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ABSTRACT

The vibration of strings in musical instruments depends not only
on their geometry and material but also on their fixing at the ends
of the string. In physical terms it is described by impedance bound-
ary conditions. This contribution presents a functional transforma-
tion model for a vibrating string which is coupled to an external
boundary circuit. Delay-free loops in the synthesis algorithm are
avoided by a state-space formulation. The value of the boundary
impedance can be adjusted without altering the core synthesis al-
gorithm.

1. INTRODUCTION

The vibrations of strings, bars and other sound generating objects
in musical instruments are a well studied subject. Based on the
fundamental laws of elasticity, their dynamic behavior is accu-
rately described by differential equations of different kinds.

There is a variety of methods to turn these differential equa-
tions into computational models by discretization in time and space
or by transformation into the respective frequency domains. The
procedure of deriving a real-time algorithm from a physical de-
scription of parts of a musical instrument is called physical mod-
eling sound synthesis.

The dynamics of a vibrating body depend not only on proper-
ties like shape and material but also on the contact conditions to
other parts of the musical instrument or the hands of the musician.
These are relatively easy to model if the ends of a string are fixed
by frets or bridges or if the ends of a bar in a xylophone are free
from external forces.

Other types of contact conditions need more careful consid-
eration. The touch and the movement of the musicians fingers
can be modelled only approximately with mathematical equations.
The interaction between the strings, the bridge, and the body of
a musical instrument requires careful measurement of parameters
like body resonances and bridge impedances. Since there is an
abundance of research in this field, only a few books and overview
articles with extensive references can be addressed here.

The corresponding boundary conditions are described in [1,
Chap. 2.12] by conditions for the deflection (fixed end) or its first
order space derivative (free end) or by complex impedances at the
boundaries. Also [2, Chap. 6.1.9] discusses not only the simple
cases of fixed and free ends but also lossy boundary conditions. In
finite difference models, the boundary conditions are often formu-
lated after spatial discretization by involving virtual spatial sample
points beyond the boundary [2, 3]. Waveguide methods model the
influence of the boundary on the reflection of waves by reflection

factors or reflection filters (bridge filters) [3, 4]. The string-bridge
interaction is described by a mechanical impedance (admittance)
in [5].

A particular physical modeling technique is the functional trans-
formation method [6]. It is based on the spatial eigenfunctions of
vibrating bodies, which are most easily determined for fixed and
for free ends. However [7] discusses also impedance boundary
conditions for frequency independent impedances. The more in-
volved case of frequency dependent impedances (typically bridge
impedances) is discussed in [8] by incorporating the boundary
impedance into the synthesis algorithm.

A conceptually simpler approach has been presented in gen-
eral terms in [9]. There the synthesis algorithm is kept separate
from the boundary model. This way, the impedance in the bound-
ary model can be adjusted during operation without affecting the
structure of the string model. The approach is motivated by the
plant-controller loop familiar from control theory.

How these adjustable boundary conditions can be applied to a
functional transformation model of a string is shown here in de-
tail. Sec. 2 presents the physical model of a string and the spatial
transformation is reviewed in Sec. 3. Boundary conditions are dis-
cussed in Sec. 4 with the impedance as an adjustable parameter.
The occurrence of delay-free loops can be avoided by a state space
approach in Sec. 5. Examples show the effect of the resulting syn-
thesis algorithm in Sec. 6. Although the results shown here involve
a frequency independent impedance, the state space approach can
be extended also to frequency dependent impedances as discussed
in Sec. 7.

2. PHYSICAL MODEL OF A STRING

This section describes the physical foundations of a single vibrat-
ing string. The partial differential equation describing the oscil-
lation of a string is reformulated to serve as a starting point for
the following Functional-Transformation method (FTM). The pre-
sentation is an abridged and modified version of the approach de-
scribed in [10].

2.1. Physical Description

The starting point for a computational model is the partial differ-
ential equation (PDE) of a single vibrating string [10, 11]. The
deflection y = y(x, t) depends on the position on the string x and
time t, ẏ represents the time- and y′ the space-derivative. Then the
PDE of a single vibrating string is given as

ρAÿ + EIy′′′′ − Tsy
′′ + d1ẏ − d3ẏ′′ = fe, (1)
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with the cross-section areaA, moment of inertia I and the length l.
The material is characterized by the density ρ and Young’s modu-
lus E. Ts describes the tension and d1 and d3 are non-frequency
and frequency dependent damping [11]. The excitation function is
defined as fe = fe(x, t).

The PDE (1) is reformulated into a vectorized form for subse-
quent transformations[

C
∂

∂t
− L

]
y(x, t) = fe(x, t), (2)

with the differential operator

L = A+ I
∂

∂x
(3)

and the vector of variables
y(x, t) =

[
ẏ y′ y′′ y′′′

]T
. (4)

The system matrices of Eq. (2) are

C =

 0 1 0 0
0 0 0 0
0 0 0 0
c1 0 c2 0

 A =

 0 0 0 0
0 0 −1 0
0 0 0 −1
a1 0 a2 0

 (5)

with the coefficients

a1 =
d1
EI

a2 = − Ts

EI
c1 = −ρA

EI
c2 =

d3
EI

. (6)

The equivalence between the scalar and the vector representation
follows by converting (2) back to the scalar form (1).

2.2. Boundary Conditions

The behavior of a vibrating string depends also on a set of bound-
ary conditions in addition to the PDE (1). They can be described
using a boundary matrix FH

b , which transforms the vector of vari-
ables y(x, t) into a vector of boundary excitations φ(x, t)

FH
b y(x, t) = φ(x, t) x = 0, l. (7)

The superscript H denotes the hermitian matrix. In a first simple
case it is assumed, that there are unknown boundary excitations φ
for deflection and bending moment at the boundaries of the string

y(x, t) = φ1(x, t) x = 0, l, (8)

y′′(x, t) = φ3(x, t) x = 0, l. (9)

Since the vector of variables in Eq. (4) contains the first time deriva-
tive, Eq. (8) is turned into ẏ(x, t) = φ̇1(x, t) by time differentia-
tion, such that

FH
b =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , φ(x, t) =


φ̇1(x, t)

0
φ3(x, t)

0

 . (10)

2.3. Laplace Transformation

For the following transformation of the string model a Laplace
transformation has to be applied to the vectorized PDE (2) and
to the boundary conditions (7), which leads to

[sC − L]Y (x, s) = Fe(x, s) (11)

FH
b Y (x, s) = Φ(x, s). (12)

The complex frequency variable is s and the Laplace transforms
of the time variables are denoted by uppercase letters. This model
is used for the further derivations of the FTM.

3. TRANSFORMATION OF THE STRING MODEL

In this section the FTM is applied to the string model. The foun-
dations of the transformation are described in [6, 10]. Therefore,
some of the derivations regarding the transformation are skipped
in the following.

3.1. Sturm-Liouville Transformation

The first step is the definition of a forward and inverse Sturm-
Liouville Transformation (SLT). The forward transformation is de-
fined as [10]

T {Y (x, s)} = Ȳ (µ, s) =

∫ l

0

K̃H(x, µ)CY (x, s)dx, (13)

and the inverse transformation can be written in terms of a sum as

T −1 {Ȳ (µ, s)
}

= Y (x, s) =
∑
µ

1

Nµ
Ȳ (µ, s)K(x, µ), (14)

with the scaling factor

Nµ =

∫ l

0

K̃H(x, µ)CK(x, µ)dx. (15)

The vectorsK(x, µ) and K̃(x, µ) are the kernel functions (eigen-
functions) of the transformation, which depend on the problem.
The kernel functions fulfill different properties which are shown
in [10]. The eigenfunctions K̃(x, µ) are adjoint to the primal
eigenfunctions K(x, µ). Additionally, the two sets of eigenfunc-
tions are biorthogonal. The integer index µ can be regarded as a
discrete spatial frequency variable.

3.2. Application to the PDE

The transformation from Eq. (13) is now applied to Eq. (11). The
properties of the eigenfunctions from Sec. 3.3 lead to the result

sȲ (µ, s)− sµȲ (µ, s)− Φ̄(µ, s) = F̄e(x, s), (16)

with the transformed boundary and excitation term

Φ̄(µ, s) =
[
K̃H(x, µ)Φ(x, s)

] ∣∣∣∣l
0

x = 0, l, (17)

F̄e(µ, s) =

∫ l

0

K̃H(x, µ)Fe(x, s)dx, (18)

where the values sµ represent the spatial eigenfrequencies. Solv-
ing Eq. (16) for the transformed output signal gives

Ȳ (µ, s) =
1

s− sµ
[
Φ̄(µ, s) + F̄e(µ, s)

]
. (19)

3.3. Eigenvalue Problems

The two kernel functions of the forward and inverse SLT have to
fulfill their eigenvalue problems and boundary conditions, so that
the transformation is applicable in Eq. (16)

LK(x, µ) = sµCK(x, µ) FH
b K(x, µ) = 0, (20)

L̃K̃(x, µ) = s∗µC
HK̃(x, µ) F̃H

b K̃(x, µ) = 0, (21)
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with the adjoint differential operator and boundary matrix

L̃ = AH − I ∂
∂x

F̃H
b = I − FH

b . (22)

Indeed, Eq. 16 follows by applying the SLT from (13) to the PDE (2),
observing the properties (20) and (21) and integration by parts.
From these eigenvalue problems the primal and the adjoint eigen-
functions are calculated, see Sec. 3.6.

3.4. Kernel functions

To calculate the eigenfunctions K(x, µ) and K̃(x, µ) from the
eigenvalue problems, Eqs. (20) and (21) are reformulated as

∂xK(x, µ) = QK(x, µ), (23)

∂xK̃(x, µ) = Q̃K̃(x, µ), (24)

with

Q = sµC −A, (25)

Q̃ = AH − s∗µCH = −QH. (26)

The solution of the primal eigenvalue problem for the eigenfunc-
tions can be formulated in terms of a matrix exponential

K(x, µ) = eQxK(0, µ), (27)

where K(0, µ) is the boundary vector of the eigenfunctions. The
matrix exponential can be calculated using the method from [12],
or by any other suitable method. The solution for the adjoint kernel
function K̃(x, µ) is formulated analogously.

3.5. Eigenvalues and Eigenfrequencies

To calculate the kernel functions with Eq. (27) the eigenvalues λ
of matrix Q and the eigenfrequencies sµ of the string model have
to be derived. Therefore the characteristic polynomial pQ(λ) of
the matrixQ is calculated. It follows from Eq. (25) as

pQ(λ) = λ4 − q2λ2 − q1sµ, (28)

with the coefficients

q1 = c1sµ − a1 q2 = c2sµ − a2. (29)

With relation between the eigenvalues

λ2 = −λ1 λ4 = −λ3, (30)

follows for the eigenvalues of the matrixQ

λ2
1/3 =

1

2

(
q2 ±

√
q22 + 4q1sµ

)
. (31)

By evaluating the boundary conditions for the eigenfunctions in
Eqs. (23) and (24), it can be shown that the eigenvalues λ can only
adopt values of the form

λ = λµ = jµ
π

l
= jγµ. (32)

Setting Eq. (28) to zero and solving for the eigenfrequencies sµ
leads to the dispersion relation

s2µ +

(
a1
c1
− λ2 c2

c1

)
sµ −

λ2

c1

(
λ2 + a2

)
= 0. (33)

The eigenfrequencies sµ are the solutions of the dispersion rela-
tion (33) for λ from (32). For each value of γµ the dispersion
relation yields two complex conjugate eigenfrequencies sµ.

3.6. Solution for the kernels

Using the derivations from the previous sections the eigenfunc-
tions can be calculated from Eq. (27). Skipping many explicit cal-
culations, the eigenfunctionK(x, µ) results in

K(x, µ) =


sµ
γµ

sin(γµx)

cos(γµx)
−γµ sin(γµx)
−γ2

µ cos(γµx)

 , (34)

and similar for the adjoint eigenfunction function

K̃(x, µ) =


q∗1 cos(γµx)

− s
∗
µq

∗
1

γµ
sin(γµx)

−γ2
µ cos(γµx)

γµ sin(γµx)

 . (35)

These solutions can be verified via inserting them into the eigen-
value problems from the Eqs. (23) and (24).

3.7. Output Signal

The results from the previous sections can now be used to construct
the synthesis equation for the string, which is based on the inverse
SLT from Eq. (14). As mentioned in Sec. 3.5 for one µ-value a
complex conjugated pair of eigenfrequencies sµ arises in Eq. (33).
Setting the excitation function fe(x, t) to zero for brevity, the syn-
thesis equation turns into

Y (x, s) =
∑
µ

1

Nµ
K(x, µ)Ȳ (µ, s) =

=
∑
µ

1

Nµ
K(x, µ)

1

s− sµ
Φ̄(µ, s).

(36)

The resulting synthesis system is pictured in Fig. 1. The output
Y (x, s) is a superposition of many first-order systems – oscil-
lating with the eigenfrequencies of the system and weighted with
the eigenfunctions K(x, µ). For a more suitable implementation,
each pair of complex conjugate first-order systems may be merged
into one real-valued second-order system.

3.8. Discrete-time equivalent

This synthesis structure can be transformed into the discrete-time
domain to achieve a difference equation for computer implemen-
tation. Using e.g. impulse-invariant-transformation [6] turns the
transfer function from Eq. (19) into

Ȳ (µ, z) =
z

z − zµ
Φ̄(µ, z), (37)

where Ȳ (µ, z) and Φ̄(µ, z) are the z-domain equivalents of Ȳ (µ, s)
and Φ̄(µ, s). The poles zµ are defined as

zµ = exp (sµT ) , (38)

with the sampling time T .
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String model

First-Order Block
K(x,µ)
Nµ

K̃H(x, µ)

Fe(x, s)

K(0,µ)
Nµ

Y (0, s)

K̃H(0, µ)
Φ(0, s)

µ+ 1

µ− 1

Y (x, s)

Figure 1: Block diagram of the synthesis system; Φ(0, s),
Y (0, s): Vector of boundary excitations/observations at x = 0,
Y (x, s): vector of output signals at any position x, Fe(x, s): Ex-
citation function.

4. ADJUSTABLE BOUNDARY CONDITIONS

The boundary conditions of a PDE are essential for the transfor-
mation with the FTM, but the more complex the boundary condi-
tions are, the more complex becomes the transformation. Using
adjustable boundary conditions means to transform the PDE in-
cluding a simple set of boundary conditions and later adjust them
to fulfill any kind of boundary condition [8, 9].Über-

arbeiten

4.1. Simple Boundary Conditions

As starting point, the simple set of boundary conditions from Sec. 2.2
are revisited. The boundary behavior at x = 0 as described by
Eqs. (8) and (9) in terms of the boundary matrix FH

b and a vector
of boundary excitations Φ(0, s) reads in the frequency domain

FH
b Y (0, s) =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 sY (0, s)
Y ′(0, s)
Y ′′(0, s)
Y ′′′(0, s)

 =


Φ̇1

0
Φ3

0

 . (39)

In addition an observation matrix FH
o is defined. It transforms

the vector of variables Y (x, s) into a vector of boundary observa-
tions Yo, which can be written as

FH
o Y (0, s) =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


 sY (0, s)
Y ′(0, s)
Y ′′(0, s)
Y ′′′(0, s)

 =

 0
Yo2

0
Yo4

 . (40)

The boundary behavior of the variables of the string model can be
formulated in terms of the boundary and the observation matrix

Y (0, s) =
(
FH

b + FH
o

)
Y (0, s), (41)

and is pictured at the position x = 0 in Fig. 2. It shows that the
boundary excitations Φ can be interpreted as input variables and
the boundary observations as output variables at the boundary of
the string.

String Model

Yo4

Yo2

Φ3

Φ̇1

x = 0

Figure 2: Schematic of the boundary behavior of the string model
referring to Eqs. (39) - (40). Yo: Boundary Observations, Φ:
Boundary Excitations.

4.2. Impedance Boundary Conditions

In this section, impedance boundary conditions at x = 0 are in-
vestigated (see e.g. [6]). They connect the velocity of the string
(ẏ(0, t)) at the boundary to a force f(0, t) via the mechanical
impedance Zs [13]. The force can be exerted e.g. by pressing
the ball of the thumb on the bridge to damp the string vibration.

The relation between force and velocity can be formulated in
the frequency domain with the Laplace transforms of the velocity
sY (0, s) and of the force F (0, s) with the admittance Ys = Z−1

s

sY (0, s)− Ys F (0, s) = ΦZ1, (42)

Y ′′(0, s) = ΦZ3, (43)

ΦZ1 and ΦZ3 are the boundary excitations. The force F can be
written in the terms of the variables in Eq. (4)

F (0, s) = Ts Y
′(0, s)− EI Y ′′(0, s). (44)

The boundary conditions from Eqs. (42) – (43) are rearranged into
a boundary matrix, which transforms the variable vector into a vec-
tor of boundary excitations

FH
bZY (0, s) = ΦZ, (45)

with

FH
bZ =

1 −YsTs 0 YsEI
0 0 0 0
0 0 1 0
0 0 0 0

 . (46)

4.3. Adjustable Boundary Conditions

Using different sets of boundary conditions would mean to recal-
culate the eigenfunctions from Eqs. (20) and (21) with different
boundary conditions and to re-apply the corresponding transfor-
mations according to Sec. 3. Furthermore, the determination of the
eigenfunctions for impedance boundary conditions does in general
not lead to closed form solutions.

A different approach is to use the eigenfunctions for simple
boundary conditions from Eqs. (34) and (35) and to feed the bound-
ary observations Yo from (40) back into the boundary excitations
Φ̇1 and Φ3 from (39) via the impedance condition (45). This ap-
proach had been discussed in general terms in [9] and is now ap-
plied to string vibrations.
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Starting point is Eq. (45), which can be reformulated using
Eq. (41) as

FH
bZY (0, s) = FH

bZ

(
FH

b + FH
o

)
Y (0, s)

= FH
bZF

H
b Y (0, s) + FH

bZF
H
o Y (0, s) = ΦZ. (47)

With Eqs. (39) - (40) follows

FH
bZΦ = −FH

bZYo + ΦZ. (48)

This equation leads to a rule for the transformation of the simple
boundary excitations Φ from Eq. (39) into impedance boundary
conditions [

Φ̇1

Φ3

]
= Ys

[
Ts −EI
0 0

] [
Yo2

Yo4

]
+

[
ΦZ1

ΦZ3

]
. (49)

The boundary behavior of the string model at x = 0 is pictured
in Fig. 3. It can be seen that the impedance boundary conditions
result in a boundary circuit, which adjusts the simple boundary
values to fulfill the impedance conditions, according to the trans-
formation rule (49).

String Model

ΦZ1

ΦZ3

Φ̇1

Φ3

Yo2

Yo4

YsTs −YsEI

x = 0

Figure 3: Schematic of the boundary behavior of the string model
referring to Eq. (49). Yo: Boundary observations, Φ: Boundary
excitations.

With the adjustment of the boundary conditions, one can use a
simple model of the string and later adjust the boundaries to match
a more complex set of conditions. The adjustment is realized by
an external feedback loop between the boundary observations Yo

and the boundary excitations Φ̇1 and Φ3.

4.4. Input-Output model for the boundary

This section explains how the output of the string model from
Eq. (36) is connected to the boundary circuit from Eq. (49). For
the position x = 0 follows for the eigenfunctions

K(0, µ) =
[
0 1 0 −γ2

µ

]T
, (50)

K̃H(0, µ) =
[
q1 0 −γ2

µ 0
]
. (51)

Therefore the two non-zero output values of Eq. (41) follow from
the z-domain equivalent of (36) as

Yo(z) =

[
Yo2(z)
Yo4(z)

]
=
∑
µ

1

Nµ
Ȳ (µ, z)

[
1
−γ2

µ

]
, (52)

where Ȳ (µ, z) is connected to Φ̄(µ, z) via Eq. (37).

The boundary term Φ̄(µ, z) depends on the boundary condi-
tions Φ(0, z) and Φ(l, z) similarly to the continuous-time formu-
lation in (17). Assuming at x = l simple and homogeneous bound-
ary conditions, i.e. Φ(l, z) = 0 and at x = 0 adjustable boundary
conditions according to Eq. (49) with Φ3 = 0 leaves only a depen-
dency on Φ̇1. Then Φ̄(µ, z) can be expressed using (51) as

Φ̄(µ, z) = −K̄H(x, µ)Φ(0, z) = −q1Φ̇1(0, z). (53)

Now an input-output model for the quantities shown in Fig. 3 can
be set up by combining (37) and (52)

zȲ (µ, z) = zµȲ (µ, z)− q1zΦ̇1(0, z), (54)

to obtain the internal variable Ȳ (µ, z) from the boundary input Φ1

and by using (52) to obtain the boundary output Yo from Ȳ (µ, z).
However, following the signal flow in (49), (54) and (52) un-

veils the existence of a delay-free loop. The next section describes
how this delay-free loop can be avoided.

5. STATE SPACE MODEL

As described before the adjustment of the boundary conditions ac-
cording to Eq. (49) causes a delay-free loop in the system. Delay-
free loops can be resolved using iterative methods described in
[14, 15]. In this paper the delay-free loop is avoided altogether by
transformation into a state space model.

5.1. State Equations

At first a state equation is established with the definition of the
state variable

W̄ (µ, z) = Ȳ (µ, z) + q1Φ̇1(0, z). (55)

Since the excitation function fe(x, t) does not contribute to the
boundary feedback and thus to a possible delay-free loop, it is set
to zero for brevity.

Rewriting (54) and (52) with the state variable W̄ (µ, z) and
collecting the terms depending on µ into vectors and matrices gives
finally

zW̄ (z) = AW̄ (z) + b Φ̇1(0, z), (56)

Yo(z) = CoW̄ (z) + doΦ̇1(0, z). (57)

The state and output vectors are given as

W̄ (z) =


...

W̄ (µ, z)
...

 , Yo(z) =

[
Yo2

Yo4

]
, (58)

and the state matrices follow as

A = diag (. . . , zµ, . . . ) , (59)
b = [. . . , zµq1(sµ), . . . ] , (60)

Co =

[
. . . ,

1

Nµ

[
1
−γ2

µ

]
, . . .

]
, (61)

do =
∑
µ

q1(sµ)

Nµ

[
1
−γ2

µ

]
. (62)
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5.2. Feedback Loop

To fit the boundary behavior in Fig. 3 into the state space equa-
tions (56) - (57), the boundary equation (49) is reformulated (with
ΦZ1 = ΦZ3 = 0) as

Φ̇1(0, z) = Ys r
TYo(z), (63)

with the vector

rT = [Ts − EI] . (64)

It is part of a delay-free loop, where the remaining part is formed
by the direct path in (57).

To avoid this delay-free loop, Eq. (63) is inserted into (57) and
solved for the output vector Yo(z)

Yo(z) =
(
I − Ys dor

T
)−1

CoW̄ (z). (65)

Now the boundary input can be expressed directly in terms of the
state vector W̄ (z) with the help of (63) and (65)

Φ̇1(0, z) = Ysr
T
(
I − Ysdor

T
)−1

CoW̄ (z) = rTb W̄ (z).

(66)

The vector rb contains the influence of the admittance Ys at the
boundary and can be reformulated using the Sherman-Morisson
identity [16, eq. (160)]

rTb = Ysr
T
(
I − Ysdor

T
)−1

Co =
1

Zs − rTdo
rTCo. (67)

5.3. Simulation Model

The final simulation model for adjustable boundary conditions fol-
lows from the state space representation (56) and (57) and the de-
scription of the outer feedback loop by (66). The structure of the
model is shown in Fig. 4.

b z−1

A

rT
b

W̄ (z)

Φ1(0, z)

Figure 4: Signal flow of the state space equations from (56) and
(57) including the boundary feedback loop of Eq. (66).

There are two loops and both include a time delay z−1. The
inner loop is closed by the diagonal matrix A from Eq. (59) and
is easy to implement. The outer loop contains the boundary ad-
mittance Ys or impedance Zs according to (63). So the delay-free
loop arising in Sec. 4.4 is avoided using the state space structure.
The output-equation (57) calculates the output of the model for the
position x = 0 (Feedback path in Fig. 4).

The output signal at any other position x = xa on the string is
calculated by a second output equation

Ya(z) = CaW̄ (z) + daΦ̇1(0, z), (68)

which is basically the same as for x = 0. Only two matrices and
vectors have to be recalculated

Ca =

[
. . . ,

1

Nµ
K(xa, µ), . . .

]
, (69)

da =
∑
µ

q1(sµ)

Nµ
K(xa, µ). (70)

The other matrices are independent of the pick-up position xa, so
they can be directly taken from Eqs. (59) - (60). The complexity of
the feedback loop at the position x = 0 is hidden in the vector rTb ,
which is independent of any pick-up point on the string. Thus the
feedback path is variable by adjusting the value for the impedance
Zs in (67), see Fig. 4.

6. EXAMPLES

The following section presents simulation results, which are based
on the theory from previous sections. The simulation uses the
string model from Sec. 3 with a simple set of boundary condi-
tions, which are adjusted to fulfill the impedance boundary condi-
tions using the concept from Sec. 4.3. The model is implemented
with the state space representation from Sec. 5 to avoid delay-free
loops.

6.1. Basic Parameters

The string model for the simulation is based on the transformation
of the PDE of a vibrating string and the subsequent state space
representation from Eqs. (56) - (57). The boundary conditions of
the string are pictured in Fig. 5. The string has a supported end at
x = l, which results in homogeneous boundary conditions refer-
ring to (7)

Y (x, s) = 0, Y ′′(x, s) = 0 x = l. (71)

At the position x = 0 the string is placed on the bridge and is
influenced by an admittance, which results in impedance boundary
conditions from Eqs. (42) - (43). The boundary excitations ΦZ1

and ΦZ3 are set to zero since there are no external forces. The
mechanical admittance Ys is used as an adjustable parameter and
is considered as frequency independent.

For the simulations a nylon guitar B string was used. The
physical parameters of the string are taken from [6, 17] and are
listed in Table 1.

ρ Density 1140 kg/m3

E Young’s modulus 5.4 GPa
l Length 0.65 m
A Cross section area 0.5188 mm2

I Moment of inertia 0.141 mm4

d1 Freq. indep. damping 8 · 10−5 kg/(ms)
d3 Freq. dep. damping −1.4 · 10−5 kgm/s
TS Tension 60.97 N

Table 1: Physical parameters of a nylon guitar B string.
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y

xx = 0 x = l

F (0, s)

Ys

Figure 5: Guitar string influenced by an impedance/admittance
caused e.g. the ball of players hand at bridge position x = 0 and a
supported end at x = l.

6.2. Simulation Results

The following section presents the results of the simulation of the
string model based on the previous chapters. At first, the influence
of the admittance Ys on the bending y′(0, t) at the position x = 0
is shown. Then the influence on the velocity ẏ(xa, t) at a specific
pick-up point x = xa is presented. In each case the signal is
pictured for three admittance values between Ys = 0 and Ys =
0.125 s

kg
. The string is excited by a single impulse at the position

xe = 0.5 m

fe(x) =

{
50 mN x = xe

0 x 6= xe
. (72)

The results are presented by the normalized amplitude spectra of
the velocity and bending. At first results for a zero admittance
(Ys = 0) are presented, then the admittance is varied and also a
non-zero pick-up position is considered.

Results for zero admittance

In this part the string model from Eq. (36) using µ = 1 . . . 100
complex eigenfrequencies with the simple set of boundary condi-
tions from Sec. 4.1 is considered. For the implementation the state
space representations from Eqs. (56) - (57) is used with Φ1 = 0.
Fig. 6 shows the variation of the bending y′(x, t) over time and
pick-up position for a mechanical admittance Ys = 0 s/kg.
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Figure 6: Variation of the bending y′(x, t) over time at different
pick-up positions on the string for Ys = 0 s/kg.

The excitation function in Fig. 6 is an impulse according to
Eq. (72). It causes the propagation of waves on the string. The
results show that the derived string model matches the behavior of
a real string for simple boundary conditions [6–8, 10].

Results for non-zero admittance

The following experiments show the behavior of the spring model
using the impedance boundary conditions from Sec. 4.2. The im-
plementation uses the state space representation from Eqs. (56) -
(57), with boundary term Φ̇1 from Eq. (66). The admittance is var-
ied between Ys = 0 and a maximum value of Ys = 0.125 s/kg,
which is taken from [7].
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Figure 7: Amplitude spectra of bending y′(x, t) at the bridge po-
sition x = 0.

Fig. 7 shows the amplitude spectra of bending y′(x, t) at the
position x = 0 for different admittance values. For an admittance
value of Ys = 0 results the spectrum of a string with simple bound-
ary conditions, as the lower feedback path in Fig. 4 is zero. For an
admittance value Ys = 0.125 · 10−5 s/kg the damping influence
of the admittance on the bending can be seen clearly, especially in
the low-frequency region. For the maximum value of admittance
Ys = 0.125 s/kg the whole spectrum is damped and is much flat-
ter. Thus the increase of the admittance value leads to the well
known effect of a decreased oscillation time of the system. This
reproduces the sound of a palm muted playing style.

With the increasing value of mechanical admittance, the poles
zµ of the simple string model are shifted towards the origin of the
unit circle by the impedance boundary condition feedback loop.
Thus the Euclidean distance of the poles is reduced and the single
frequency components of the signal are damped depending on the
value of the admittance.

Fig. 8 shows the spectra of velocity ẏ(x, t) at the pick-up po-
sition xa = 0.4 m for the same three values of admittance Ys. The
general behavior of the spectra is similar to the behavior in Fig. 7.
But especially the influence of the feedback loop for the mid-value
of Ys is not so strong at x = 0.4 m as for x = 0 in Fig. 7. This
makes sense, as the pick-up point is removed by x = 0.4 m from
the bridge position of the guitar, so the damping influence is not
as strong as for the bridge position. For the maximum value of the
admittance, the spectrum is similarly flat as before at the position
x = 0.
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Figure 8: Amplitude spectra of velocity ẏ(x, t) at the position x =
0.4 m.

For both pick-up positions the influence of the admittance damps
the harmonics of the output signal. According to different values
of the admittance, the signals sounds fully or partially muted.

7. CONCLUSIONS AND FURTHER WORK

This paper proposes a complex string model with general bound-
ary conditions. It is realized by standard state space methods based
on the functional transformation method. Then the simple bound-
ary conditions for supported ends are adjusted to impedance bound-
ary conditions, without the need for a recalculation of the eigen-
functions. Using this principle, the simple string model is con-
nected to an admittance at the bridge position.

Here a frequency independent admittance is adopted. It is
suitable for modeling a palm muted playing style where the ball
of the players hand damps the strings. Other types of boundary
conditions require frequency dependent admittances. For exam-
ple it is well known that the connection of a string to a sound
board exhibits strong resonances [17]. They are described by a
bridge impedance with multiple poles [4]. Frequency dependent
impedances of this type can be modeled with an arrangement sim-
ilar to Fig. 4, where the feedback path includes a digital filter with
complex poles. Another way is to exploit the parallel resonator
structure of the functional transformation method by merging the
impedance feedback path with the A matrix of the state space
representation. Then each diagonal entry of the matrix A can be
weighted by a different impedance value as proposed in [8].
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