be found on an inter-subjective level.
Therefore, a formal listening experiment was performed to test the
following hypotheses:

• The just noticeable differences (JNDs) of kurtosis of ran-
dom data time series may be lowered when treated with
augmented audification as compared to direct audification.

• The skewness of random data time series may be detected
when treated with augmented audification as compared to
direct audification.

Additionally, the experiment should investigate the influence of dif-
ferent parameters for augmented audification on JNDs of kurtosis,
i.e. provide estimates for optimal parameter settings in different
frequency regimes.
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(a) Skewness = -2.

(b) Skewness = 0. (c) Skewness = 2.

Figure 2: Spectrograms of the 3 consecutive sounds in Soundfile 2. The fixed parameters are: kurtosis = 12; fp = 800 Hz; c = 5/12;
∆f = 600 Hz.

5.1. Setup, Method, and Conditions

The experiment evaluated the JNDs in skewness and kurtosis for
19 conditions shown in Table 1 using an adaptive 1-up/2-down
triangle test [10]. Thus, the participant’s task was to identify the
odd one within a triplet of sounds. As all sound files had to be
rendered before the experiment, the skewness/ kurtosis values have
been quantized in discrete steps. For all parameters (conditions,
quantized skewness/ kurtosis values) 5 different realizations of ran-
dom time series have been created. During the experiment, the
realizations have been selected in order that no triplet contained
identical sound files (but two realizations with the same parameters,
and one other). In this way, the experiment considered the percep-
tion of variation within realizations with same parameters as well.
Participants could listen to the sounds as often and in any order
they wished.

As a reference value for all conditions with varying kurtosis,
a kurtosis of 3 was taken, which corresponds to Gaussian noise;
within mathematics it is common to use this reference (with the
notions of platykurtic or leptokurtic distributions referring to a
negative or positive excess related to a kurtosis of 3). Furthermore
it seems plausible from an evolutionary point of view that the
auditory system is ”gauged” to the normal distribution as a frequent
case in natural systems.

In order to minimize the number of iterations in the adaptive
procedure, a variable step size has been used: each procedure
started with a comparison of a parameter set with largest available
skewness/ kurtosis value and one with the reference value. The
step size (difference of skewness/ kurtosis value to reference value)
was halved after each two correct answers in a row and after each
wrong answer. The new step size was calculated from the old
one, plus/ minus half of the actual step size. In case of all correct
answers, and due to the quantization of the skewness/ kurtosis
values, the smallest step size could be achieved after 7 iterations.
The maximum number of iterations has been limited in dependence
of the number of quantization steps, cf. Table 1. This measure
should prevent the participant from fatigue and account for cases
where s/he could not discriminate between different settings at all.

In addition to the psychometric measurement of the JNDs, par-
ticipants were asked to verbally describe the perceived differences
in an accompanying questionnaire. For each condition, the partici-
pants should do so right after the first triplet, when the differences
were as large as possible.

For playback of the sound files, an RME Multiface and Beyer-
dynamic DT-770 Pro headphones have been employed. A total of
10 subjects (all experienced listeners with hearing loss of less than
15dB, 8 of them part of a trained expert listening panel [11, 12, 13])
participated in the experiment. On average, the whole experiment
took 115 min. and was divided into two parts.
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Table 1: Conditions in the experiment with variable or fixed values
for skewness and kurtosis (reference values in brackets), number of
quantization steps, and maximum number of iterations.

con. fc/Hz ∆f/Hz c kurtosis skew. steps iter.
1 10000 - - var(3) 0 12 25
2 5000 - - var(3) 0 12 25
3 500 - - var(3) 0 12 25
4 100 - - var(3) 0 12 13
5 5000 150 5/12 var(3) 0 12 25
6 500 150 5/12 var(3) 0 12 25
7 100 150 5/12 var(3) 0 12 25
8 5000 600 5/12 var(3) 0 12 25
9 500 600 5/12 var(3) 0 12 25

10 100 600 5/12 var(3) 0 12 25
11 5000 600 3/12 var(3) 0 12 25
12 500 600 3/12 var(3) 0 12 25
13 100 600 3/12 var(3) 0 12 25
14 5000 - - var(1.27) 0 16 25
15 5000 - - var(2.1) 0 14 25
16 5000 - - var(3.5) 0 10 20
17 5000 - - var(4.5) 0 8 18
18 500 600 5/12 8 var(0) 5 13
19 5000 600 5/12 8 var(0) 5 13

5.2. Quantitative Results

The above procedure lead to a standard oscillating between two
values of smallest step size that supposedly lie around the JND.
The thresholds for the just noticeable values were calculated as the
minimum of the averages over the last 4 and 6 reversals [14]. For
condition 4, this calculation did not always converge. Some partic-
ipants never answered two times correctly in straight succession.
In this case, the just noticeable value has been set to the maximum
available value for this condition. Similarly, most participants could
always perceive the smallest available difference in condition 14.
Thus, the just noticeable kurtosis difference was set to the small-
est available difference. In comparison to our results, the actual
just noticeable difference might hence be larger for condition 4
and smaller for condition 14. However, this would not change the
general statements of our study.

Figure 3a shows the different just noticeable differences in kur-
tosis for direct audification in dependence of the reference kurtosis.
Analysis of variance and Kruskal-Wallis tests revealed a significant
increase towards higher reference kurtosis values (p < 0.001). This
also holds for the variance of the just noticeable difference. How-
ever, only the neighboring conditions 14/15 and 16/17 yield signifi-
cantly different means (p < 0.001) and median values (p ≤ 0.002).
The results indicate varying JNDs for different values of reference
kurtosis. However, a modeling of the difference threshold departing
from Weber’s law could not be deduced from the data. Neverthe-
less, a first attempt to establish a psychophysical scale for kurtosis
of band-limited noise in direct audification can be found in the
Appendix.

Figure 3b encompasses the central findings of the experiment.
Just noticeable kurtosis decreases for higher fc using either direct
or augmented audification. For all evaluated cutoff frequencies fc,
AugAudif yields smaller just noticeable kurtosis as compared to
direct audification. The different variations of augmented audifi-
cation perform similarly well, although c = 3/12 tends to be the
worst variation for fc = 100 Hz and ∆f = 600 Hz, c = 5/12

tends to be the best variation for fc = 5000 Hz. The statistical
analysis revealed that kurtosis sensitivity increases significantly for
higher fc (p < 0.001) in direct audification.
All neighboring conditions yield significantly different mean (p <
0.001) and median values (p ≤ 0.001), except for conditions 2/1
(p ≥ 0.54). Just noticeable kurtosis also decreases for AugAudif
(p ≤ 0.04), although conditions 6/5 yield no significantly different
mean (p = 0.15) and median values (p = 0.18). It can be argued,
that the magnitude of the difference between augmented and direct
audification depends on fc in relation to ∆f : while ∆f = 150 Hz
is a large difference compared to fc = 500Hz, it is relatively small
compared to fc = 5000 Hz. As might be expected, the conditions
where c = 3/12 tend to lead to worse results than the ones with
c = 5/12. This can be argued from the sensitivity of the human
hearing, which, in general, decreases for lower frequencies. For
fc = 100 Hz, all variations of augmented audification yield sig-
nificantly lower median values (p ≤ 0.002) compared to direct
audification. However, comparing the different variations among
each other, none of them show significant differences in means
(p ≥ 0.11) and median values (p ≥ 0.1). Condition 13 suffers
from a remarkably strong inter-subjective variation.

The authors would have expected that direct audification sat-
urates from the low frequency range towards the most sensitive
hearing range (even if the value for high frequencies, i.e. the
10 kHz regime, should exhibit a degradation following this argu-
ment, which is not reflected in the data). Similarly, for fc = 500 Hz,
all variations of augmented audification yield significantly lower
median values (p ≤ 0.001) in comparison to direct audification.
Again, there are no significant differences between the means
(p ≥ 0.31) or median values (p ≥ 0.29) of the different vari-
ations. For fc = 5000 Hz, although all augmented audifica-
tions yield significantly smaller means (p ≤ 0.07) and median
values (p ≤ 0.07), condition 5 achieves significantly smaller
means/medians (p = 0.02) than condition 8. However, the dif-
ference between conditions 8 and 11 is not significant (p = 0.11).
The optimal parameter setting within this experiment has been
reached for condition 8, with fc = 5000 Hz, ∆f = 600 Hz, and
c = 5/12. In percentages, this corresponds to a frequency shift
in the order of 8% of the mean frequency range, and a factor c
equalling roughly one percent of the frequency shift.

Considering pure audification of band-limited noise signals,
the sensitivity for kurtosis depends strongly on the bandwidth. The
increase of sensitivity up to a cutoff frequency of a few kHz can
be well-explained by general sensitivity properties of the human
auditory system. The kurtosis sensitivity shows a saturation effect
above 5 kHz which can be attributed to the fact that high kurtosis
values result in a very peaked signal and therefore in a broadband
”synchronization” of energy portions up to very high frequencies,
but the further information contained in the extended bandwidth
cannot be exploited by the auditory system due to masking and
the reduced sensitivity above 5 kHz. The JND of kurtosis also
depends on the kurtosis reference. Nevertheless, our attempts to
establish a Weber’s model for the JND dependence on the stimu-
lus’ value failed for various reasons. First, such models require
an absolute zero value for the stimulus, but kurtosis lacks a natu-
ral and/or plausible zero point although there is a mathematically
defined minimum value of 1. (A kurtosis of 1 could be achieved
because of the band-limited nature of the noise signals.) Secondly,
the perceptive attribute correlated with varying kurtosis is not a
prothetic continuum like sound intensity or brightness, as is also
supported by the qualitative analysis.

DAFX-5



Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

1.27 2.1 3 3.5 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Kurtosis Reference

Ju
st

 N
ot

ic
ea

bl
e 

D
iff

er
en

ce
 in

 K
ur

to
si

s

(a) direct audification at cutoff frequency fc =
5000 Hz (conditions 14,15,2,16,17)
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Figure 3: Median and corresponding 95% confidence intervals of just noticeable skewness/ kurtosis with regard to reference skewness/
kurtosis.

The results in Figure 3c show that variation of skewness is
audible. However, fc has no significant effect on just noticeable
skewness variation (p = 0.59 for means, p = 0.49 for median val-
ues). The reference case for direct audification has not been studied
in this experiment, but in informal listening of the authors prior to
the experiment and by Frauenberger et al. [2]. For detecting skew-
ness, the pure frequency shift should not lead to an improvement,
whereas by the additional frequency modulation the asymmetric
behavior of the distribution values becomes apparent.

5.3. Qualitative Results

The accompanying questionnaire was analyzed following [15] with
regard to possible different criteria that the subjects may have
used in different conditions. Furthermore the analysis should help
defining common terms for perceptive attributes related to skewness
and kurtosis.

In general, a very diverse set of terms have been mentioned:
only two categories have been subsumed in the first place, these are
terms related to the (in-)homogeneity of the noise and its frequency
bandwidth. The category of (in-)homogeneity included, among oth-
ers, the notions ”static sound”, ”variation”, ”fluctuation”, ”outliers”,
or ”(un-)evenness”. Notions related to frequency bandwidth were
”high/ low frequency”, ”f-spread” etc. Apart from these two groups
of terms, subjects indicated 47 different adjectives describing sound
attributes, plus another 19 noun groups indicating sound sources
from a natural or technical context. These terms could not be further
grouped: they consist of a quite extensive list of notions describing
different noise-like sounds, often using colloquial words2.

The terms were annotated (by numbers 1 to 47, the natural
sound sources as N1 to N19) and grouped according to different

2Therefore the authors of this paper cannot provide a translated version
of the original data in this paper; a specialized translator would be needed
for this task. An example are the two German terms ”knittern” and ”knistern”
(crinkle/ crackle), that are not only phonetically similar but have also a very
similar meaning. Thus, it cannot be inferred that subject A has the same
notion of ”knistern” as subject B has of ”knittern”.

experiments’ parameters. Apart from the two term groups above,
the top five were ”knistern” (crinkle/ crackle), ”britzeln” (colloquial
term, something like crumbling), ”blubbern” (bubbling), ”körnig”
(granular), and ”knacksen” (crackle/ click). The most common
sound sources cited are related to water drops and different types of
rain, but a few participants were very creative here (e.g., “aggres-
sive electro-mosquitos” or ”futuristic laser-bursting bubbles”).

Cross-subject coincidences could be found in 11 out of the
18 conditions (defined by 4 or more participants using the same
word/ category). The group category of (in-)homogeneity (4 times)
or frequency bandwidth (one time) was used commonly the most
often. ”Knistern” (crinkle/ crackle) was the only other frequently
shared term (used 4 times), but all in the 5000 Hz conditions, thus
the term refers only to higher frequencies and cannot be generally
applied; ”blubbern” (bubbling) and ”knacksen” (crackle/ click)
were commonly used in one experiment each (conditions 5 and 8).

In general about half of the subjects use rather uniform vocab-
ulary, whereas the other half indicated a wide spread of diverse
terms. Therefore the applied method of counting common words
has to be treated with caution. Still, a few findings are interesting.
For pure audification, we find the most intersubjectively repeated
categories, i.e., it can be argued that the augmented audification
results in more varied sounds. At low frequency (fc = 100Hz)
the general category of (in-)homogeneity is by far most important
(very common for 4 subjects). It can be argued that it is harder to
differentiate sound properties in the low frequency range, where we
are less sensitive. On the other hand, the higher the frequency the
more varied the terms become, and the analysis will neither lead to
coincidences of commonly used terms.

The factor c seems to not have a large influence, at least com-
paring c = 3/12 to c = 5/12. The indicated terms stayed the same
for more than half of the subjects within the conditions with the
same ∆f and fc but varying c. As skewness was only varied in
two experiment settings, no different wording could be found there.

Overall, the above analysis supports to introduce ”crackling”
as the most general term to describe the influence of kurtosis in
noise.
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6. CONCLUSIONS AND OUTLOOK

Augmented audification allows to interpolate seamlessly between
pure audification and an auditory graph in the form of a pitch-time-
display. As opposed to pure audification, where only the playback
rate can be changed, two more model parameters can be chosen
independently in the augmented audification. One parameter, ∆f ,
controls the magnitude of a frequency shift. The second, c, sets the
excursion of the exponential frequency modulation (FM), i.e. pitch
modulation.

The effectivity of augmented audification has been shown in
this paper by a listening experiment. The two hypotheses given in
Sec. 5 are supported by the results of this experiment. When treated
with augmented audification as compared to direct audification, in
random data time series both the JNDs of kurtosis may be lowered
and skewness may be detected. Furthermore, qualitative data on the
denotation of a perceptive attribute related to skewness and kurtosis
have been collected and analyzed. The English word ”crackling”
seems to be a promising candidate for intersubjective naming.

Cautiously, the optimal parameter settings for augmented au-
dification can be given by a frequency shift in the order of 8% of
the mean frequency range, and a factor of c equalling roughly one
percent of this frequency shift. In general, the method of augmented
audification has to be studied by other examples than random time
series.

The regime between fc = 500 and 5000 Hz is most interesting
for further research, in order to get more information on the satu-
ration of the JNDs with rising frequency and how the perceptual
function might be modeled. Aspects of interactivity in the research
paradigm (e.g., the possibility to acoustically zoom into an audified
data set) have to be examined further.
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Appendix:
In this supplementary discussion, we investigate the construction
of a psychophysical scale for kurtosis of band-limited noise for
the case of 5 kHz bandwidth and direct audification (see Table 1,
conditions 14, 15, 2, 16, and 17).

In general, a monotonic psychophysical scale of sensation Ψ
as a smooth function of the stimulus φ can be established from
measurements of stimulus difference thresholds ∆φ if a model
for the subjective JND ∆Ψ is assumed. The most important JND
models are Fechner‘ s law of a constant subjective JND, ∆Ψ = 1,
and Ekman‘s principle [16] which states a constant relative JND,
∆Ψ/Ψ = k.
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Figure 4: Psychophysical scale for kurtosis.
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Figure 5: Kurtosis histogram of 20 min. of human speech.

However, though there has been a long-lasting debate about which
of the two “laws” might be more appropriate, they are interrelated
with the mathematical structure of the underlying psychophysi-
cal scale [17]. Considering an explicitly given or postulated psy-
chophysical magnitude function Ψ(φ) and its derivative dΨ(φ)/dφ,
one can substitute finite differences for the differential

dΨ(φ)

dφ
=

∆Ψ

∆φ
. (12)

Assuming constant relative JND, ∆Ψ = kΨ, the psychophysi-
cal scale Ψ can theoretically be established utilizing numerical
integration of the difference thresholds

Ψ(φ) = exp

[∫
k ∗ dφ

∆φ

]
. (13)

Alternatively considering Fechner’s model, the scale function reads
Ψ(φ) =

∫
(k ∗ dφ/∆φ). Thus, difference threshold ∆φ, JND ∆Ψ

and psychophysical scale Ψ are intertwined as functions of the
stimulus φ.

The difference thresholds of our listening test have not been
measured with enough density on the stimulus scale. Therefore,
and for intersubjective differences, the calculation of Ψ(φ) has to
be achieved by optimizing a cost function based on a certain as-
sumption of JND model. We chose constant relative JND. Combing
five reference values φj = 1.27, 2.1, 3, 3.5, 4.5 with the difference
thresholds of our ten subjects results in 42 different kurtosis values
and therefore in 42 values of the psychophysical scale Ψi = Ψ(φi)
to be modeled. (In some conditions, thresholds for different subjects

yielded identical values.) For each reference value φj and for each
of the associated individual difference thresholds φj,m, Ekman‘s
law postalutes: Ψj,m = (1+k)∗Ψj which enters the optimization
problem as a quadratic cost function J =

∑
(Ψj,m− (1 + k)Ψj)

2.
Because of the different φj,m-values for a single reference

kurtosis, the resulting function Ψ(φ) would exhibit plateau regions
and perhaps rather steep transitions between them which conflicts
the required smoothness. Therefore, the cost function was extended
by a smoothness term based on the distance in stimulus between
adjacent scale values,

λ

40∑
i=1

(
φi+2 − φi+1

φi+2 − φi
Ψi −Ψi+1 +

φi+1 − φi
φi+2 − φi

Ψi+2)2,

and by a term setting a reference scale value as Ψ(φref ) = Ψref .
Optimization results have been obtained for different smooth-

ness weights λ and a wide range of JND constants k ≈ 0.2− 0.8.
They revealed minor sensitivity to the actual choice of parame-
ter values. A typical scale function for λ = 50 and k = 0.4 is
displayed in Fig. 4 (solid line with asterisks).

To test the psychophysical plausibility of our scale function, we
compare it with the predictions of a theoretical model for limited
perception proposed by Sun et al. [18]. Their approach relies on
the neurophysiologically well-motivated assumption that the acqui-
sition of information in a stimulus is Bayes-optimal at a computa-
tional level. Generally, it is argued that the actual mapping function
Ψ(φ) is the outcome of an optimization process taking place during
evolution. The optimization minimizes the expected relative error
of the quantized representation of the stimulus and therefore de-
pends on its probability density function. Assuming a stimulus pdf
fkurt(φ) and a bounded stimulus range 0 < φ0 ≤ φ ≤ φ1 <∞,
the psychophysical scale function has to satisfy

dΨ(φ)

dφ
∝ φ−2/3fkurt(φ)1/3 for φ ∈ [φ0, φ1] (14)

according to the proposed model (cf. Sun et al).
To compare Sun‘s model with our psychophysical scale func-

tion, a probability density function for kurtosis reasonably moti-
vated from an ecologial and evolutionary point of view has to be
established. Following Sun et al., we argue that the auditory sys-
tem may have evolved to optimally process vocalization sounds
like human speech. Therefore, we estimated fkurt(φ) for human
speech based on frames of 100ms length in 20 min of different
speech recordings (the histogram is shown in Fig. 5) and calculated
the Bayes-optimal psychophysical scale function ΨBayes(φ). A
direct comparison between the scale model based on the listening
test and the Bayes-optimal model is displayed in Fig. 4. The values
of our model have been normalized to match the range of the Bayes
model. Though the two functions fit surprisingly well which at
least indicates the appropriateness of this line of argumentation, it
has to be stated that this is neither a direct proof for the validity of
Ekman‘s principle of constant relative JND nor for the Bayesian
perception model. In fact, it primarily reveals that the constant
relative JND corresponds to the assumption of the relative error
criterion in the Bayes model.
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