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ABSTRACT

This paper proposes a novel method for separating harmonic and

percussive sounds in single-channel music recordings. Standard

non-negative matrix factorization (NMF) is used to obtain the ac-

tivations of the most representative patterns active in the mixture.

The basic idea is to classify automatically those activations that ex-

hibit rhythmic and non-rhythmic patterns. We assume that percus-

sive sounds are modeled by those activations that exhibit a rhyth-

mic pattern. However, harmonic and vocal sounds are modeled

by those activations that exhibit a less rhythmic pattern. The clas-

sification of the harmonic or percussive NMF activations is per-

formed using a recursive process based on successive correlations

applied to the activations. Specifically, promising results are ob-

tained when a sound is classified as percussive through the identifi-

cation of a set of peaks in the output of the fourth correlation. The

reason is because harmonic sounds tend to be represented by one

valley in a half-cycle waveform at the output of the fourth correla-

tion. Evaluation shows that the proposed method provides compet-

itive results compared to other reference state-of-the-art methods.

Some audio examples are available to illustrate the separation per-

formance of the proposed method.

1. INTRODUCTION

Harmonic (pitched instruments) and percussive (drums) sound sep-

aration is still an unsolved problem in music signal processing and

machine learning. It can be applied to Music Information Retrieval

(MIR) in two ways. From a percussive point of view, it can en-

hance tasks such as, onset detection and tempo estimation. From

a harmonic point of view, it can improve other tasks such as, score

alignment, multi-pitch and melody estimation, chord detection or

vocal extraction.

Rhythm can be considered of core importance in most mu-

sic, and it is often provided by percussive sounds. Although there

are some harmonic instruments (e.g., bass guitar) that show repet-

itive temporal behavior, in this paper, we assume that percussive

sounds (repetitive) exhibit a more rhythmic pattern compared to

harmonic sounds (non-repetitive). In this manner, rhythmic infor-

mation could be useful to discriminate percussive and harmonic

sounds in an acoustic mixture in the same manner that a non-

trained listener can effortlessly discriminate between them.

In recent years, several approaches have been applied in the

field of harmonic-percussive sound separation. Most of these ap-

proaches utilize the anisotropy of harmonic and percussive sounds,

that is, percussive sounds have a structure that is vertically smooth
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in frequency, whereas harmonic sounds are temporally stable and

have a structure that is horizontally smooth in time. Anisotropy

is applied in a maximum a posteriori (MAP) framework in [1].

Furthermore, the concept of anisotropy is applied using median

filtering assuming that harmonics and percussive onsets can re-

spectively be considered outliers in a temporal or frequency slice

of a spectrogram [2]. In [3], a non-negative matrix partial co-

factorization is presented that forces some portion of bases to be

associated with drums only. Kim et.al [4] develop an extension of

non-negative matrix factorization (NMF) using temporal repeata-

bility of the rhythmic sound sources among segments of a mix-

ture. Canadas et.al [5] propose an unsupervised NMF integrat-

ing spectro-temporal features, such as anisotropic smoothness or

time-frequency sparseness, into the factorization process. Kernel

additive modeling (KAM) is used to separate sound sources as-

suming that individual time-frequency bins are close in value to

other bins nearby in the spectrogram where nearness is defined

through a source-specific proximity kernel [6]. Driedger et. al

[7] enforce the components to be clearly harmonic or percussive

by exploiting a third residual component that captures the sounds

that lie in between the clearly harmonic and percussive sounds.

Park and Lee [8] include sparsity and harmonicity constraints in

a NMF approach which uses a generalized Dirichlet prior. In [9],

the concept of percussive anisotropy is used assuming that the per-

cussive chroma clearly shows an energy distribution which is ap-

proximately flat.

One of the main goals of this paper is to determine if only

the use of rhythmic information can provide reliable information

to discriminate between harmonic and percussive sources. In this

paper, we propose a method to separate harmonic and percussive

sounds only analyzing the temporal information contained in the

activations obtained from non-negative matrix factorization. The

basic idea is to classify automatically those activations that exhibit

rhythmic (percussive) and non-rhythmic (harmonic and vocal) pat-

terns, assuming that a rhythmic pattern models repetitive events

typically shown by percussive sounds and a non-rhythmic pattern

models non-repetitive events typically shown by harmonic or vocal

sounds. Specifically, the proposed method uses a recursive process

based on successive correlations applied to the NMF activations.

As shown later, a percussive sound is characterized by a set of

peaks at the output of the fourth correlation but a harmonic sound

tends to be represented by one valley in a half-cycle waveform at

the output of the fourth correlation. Some of the advantages of our

proposal are (i) simplicity; (ii) no prior information about the spec-

tral content of the musical instruments and (iii) no prior training.

The remainder of this paper is organized as follows. Section

2 introduces briefly the mathematical background related to the

standard NMF. In Section 3, the proposed method is detailed. Sec-
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tion 4 optimizes and evaluates the separation performance of the

proposed method compared to reference state-of-the-art methods.

Finally, conclusions and future work are presented in Section 5.

2. NON-NEGATIVE MATRIX FACTORIZATION

Standard (unconstrained) non-negative matrix factorization (NMF)

[10] attempts to obtain a parts-based representation of the most

representative objects in a matrix by imposing non-negative con-

straints. The basic concept of NMF can be expressed as XF,T ≈

X̂F,T = WF,KHK,T where the mixture is modelled as the lin-

ear combination of K components. Specifically, XF,T represents

the magnitude spectrogram of the mixture, where f = 1, ..., F de-

notes the frequency bin and t = 1, ..., T is the time frame, X̂F,T is

the estimated matrix, WF,K is the basis matrix whose columns are

the basis functions (or spectral patterns) and HK,T is the activation

matrix for the basis functions. The rank or number of components

K is generally chosen such that FK + KT ≪ FT in order to

reduce the dimensions of the data. The factorization is obtained

by minimizing a cost function D(X|X̂) defined as,

D(X|X̂) =

F
∑

f=1

T
∑

t=1

d(Xf,t|X̂f,t) (1)

where d(a|b) is a function of two scalar variables. In this work,

we used the generalized Kullback-Leibler divergence D(X|X̂) =

DKL(X|X̂) because it has been successfully applied in the field of

sound source separation [11] [12] [13],

DKL(X|X̂) =

(

X ⊙ log
(

X ⊘ X̂
)

)

−X + X̂ (2)

where ⊙ is the element-wise multiplication and ⊘ is the element-

wise division.

The cost function DKL(X|X̂) is minimized using an itera-

tive algorithm based on multiplicative update rules and the non-

negativity of the bases and the activations is ensured. In this man-

ner, the multiplicative update rule for an arbitrary scalar parameter

Z is computed as follows,

Z ← Z ⊙

([

∂DKL(X|X̂)

∂Z

]−

⊘

[

∂DKL(X|X̂)

∂Z

]+)

(3)

3. PROPOSED METHOD

The proposed method uses standard NMF to separate percussive

sounds xp(t) from harmonic sounds xh(t) in single-channel music

mixtures x(t). The magnitude spectrogram X of a mixture x(t),
calculated from the magnitude of the short-time Fourier transform

(STFT) using a N -sample hamming window w(n) and a J-sample

hop size, is composed of F frequency bins and T frames. We as-

sume that percussive and harmonic sounds are mixed in an approx-

imately linear manner, that is, x(t) = xp(t) + xh(t) in the time

domain or X = Xp+Xh in the magnitude frequency domain. As

a result, X can be factorized into two separated spectrograms, X̂p

(an estimated spectrogram only composed of percussive sounds)

and X̂h (an estimated spectrogram only composed of harmonic

sounds),

X = Xp +Xh =
[

Wp Wh

]

[

Hp

Hh

]

(4)

where Wp, Hp are the original percussive bases and activa-

tions; Wh, Hh are the original harmonic bases and activations.

All the previous data are non-negative matrices. The flowchart of

the proposed method is shown in Figure 1.

Figure 1: Flowchart of the proposed method for the task of

harmonic-percussive sound separation in single-channel music

recordings.

3.1. Obtaining activations

Standard NMF is applied to the magnitude spectrogram X using

the cost function DKL(X|X̂) previously mentioned in section 2.

The update rules are defined as follows,

H ← H ⊙

(

(

W
T
(

X ⊘ X̂
)

)

⊘

(

W
T
1F,T

)

)

(5)

W ←W ⊙

(

(

(

X ⊘ X̂
)

H
T

)

⊘

(

1F,TH
T

)

)

(6)
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where W and H are initialized as random positive matrices,

1F,T represents a matrix of all-ones composed of F rows and T
columns and T is the transpose operator. Note that in this paper

we normalise each ith basis function using the L2-norm, that is,

W̃i=
Wi

‖Wi‖2
, being

∥

∥

∥W̃i

∥

∥

∥

2

=1.0.

Standard NMF can only ensure convergence to local minima,

which enables the reconstruction of the mixture but cannot dis-

tinguish by itself if the ith component represents a percussive or

harmonic sound.

3.2. Recursive normalized correlation and clustering

Our main contribution attempts to discriminate harmonic and per-

cussive sounds only analyzing the activations H . The basic idea

is to classify automatically those activations that exhibit rhyth-

mic and non-rhythmic patterns. We assume that a rhythmic pat-

tern models repetitive events typically associated with percussive

sounds. A non-rhythmic pattern is assumed as a non-repetitive

event typically shown by harmonic or vocal sounds.

We develop a recursive process, based on the normalized un-

biased correlation R̃L(τ ) with order L, to identify rhythmic and

non-rhythmic patterns. The normalized unbiased correlation R̃L(τ )
is computed using as input the signal I(t) as shown in eq (7). We

define the order L as the number of times that the normalized un-

biased correlation is computed using the recursive process. In this

manner, I(t)=H(t) for L=0, I(t)=R̃0(τ ) for L=1, I(t)=R̃1(τ )
for L=2, etc. In a recursive way, the output of the current order L
will be the input of the next order L+ 1. Specifically, the normal-

ized unbiased correlation R̃L(τ ) is computed in eq. (8),

R
L(τ ) =

1

T − τ

T−1−τ
∑

t=0

I(t)I(t+ τ ), τ = 0, 1, 2, ..., T − 1 (7)

R̃
L(τ ) =

RL(τ )
∥

∥RL(τ )
∥

∥

2

(8)

The analysis of R̃L(τ ) indicates that R̃4(τ ) provides reliable

information to discriminate harmonic and percussive sounds as can

be observed in Figure 2 and Figure 4. Figure 2 and Figure 4 show

the matrix H of activations of a music excerpt composed of har-

monic and percussive sounds. It can be observed that the compo-

nents 4, 5, 9, 14 and 17 of Figure 2 and the components 14, 15,

17 and 18 of Figure 4 represents predominant percussive sounds

modeled by rhythmic patterns. Both Figure 3 and Figure 5 show

that R̃L(τ ) is still showing a set of peaks even as the order L in-

creases when a percussive sound is analyzed. However, this does

not occur when analyzing harmonic sounds since these tend to be

represented using only one valley in a half-cycle waveform when

the order L is increased. It can be observed that R̃4(τ ) is optimal

(see section 4.4) to discriminate between percussive and harmonic

sounds because R̃4(τ ) clearly shows a set of peaks considering

percussive sounds and only one valley in a half-cycle waveform

considering harmonic sounds. As a result, R̃L<4(τ ) could model

harmonic sounds as percussive sounds because R̃L<4(τ ) can rep-

resent harmonic sounds with more than one peak as shown in Fig-

ures 3(b), 3(d), 3(f) and 3(h) and Figures 5(b), 5(d), 5(f) and 5(h).

However, R̃L>4(τ ) could model percussive sounds as harmonic

sounds because R̃L>4(τ ) tends to remove most of the peaks as

shown in Figure 3(k) and Figure 3(m) and Figure 5(k) and Figure

5(m).
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Figure 2: Activations H from the excerpt ’Hotel California’ (Table

2), using K=20 components.
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Figure 3: The column of the left represents the percussive compo-

nent 14 of Figure 2: (a) R̃0(τ ), (c) R̃1(τ ), (e) R̃2(τ ), (g) R̃3(τ ),

(i) R̃4(τ ), (k) R̃5(τ ), (m) R̃6(τ ). The column of the right rep-

resents the harmonic component 1 of Figure 2: (b) R̃0(τ ), (d)

R̃1(τ ), (f) R̃2(τ ), (h) R̃3(τ ), (j) R̃4(τ ), (l) R̃5(τ ), (n) R̃6(τ ).

Based on the above observation, we use R̃4(τ ) as the basis

for automatically discriminating between percussive and harmonic

sounds. A component, obtained from NMF decomposition, is clas-

sified as percussive if a set of Np or more peaks are found at the

output of the R̃4(τ ). Preliminary results indicated that the best

separation performance was obtained when Np ≥ 2. In any other

case, a component is classified as harmonic.

We have developed two approaches based on the classifica-

tion of the rhythmic activations as shown in Figure 1. In the first

approach called Proposed_A, ŴpA and ĤpA represent the esti-

mated bases and activations classified as percussive. However,

ŴhA
and ĤhA

represent the estimated bases and activations clas-
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Figure 4: Activations H from the excerpt ’So lonely’ (Table 1),

using K=20 components.
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Figure 5: The column of the left represents the percussive compo-

nent 17 of Figure 4: (a) R̃0(τ ), (c) R̃1(τ ), (e) R̃2(τ ), (g) R̃3(τ ),

(i) R̃4(τ ), (k) R̃5(τ ), (m) R̃6(τ ). The column of the right rep-

resents the harmonic component 2 of Figure 4: (b) R̃0(τ ), (d)

R̃1(τ ), (f) R̃2(τ ), (h) R̃3(τ ), (j) R̃4(τ ), (l) R̃5(τ ), (n) R̃6(τ ).

sified as harmonic. Specifically, Ŵp = ŴpA and Ĥp = ĤpA ,

Ŵh = ŴhA
, Ĥh = ĤhA

In the second approach called Proposed_B, a semi-supervised

NMF, based on the Kullback-Liebler divergence, is used. The esti-

mated percussive bases ŴpB are fixed to Ŵp=ŴpB =ŴpA and not

updated. However, the estimated harmonic bases and the estimated

percussive and harmonic activations are initialized Ŵh=ŴhB
=ŴhA

,

Ĥp=ĤpB =ĤpA and Ĥh=ĤhB
=ĤhA

and updated in the factoriza-

tion process.

3.3. Reconstruction and Wiener filtering

Performing each approach, the separated percussive and harmonic

signals x̂p(t), x̂h(t) are synthesized using the magnitude spectro-

gram, that is, X̂p = ŴpĤp and X̂h = ŴhĤh.

If the power spectral density (PSD) of the estimated signals

are denoted as |X̂p|
2 and |X̂h|

2, respectively, then each ideally es-

timated source x̂p(t) or x̂h(t) can be estimated from the mixture

x(t) using a generalized time-frequency mask over the STFT do-

main. To ensure that the reconstruction process is conservative, a

Wiener filtering has been used as in [5]. In this manner, a percus-

sive or harmonic Wiener mask represents the relative percussive or

harmonic energy contribution of each type of sound with respect

to the energy of the mixture defined as follows,

X̂p =

(

|X̂p|
2 ⊘

(

|X̂p|
2 + |X̂h|

2
)

)

⊙X (9)

X̂h =

(

|X̂h|
2 ⊘

(

|X̂p|
2 + |X̂h|

2
)

)

⊙X (10)

The estimated percussive and harmonic signals x̂p(t), x̂h(t)
are obtained computing the inverse overlap-add STFT from the

final estimated percussive and harmonic magnitude spectrograms

X̂p, X̂h using the phase spectrogram of the mixture.

4. EXPERIMENTAL RESULTS

4.1. Data and metrics

Evaluation has been performed using two databases DBO and

DBT . Both databases are composed of single-channel real-world

music excerpts taken from the Guitar Hero game [14] [15] as can

be seen in Table 1 and Table 2. Each excerpt has a duration about

30 seconds and it was converted from stereo to mono and sampled

at fs=16 kHz.

The database DBO has been used in the optimization and the

database DBT has been used in testing. Note that the database

used in the optimization is not the same as that used in the testing

to validate the results. The subscript ph is related to percussive

and harmonic instrumental sounds without adding the original vo-

cal sounds. In this case, each percussive signal xp(t) is composed

of percussive sounds (drums) and each harmonic signal xh(t) is

composed of harmonic instrumental sounds. However, the sub-

script phv is related to percussive, harmonic and vocal sounds. As

a result, each percussive signal xp(t) is composed of percussive

sounds (drums) and each harmonic signal xh(t) is composed of

harmonic and vocal sounds.

Table 1: Title and artist of the excerpts of the databases DBOph

and DBOphv

TITLE ARTIST

Are you gonna go my way Lenny Kravitz

Feel the pain Dinosaur Jr

Kick out the James MC5’s Wayne Krame

One way or another Blondie

In my place Coldplay

Livin’ on a prayer Bon Jovi

No one to depend on Santana

So lonely The police

Song 2 Blur
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Table 2: Title and artist of the excerpts of the databases DBTph

and DBTphv

TITLE ARTIST

Hollywood Nights Bob Seger & The Silver Bullet Band

Hotel California Eagles

Hurts So Good John Mellencamp

La Bamba Los Lobos

Make It Wit Chu Queens Of The Stone Age

Ring of Fire Johnny Cash

Rooftops Lost prophets

Sultans of Swing Dire Straits

Under Pressure Queen

The assessment of the performance of the proposed method

has been performed using the metrics Source to Distortion Ra-

tio (SDR), Source to Interference Ratio (SIR) and Source to Ar-

tifacts Ratio (SAR) [16] [17] which are widely used in the field of

sound source separation. Specifically, SDR provides information

on the overall quality of the separation process. SIR is a measure

of the presence of percussive sounds in the harmonic signal and

vice versa. SAR provides information on the artifacts in the sepa-

rated signal from separation and/or resynthesis. Higher values of

these ratios indicate better separation quality. More details can be

found in [16].

4.2. Setup

An initial evaluation has been performed taking into account the

computation of the STFT in order to optimize the frame size N =

(1024, 2048 and 4096 samples) using the sampling rate fs previ-

ously mentioned. Preliminary results indicated that the best sep-

aration performance was achieved using (N ,J)=(2048,256) sam-

ples.

A random initialization of the matrices W and H was used

and the convergence of the NMF decomposition was evaluated us-

ing Niter iterations. Due to the fact that standard NMF is not

guaranteed to find a global minimum, the performance of the pro-

posed method depends on the initial values W and H obtaining

different results. For this reason, we have repeated three times for

each excerpt and the results in the paper are averaged values.

4.3. State-of-the-art methods

Two reference state-of-the-art percussive and harmonic separation

methods have been used to evaluate the proposed method: HPSS

[1] and MFS [2]. These were both implemented for the evaluation

of this paper. The ideal separation, called Oracle, is provided to

better compare the quality of the proposed methods. The Oracle

separation has been computed using the ideal soft masks extracted

from the original percussive and harmonic signals applied to the

input mixture.

4.4. Optimization

An optimization of the parameters K, Niter and L is performed

in the databases DBOph and DBOphv as shown in Figure 6 and

Figure 7. For this purpose, a hyperparametric analysis is applied

to each parameter of the proposed method as occurs in [5]. In this

work, K= (5, 10, 20, 30, 50, 100, 150, 200), Niter=(10, 20, 30,

50, 100, 150) and L=(0, 1, 2, 3, 4, 5, 6).

K
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SDR (dB)
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Figure 6: Optimization of the parameters K and Niter (using

L=4) jointly averaging percussive and harmonic SDR. (top) eval-

uating the database DBOph, (bottom) evaluating the database

DBOphv

Figure 6(top) shows that the parameters K=50 and Niter=100

maximizes the average percussive and harmonic SDR only con-

sidering mixtures composed of percussive and harmonic sounds

without vocal sounds. It can be observed that using K<20 and

Niter<30 provides the worst separation performance of the method.

Results suggest that using a small number of components does

not allow sufficient separation of repetitive and non-repetitive el-

ements, thereby causing poor separation quality. Further, a small

number of iterations does not allow to converge the NMF decom-

position.

Figure 6(bottom) shows that K=150 and Niter=30 maximize

the average percussive and harmonic SDR only considering mix-

tures composed of percussive, harmonic and vocal sounds. Figure

6(bottom) shows that a higher number of components is necessary

to obtain the highest SDR. The effect of adding vocal sounds in-

dicates the presence of a higher variety of spectral patterns so the

proposed method needs a higher number of components to repre-

sent the mixture adequately..

Using the optimal parameters in the databases DBOph and

DBOphv , the optimization of the parameter L is shown in Fig-

ure 7. Comparing the separation performance of the parameter

L, L=4 provides the highest robustness to discriminate harmonic

and percussive sounds evaluating audio mixtures with or without

vocal sounds. The principal reason for this is that R̃4(τ ) retains

sufficient peaks in the repetitive basis functions to allow discrimi-

nation from the non-repetitive basis functions which tend to have

a single valley at L=4.

4.5. Results

Figure 8(a) and Figure 8(b) show SDR, SIR and SAR results evalu-

ating the databases DBTph and DBTphv for the proposed method

and the reference state-of-the-art methods. Each box represents

nine data points, one for each excerpt of the test database. The

lower and upper lines of each box show the 25th and 75th per-

centiles for the database. The line in the middle of each box repre-

sents the median value of the dataset. The left (blue), center (red)

and right (black) boxes are related to the estimated percussive, har-
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Figure 7: Optimization of the parameters L jointly averaging per-

cussive and harmonic SDR. (top) evaluating the database DBOph

using the optimal parameters K=50 and Niter=100; (bottom)

evaluating the database DBOphv using the optimal parameters

K=150 and Niter=30

monic and average between percussive and harmonic signals.

Figure 8(a) indicates that MFS and the proposed method out-

perform the separation performance of HPSS in percussive and

harmonic SDR but HPSS can be considered as competitive method.

Although MFS and Proposed_B exhibit a similar behavior in per-

cussive SDR, MFS (SDR = 5.9dB) is slightly better than Pro-

posed_B (SDR = 5.0dB) in harmonic SDR. However, Proposed_B

(SIR = 9.8dB) is slightly better than MFS (SIR = 9.1dB) consid-

ering the average between percussive and harmonic SIR. HPSS

obtains the highest percussive SIR at the expense of introducing

a high amount of artifacts, as shown by having the worst percus-

sive and harmonic SAR. This does not occur with either MFS or

the proposed methods. Further, HPSS loses most of the transients

associated with the beginning of the harmonic sounds, thereby ob-

taining low harmonic SDR compared to the other methods. Al-

though Proposed_A and Proposed_B show similar separation per-

formance, it seems that Proposed_B is slightly better than Pro-

posed_A. This can be explained because the semi-supervised NMF,

initialized with the harmonic bases from Proposed_A, tends to

converge to a better solution, obtaining a higher quality reconstruc-

tion of the estimated harmonic signals. Informal listening tests

suggest that the proposed methods achieves higher polyphonic rich-

ness of the harmonic sounds compared to HPSS and MFS because

it is able to capture most of the onsets of the harmonic sounds,

such as onsets played by bass guitar or lead guitar. Nevertheless, a

weakness of the proposed method is that it classifies as a percus-

sive sound those harmonic sounds, e.g., bass guitar, that exhibit a

very strong rhythmic pattern, especially if the bass guitar is play-

ing a repeated note which has been factorized together with a part

of a percussive sound in the same NMF component.

Figure 8(b) shows the separation performance for the database

DBTphv . Comparing with Figure 8(a), it can be observed that the

addition of vocal sounds significantly worsens the SDR, SIR and

SAR obtained by HPSS and MFS. However, the proposed meth-

ods still perform strongly, even with the addition of vocals. Re-

sults indicate that Proposed_A and Proposed_B show similar or

even better SDR, SIR and SAR results compared to their separa-

tion performance in Figure 8(a). The evaluation metrics indicate

that the proposed methods offer a more robust performance, es-

pecially when comparing their percussive and harmonic SDR and

SIR results. Specifically, the proposed methods remove most of

the vocal sounds from the estimated percussive signal, while HPSS

and MFS do not. In some excerpts, this fact implies that the vo-

cal sounds are unintelligible in the estimated harmonic signal. The

promising behavior of the proposed methods with respect to vo-

cal sounds can be explained by the fact that vocal sounds tend to

exhibit less repetition, both in terms of melody and in terms of

modulations than other sound sources.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach for separating harmonic and

percussive sounds using only temporal information extracted from

activations by means of non-negative matrix factorization. The

basic idea is to classify automatically those activations that ex-

hibit rhythmic and non-rhythmic patterns. We assume that a rhyth-

mic pattern models repetitive events which are typically associated

with percussive sounds. However, a non-rhythmic pattern models

non-repetitive events typically associated with harmonic or vocal

sounds. Some of the advantages of this approach are (i) simplicity;

(ii) no prior information about the spectral content of the musical

instruments and (iii) no prior training.

Evaluating instrumental mixtures without vocals, results in-

dicate that the proposed methods obtain promising audio separa-

tion. The performance of Proposed_B is slightly better than Pro-

posed_A because the update of the semi-supervised NMF allows

convergence to a better solution which provides higher quality re-

construction of the estimated harmonic signals. Moreover, our ap-

proach obtains higher polyphonic richness of the harmonic sounds

because it captures most of the onsets of the harmonic sounds.

However, a weakness of the proposed method is that highly repet-

itive harmonic instruments can occasionally be classified as per-

cussive.

Evaluating instrumental mixtures containing vocals, results show

that the proposed method gives a more robust performance both in

percussive and harmonic SDR and SIR compared to the reference

state-of-the-art methods.The proposed method extracts most of the

vocal sounds from the estimated percussive signal unlike the other

reference state-of-the-art methods evaluated.

Future work will be focused on three directions. Firstly, we

will try to improve the audio quality of the estimated sources using

another time-frequency representation that provides a better reso-

lution in the low frequency bands. Secondly, we will attempt to

remove residual harmonic sounds that have been factorized in per-

cussive NMF components. Thirdly, we will address how to sepa-

rate harmonic sounds, e.g. bass guitar, that show temporally repet-

itive characteristics from percussive sounds which have been fac-

torized in the same NMF component, by looking into other ways

of extracting the periodicity of the activations.
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