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ABSTRACT

We present a strategy for static morphing that relies on the sophis-
ticated interpolation of the parameters of the signal model and the
independent control of high-level audio features. The source and
target signals are decomposed into deterministic, quasi-determini-
stic and stochastic parts, and are processed separately according to
sinusoidal modeling and spectral envelope estimation. We gain
further intuitive control over the morphing process by altering the
interpolated spectrum according to target values of audio descrip-
tors through an optimization process. The proposed approach leads
to convincing morphing results in the case of sustained or percus-
sive, harmonic and inharmonic sounds of possibly different dura-
tions.

1. INTRODUCTION AND RELATED WORK

Sound morphing plays an important role in many areas includ-
ing sound design for compositional applications and video games,
speech manipulation, and in generating stimuli with specific and
controllable acoustic parameters that are used in psychoacoustic
experiments [1, 2]. Despite the extensive literature on this topic,
there is no consensus on a single definition of audio morphing,
and an extensive discussion on different viewpoints can be found
in [3]. In this paper we present a strategy for stationary morphing,
as opposed to dynamic morphing, in which a source sound gets
continuously transformed over time into a target sound. We con-
sider static morphing as a process that hybridizes a source sound
with target sounds, or target audio features, through the indepen-
dent manipulation of acoustic parameters.

Additive synthesis is one of the most flexible techniques, and
as such many morphing strategies rely on interpolating the param-
eters of a sinusoidal model [4, 5, 6, 7, 8]. Tellman et al. [4] first
pair the partials of the two sounds by comparing their frequency
ratios to the fundamental frequency, and afterwards they interpo-
late their frequency and amplitude values. They also time-scale the
two sounds to morph between their tremolo and vibrato rates based
on assumptions that usually do not hold in the case of most natural
sounds. Osaka [5] first performs dynamic time warping (DTW),
and then he finds partials’ correspondences by dynamic program-
ming. The residual is modeled with short partials and is morphed
according to stochastic parameter interpolation with hypothesized
distributions. Fitz et al. [6] estimate the parameters of the “Band-
width Enhanced Model” [9] by reassigned spectrograms, and use
morphing envelopes to control the evolution of the frequency, am-
plitude, bandwidth and noisiness of the morph. Haken et al. [7]
use a similar technique to morph in real time between pre-analyzed
sounds that are placed in a three-dimensional timbre control space.
Boccardi and Drioli [8] use Gaussian Mixture Models (GMM) to
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morph only the partials’ magnitudes, which are derived from Spec-
tral Modeling Synthesis (SMS) [10]. According to Boccardi and
Drioli, since the morphing is based only on magnitude transfor-
mations, the source and target signals should belong to the same
instrument family.

Other morphing strategies rely on interpolating the parameters
of a source-filter model. Slaney et al. [11] construct a multidimen-
sional space that encodes spectral shape and fundamental frequ-
ency on orthogonal axes. Spectral shape is derived through Mel-
Frequency Cepstral Coefficients (MFCC) and fundamental frequ-
ency by the residual spectrogram. The optimum temporal match
between the source and target sounds is found using DTW based
on MFCC distances. The smooth and pitch spectrograms are in-
terpolated separately. Ezzat et al. [12] argue that interpolating the
spectral envelopes by simple cross-fading, as in [11], does not ac-
count for proper formant shifting. They describe a method for find-
ing correspondences between spectral envelopes so as to encode
the formant shifting that occurs from a source to a target sound.
The morphing is based on interpolating the warped versions of the
two spectral envelopes, and morphing between the residuals is left
for future work.

Other authors claim to control synthesis parameters or to mor-
ph according to perceptual dimensions by using high-level audio
features. Hoffman and Cook [13] propose a general framework for
feature-based synthesis according to an optimization scheme that
maps synthesis parameters to target feature values. The results are
very preliminary: the source sound consists of stationary sinusoids
and noise that is spectrally shaped through MFCCs; the target fea-
tures are limited to spectral centroid, spectral roll-off and funda-
mental frequency histograms. Park et al. [14] treat single features
as modulation signals that are applied to a source sound. Accord-
ing to their proposed scheme, different features cannot be con-
trolled independently and thus the combination of multiple target
features leads to unpredictable results. Mintz [15] uses linear con-
strained optimization on audio descriptors to control the parame-
ters of an additive-plus-noise synthesizer. Williams and Brookes
[16] morph using SMS according to verbal attributes that corre-
late with audio descriptors and in [17] employ a similar technique
to morph between prerecorded sounds and sounds captured in real
time. Hikichi and Osaka [18] adjust the parameters of a physi-
cal model using the spectral centroid as a reference to morph be-
tween piano and guitar sounds, and Primavera et al. [19] focus on
the importance of decay time when morphing between percussive
sounds of the same family. Coleman and Bonada [20] derive an-
alytic relations for the spectral centroid and standard deviation to
control adaptive effects for resampling and band-pass equalization.
Caetano and Rodet in [21] investigate spectral envelope represen-
tations, which lead to linearly varying values of audio descriptors
when linearly interpolated according to a morphing factor, and in
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[22] use optimization techniques based on genetic algorithms to
obtain morphed spectral envelopes that approximate target audio
descriptor values.

Other approaches rely strictly on the time domain [23] or on
time-frequency representations [24, 25]. Robel [23] models the
signals as dynamical systems using neural networks and morphs
by interpolating their corresponding attractors. According to the
author, the attractors of the two sounds should be topologically
equivalent for achieving a convincing morphing. Ahmad et al.
[24] propose a scheme for morphing between transient and non-
stationary signals using the discrete wavelet transform (DWT) al-
ong with singular value decomposition (SVD) for interpolating the
wavelet coefficients. Olivero et al. [25] propose a sound mor-
phing technique without making any presumptions about the na-
ture of the signal or its underlying model. The technique relies
on the interpolation of Gabor masks and its penalty-based ver-
sion is shown to encompass typical cross-synthesis strategies used
in computer music applications. Furthermore, the interpretation
of one of the strategies in terms of Bregman divergences allows
them to include constraints that force morphing intermediates to
exhibit a predesigned temporal sequence of centroids. This ap-
proach works well only as long as there is overlapping energy be-
tween the sounds and in our opinion, certain presumptions about
the nature of the signal are necessary for choosing an appropriate
morphing strategy.

Table 1 shows a brief comparison between the above-presented
methods that are applicable to static morphing and the current ap-
proach. In Section 2 we present an overview of our proposed ap-
proach. Section 3 describes in detail the morphing process based
on parameter interpolation, and Section 4 presents the optimiza-
tion scheme used for morphing based on higher-level audio fea-
tures. In Section 5 we present our concluding remarks and future
improvements of our method.

2. A HYBRID APPROACH TO SOUND MORPHING

The morphing scheme presented here requires a source sound, to
which we apply timbral transformations according to a morphing
factor “a” (0 < a < 1), and a target. A value of « = 0 corre-
sponds to the source sound and a value of & = 1 corresponds to
the target sound. The target could consist only of specific audio
descriptor values that are obtained according to a morphing factor
aq and applied to the source sound, or it could be a different sound
from which we extract the audio descriptors that we want to morph
accordingly, but we also interpolate between the spectrotempo-
ral fine structures of the two according to a morphing factor «,.
Depending on their spectral content, the source and target sounds
can be decomposed into three parts as in [5]: a deterministic part,
which is related to harmonic and inharmonic qualities; a quasi-
deterministic part, which is more related to transients and spec-
trotemporal irregularities; and a stochastic part, which is related
to noise color. The deterministic and quasi-deterministic parts are
estimated through sinusoidal modeling from which we obtain the
time-varying frequencies, amplitudes and phases of the partials.
The stochastic parts are derived by subtracting the deterministic
and quasi-deterministic parts from the original signals [10] and are
modeled by estimating their spectral envelopes.

In the next step, we compute the time-varying audio descrip-
tors on each of the three parts and for each analysis frame. Au-
dio descriptors that are applicable to the current approach are pre-
sented in detail in [26]. For the purposes of this study we have ex-

perimented with: spectral centroid and higher order statistical mo-
ments of the spectrum including the standard deviation (referred
to as spectral spread), spectral skewness, and spectral kurtosis;
spectral decrease; and spectral deviation, which is only computed
on the deterministic part of the signal. Descriptors that are ap-
plicable exclusively to harmonic (or slightly inharmonic) signals,
such as tristimulus values and the odd-to-even harmonic ratio, are
also applicable. Natural sounds, however, rarely exhibit such well-
defined properties, and thus such descriptors would be more suit-
able in the case of synthetic or simplified natural sounds. Once
we calculate the descriptors of the source and target sounds we
can compute intermediate values according to the morphing fac-
tor aq, and we interpolate the model parameters of the determini-
stic, quasi-deterministic and stochastic parts separately. The inter-
mediate values of audio descriptors are applied to the parameter-
interpolated signals using the optimization scheme described in
Section 4.

We chose to model differently the stochastic part, on the one
hand, and the deterministic and quasi-deterministic parts, on the
other hand, because not all sounds exhibit a strong formant struc-
ture. As such, spectral envelopes would be a poor estimation of
the signal, unless they are estimated by the tracked partials, as in
[10, 27, 28]. On the other hand, it is well known that if the signal
is stochastic-only, sinusoidal modeling usually leads to artifacts
and so a morphing scheme based exclusively on this model would
degrade the sound quality. The separation into deterministic and
quasi-deterministic parts is necessary for improving the estima-
tion of partial-to-partial correspondences, as we discuss in Section
3.1.1. In the following we assume that the source and target sounds
are equalized in loudness, have the same fundamental frequencies,
and can be of different durations.

3. PARAMETER INTERPOLATION

In this section we describe the interpolation schemes based on the
parameters of the sinusoidal model and the parameters that model
the spectral envelopes of the residuals.

3.1. Deterministic and quasi-deterministic parts

The following scheme is used for both the harmonic and quasi-
harmonic parts. Before interpolating the parameters of the sinu-
soidal model, it is necessary to find partial-to-partial correspon-
dences between the source and target sounds.

3.1.1. Estimating partial-to-partial correspondences

The deterministic part consists of partials that are long in duration,
with respect to the total duration of the analyzed sound, whereas
the quasi-deterministic part consists of shorter partials that are gen-
erally unstable in frequency (short chirps), have lower amplitude
values, and surround the harmonic or inharmonic partials of the
deterministic part. Such partials may also occur as artifacts of the
sinusoidal analysis algorithm, especially in cases where the sinu-
soids are of low amplitude and the tracking algorithm fails to per-
form a reliable peak-to-peak matching.

A one-to-one correspondence between the partials of the sour-
ce and target sounds is very unlikely to occur unless we limit the
number of tracked partials to the most prominent ones with respect
to their durations and amplitude thresholds. However, there are

DAFX-146



Proceedings of the 1 9" International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5-9, 2016

Table 1: A brief comparison of methods for static morphing.

Author(s) and papers Sound model & morphing | Partial matching High-level audio features
strategy
Osaka [5] Sinusoidal modeling. The | Yes No
residual is modeled with short
partials according to hypothe-
sized distributions.
Tellman et al. [4] Sinusoidal modeling. No treat- | Yes No
ment of the residual.
Haken et al. [7] Noise-enhanced sinusoidal | No Amplitude and fundamental
modeling. frequency
Boccardi and Drioli [8] GMM applied to SMS. No | No No
treatment of the residual.
Caetano and Rodet [22] Spectral envelopes for the | No Spectral audio descriptors
deterministic and stochastic
parts.
Robel [23] Dynamical systems. Not applicable No
Ahmad et al. [24] DWT with SVD. Not applicable No
Olivero et al. [25] Gabor transform with con- | Not applicable Arithmetic, harmonic and geo-
strained Gabor masks. metric centroids
Kazazis et al. [present docu- | Sinusoidal modeling and spec- | Yes Spectral and harmonic audio
ment] tral envelopes. descriptors

cases in which even if there is a limit to the number of tracked par-
tials, the assumption of a one-to-one correspondence as described
in [21] could be problematic. For example, when morphing from
a sound that has odd and even harmonics to a sound that has only
odd ones, we would ideally interpolate only the frequency and am-
plitude values of the odd harmonics of the two sounds to avoid the
artifacts that would result from interpolating the odd with both the
odd and even harmonics of the two sounds.

For finding correspondences between the partials of the source
and target sounds, we use a k-nearest neighbors classifier (k-NN)
based on Euclidean frequency proximity, and under the condition
that the vector that is to be classified must have the same or a
smaller number of partials. Obviously, the k-NN classifier does
not return a one-to-one, but rather a many-to-one, mapping, so we
choose the closest neighbor in frequency, and we treat the rest of
the neighbors as unmatched partials. The unmatched partials retain
their original frequencies but are initialized with zero amplitude
levels, which gradually increase according to the morphing fac-
tor. After experimenting with different sounds, we concluded that
such treatment does not lead to perceptual stream segregation, but
rather to a seamless partial fade-in effect that facilitates the mor-
phing between inharmonic sounds or between sounds that consist
of unequal numbers of partials (see Fig. 1).

3.1.2. Interpolation of partials’ breakpoint values

We represent each partial according to its start and end times, and
with time breakpoints that are set according to its frequency and
amplitude variations. If the source and target sounds have a differ-
ent number of breakpoints, we simply interpolate the breakpoint
values of the shorter one in order to match the number of break-
points of the longer one. This representation enables us to inter-
polate the parameters at the level of events, which offers greater
control over the morphing process as opposed to parameter inter-
polation between time frames. If the partials of the source and
target sounds differ in duration, we are able to achieve intermedi-

ate durations by interpolating the breakpoint values of each partial
according to the morphing factor. Interpolating between the start
and end times of the partials also allows us to morph their onset
asynchrony. We use the following expressions for calculating the
interpolated values of partials’ frequencies and amplitudes, respec-
tively:

flop) = apfs + (1 —ap) fu 9]
logyo(g(ap)) = aplogyg(gs) + (1 — ) logy(gr) (@)
where the subscripts “s”, “t” denote the source and target, respec-
tively, and «, is the morphing factor related to parameter interpo-
lation. Though Fig. 1 does not show a typical harmonic spectrum
of the analyzed sounds because of the very low amplitude detec-
tion threshold (—90dB) that was used in the partial-tracking al-
gorithm, and which subsequently gave rise to auxiliary harmonic
components, it clearly illustrates the estimation of partial-to-partial
correspondences and the interpolation of the partials’ breakpoint
values.

3.2. Stochastic part

For morphing the stochastic part, we first estimate for every anal-
ysis frame its spectral envelope using Linear Predictive Coding
(LPC), because we assume that the modeled signal is random,
which fits exactly the basic assumption of LPC. We then get a tem-
poral sequence of spectral envelopes (one for each frame), which
allows us to render a time-varying Power Spectral Density (PSD)
of the stochastic part. In order to morph, we interpolate for each
time between the spectral envelope of the source and the target at
this corresponding time. For a high-quality interpolation of the
spectral envelopes, it is necessary to convert the LPC transverse
coefficients to an alternative representation, because they do not in-
terpolate well and might lead to unstable filters. Line Spectral Fre-
quencies (LSF), Reflection Coefficients (RC) and Log Area Ratio
(LAR) have been shown to interpolate smoothly, lead to stable in-
termediate filters, and lead to linear variations of audio descriptors
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Figure 1: Partial-to-partial correspondences and parameter interpolation of the deterministic part. Morphing from a clarinet sound to a
bassoon with oy, = 0.5. Gray-level values correspond to the partials’ amplitude values.

when linearly interpolated [21, 29]. We choose to interpolate the
LAR coefficients (Eq. 3) as they both guarantee the filter’s stabil-
ity and have a physical interpretation, which could be specifically
useful when trying to morph between sounds that were created by
physical modeling synthesis as in [5, 2]. The filters’ coefficients
are interpolated according to Eq. (2).

lar(ra) = aplar(rs) + (1 — ap)lar(r) 3)

where lar is a vector the coefficients of which read:

1—7r()

Tr(i))’ 1<:<n 4)

lar(r)[i] = In <

and n is the number of reflection coefficients . The morphed
residual is synthesized by filtered white noise after the inversion
of the LAR coefficients to LPC coefficients.

3.3. Temporal Energy Envelope

In the present approach, the temporal energy envelope is a conse-
quence of morphing. The parts of the signal that were morphed in-
dependently are added together to form the parameter-interpolated
signal and thus, the energy envelope is constructed from the time-
varying amplitudes of the partials and the gains of the filter.

4. FEATURE INTERPOLATION

The desired values of descriptors along with the interpolated spec-
trum form an underdetermined system because in theory there are
an infinite number of sounds that have the same audio descrip-
tor values. As previously described in Section 2, the target may
consist only of target descriptor values D,, in which case the mor-
phing is based exclusively on high-level features. Fig. 2 shows
an example of two sounds exchanging time-varying spectral cen-
troids, where oy, = 0, since the source is the Timpani without any
parameter-based morphing, and a.g = 1, because we apply to the
source spectrum the spectral centroid values of the Tuba, which
is the target. For each time frame, we match the audio descriptor
values obtained according to a specific aq to the interpolated spec-
trum by optimizing the amplitudes of the sinusoids or FFT bins
of the interpolated spectrum x; under the constraints of the target
values of descriptors D,. More formally this can be expressed as:

N
ming Z |x; — g;| subjectto D(z) = D (5)
j=1

where g; are the parameter-interpolated amplitude values accord-
ing to ap, N is the total number of partials or FFT bins, and D
is the target value of D(z), which can be one of the following
descriptors (Eq. (6) — (11)).
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Figure 2: The spectral centroid time series of a Tuba sound applied to a Timpani (the actual values of the time series are shown in Fig. 3.)
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where p; are the normalized values of z; [27]:
Tj
N

Ej:l Lj

dev denotes the harmonic spectral deviation and SE(f;) is the
value of the spectral envelope at frequency f;, which is estimated
by averaging the values of three adjacent partials; decr denotes
the spectral decrease; mi, m2, m3 and m4 denote the spectral

pj = (12)

centroid, spectral spread, spectral skewness and spectral kurtosis
respectively. The optimization is run in Matlab using the “fmin-
con” function along with the “sqp” method, which are suitable
for solving constrained and non-linear problems [30]. Since the
audio descriptors have different ranges, it is necessary to normal-
ize them for assessing the convergence of the algorithm. Using
this optimization scheme, we are able to set different morphing
factors for each descriptor independently, as long as a feasible so-
lution among these values exists. Furthermore, the choice of the
objective function (Eq. 5) forces the optimized spectrum to be as
close as possible to the interpolated one by keeping its frequency
content unchanged and by altering its amplitude values as little as
possible. Fig. 3 shows an example of morphing the parameter-
interpolated signal according to varying morphing values of spec-
tral centroid and spectral spread while preserving a constant value
for the rest. Using a sinusoidal model for the deterministic and
quasi-deterministic parts, the optimized values correspond directly
to the parameters of additive synthesis, and the residual reaches its
target values by altering the energy of the FFT bins. As in Section
3.1.2, if the source and target sounds are of different durations, we
simply interpolate the descriptor values of the shorter one in order
to match them to the analysis frames of the longer one.

5. CONCLUSIONS AND FUTURE WORK

We presented a hybrid approach to sound morphing based on sinus-
oid-plus-noise modeling and higher-level audio features. Dividing
the signal into deterministic, quasi-deterministic, and stochastic
parts and processing them separately allows for finer control of
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Figure 3: Morphing the parameter interpolated signal by audio descriptors. Spectral centroid and spectral spread vary according to the
morphing factor a. The rest of descriptors preserve constant target values according to their median when interpolated with aq = 0.5.

the synthesis parameters and also enables us to morph between
deterministic and quasi-deterministic signals of different durations.
The morphed sound is synthesized using additive synthesis for the
deterministic and quasi-deterministic parts and filtered white noise
for the stochastic part. The spectrum of the morphed signal is
further refined according to target audio descriptor values through
an optimization process. We have shown that this process allows
us to control accurately and independently several audio features,
provided that a feasible solution among them exists. Audio ex-
amples are available at: https://www.mcgill.ca/mpcl/resources-0/
supplementary-materials. The proposed scheme is more suitable
for sustained and percussive sounds, which can either be harmonic
or inharmonic, rather than textural sounds. Their residuals how-
ever, should be stationary (or pseudo-stationary) as opposed to
sound texture, the residual of which is usually non-stationary and
may consist of sharp transients. A refinement of our approach
would be to find sophisticated ways to interpolate between dif-
ferent tremolo and vibrato rates while preserving the overall spec-
trotemporal complexity of the partials. Finally, we by no means
claim that the use of high-level audio features enables a perceptu-
ally based sound morphing. Rather, it offers a more intuitive con-
trol over the morphing process, as in the case of adaptive effects
[31]. Up to now only spectral centroid and log-attack time have
been shown to be significantly correlated with perceptual dimen-
sions, cf. [1, 32]. If and how such audio features collapse to single
perceptual dimensions remains to be empirically determined.
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