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ABSTRACT

Nonlinear forces are ubiquitous in physical systems, and of promi-

nent importance in musical acoustics. Though many models exist

to describe such forces, in most cases the associated numerical

schemes rely on iterative root finding methods, such as Newton-

Raphson or gradient descent, which are computationally expensive

and which therefore could represent a computational bottleneck.

In this paper, a model for a large class of nonlinear forces is pre-

sented, and a novel family of energy-conserving finite difference

schemes given. The schemes only require the evaluation of the

roots of a quadratic function. A few applications in the lumped

case are shown, and the robustness and accuracy of the scheme

tested.

1. INTRODUCTION

In many musical instruments, collisions and contact forces are in-

volved at various levels in the mechanism of sound production

[1]. The interaction of strings with a bow, a membrane (like in

the snare drum), a mallet, a finger or a fretboard are all exam-

ples of contact forces. Collisions of the reed in wind instruments

have a major impact on the perceived tonal quality. Prepared pi-

ano string (coupled to rattling elements) are yet another example of

such collisions. Outside of musical acoustics, collisions represent

an important field of study in robotics [2], and of course computer

graphics [3, 4]. The models employed to describe all the above

forces are necessarily nonlinear, and hence they represent a chal-

lenge in terms of numerical simulation. Although many methods

have been used to simulate some specific examples of collisions

(including digital waveguides [5], modal methods [6, 7], and time

stepping methods [8]), a fairly recent general framework was pro-

posed in order to simulate a large class of collisions and contact

forces [1]. In this framework, the forces are generated by a poten-

tial which takes the form of some kind of power law, depending

on one stiffness coefficient, and one exponent. Such framework

allows to simulate collisions of two lumped objects (like a mass

and a spring), of one lumped and one distributed object (like a

mallet and a string), and even of two distributed systems (like a

string and a membrane). For very stiff collisions, the forces are

generated by a spurious interpenetration, which can be made as

small as possible by increasing the stiffness coefficient. Though

extremely versatile, the associated energy-conserving numerical

schemes rely on iterative root finding algorithms, such as Newton-

Raphson, which is most cases represent a computational bottle-

neck. In this paper, a novel family of finite difference schemes is

proposed for the lumped case, which do not require an iterative

root finding method. It should be mentioned that previous works

(see for example [9, 10]) do present numerical schemes able to

simulate collisions without iterative root finding algorithms. How-

ever, this was showed only in the case of linear response of the

barrier with the spurious interpenetration. In this paper, the pro-

posed schemes work for a class of nonlinear potentials. At each

update the nonlinear force can be calculated by simply finding the

roots of a quadratic function, which basically involves the evalua-

tion of a single square root. In section 2, the model is presented in

the form of an ordinary differential equation, and the forms of the

potentials given. Finite difference schemes are presented in sec-

tion 3, derived from a given Hamiltonian depending on one scalar

parameter. Boundedness of the energy will be shown, along with

a discussion of the realness of the roots of the quadratic. Tests for

accuracy are presented at this point. Finally, section 4 shows a few

applications of interest.

2. MODEL EQUATIONS

In the course of this paper, the displacement u(t) of a particle of

mass M is described by an ordinary differential equation of the

following form

Mü = −φ′(u) = − φ̇(u)

u̇
, (1)

where the last equality was obtained by means of the chain rule.

In the equation, the particle is assumed to be subjected to a force

described by the potential φ(u). By multiplying both sides of the

equation by u̇ the following energy identity is obtained

d

dt

(

M

2
u̇2 + φ(u)

)

,
d

dt
H = 0 → H = H0, (2)

and hence the energy H is non-negative if and only if φ(u) ≥
0 ∀u. Various potentials satisfy such requirement. Specific forms

of interest here are the following

φ(u) =
K

α+ 1
uα+1, α = 1, 3, 5, ... (3a)

φ(u) =
K

α+ 1
[u− h]α+1

+ , α ∈ R, α > 1 (3b)

φ(u) =
K

α+ 1
[|u| − h]α+1

+ , α ∈ R, α > 1 (3c)

In the equations, the symbol [x]+ denotes the positive part, i.e.

2[x]+ , x + |x|. The constant K is a stiffness coefficient. The

forces originated by such potentials are depicted in Fig. 1. In mu-

sical acoustics, though often for distributed systems, these poten-

tials are used in modelling large-amplitude nonlinearities, contact

nonlinearities (such as the hammer-string interaction), rattling el-

ements, and other important nonlinear interactions [11].
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From (2), one finds immediately a bound on the growth of the

solution, i.e.

(u̇)2 ≤ 2H0

M
, (4)

where H0 (a constant) is the total energy.

3. FINITE DIFFERENCE SCHEMES

Solutions to (1) are now sought in terms of appropriate finite dif-

ference schemes, upon the introduction of a sample rate fs and

the associated time step k = 1/fs. The solution is evaluated at

the discrete times nk, where n ∈ Z
+, and is denoted un. Finite

difference operators are introduced as:

• backward and forward shift operators

et−u
n , un−1, et+u

n , un+1

• backward, centered and forward first time derivatives

δt− , 1
k
(1−et−), δt· ,

1
2k
(et+−et−), δt+ , 1

k
(et+−1)

• averaging operators

µt+ , 1
2
(1 + e+), µt− , 1

2
(1 + e−), µ

(s)
t− , s + (1 −

s)et− (s ∈ R)

• second time derivative

δtt , δt+δt− = 1
k2 (et+ − 2 + et−)

In order to derive a finite difference scheme, a general form for the

Hamiltonian is given here in terms of the generalised averaging

operator defined above, as

h
n−1/2 =

M

2
(δt−u

n)2 + µ
(s)
t−φ(un). (5)

Notice that the particular choice s = 1
2

leads to the Hamilto-

nian considered in [1], whose associated finite difference scheme

is second-order accurate, and whose update requires an iterative

root finding method such as the Newton-Raphson algorithm.

In this work, the potential energy is Taylor-expanded around

the point un−1 up to second order, giving

µ
(s)
t−φ(un) ≈ φ(un−1) + s(un − un−1)φ′(un−1)+

s
(un − un−1)2

2
φ′′(un−1) , P

(s)
n−1,n (6)

Hence, the Hamiltonian considered in this work, depending on the

parameter s, is

h
n−1/2 =

M

2
(δt−u

n)2 + P
(s)
n−1,n (7)

3.1. Boundedness of Potential Energy

The potential energy defined in (6) is a parabola in un − un−1.

Moreover, for the potentials considered in (3) the following iden-

tities hold

φ′(u) = (α+ 1)
φ(u)

ū
, φ′′(u) = α(α+ 1)

φ(u)

ū2
, (8)

where

ū , u for (3a)

ū , u− h for (3b)

ū ,
|u| − h

sign(u)
for (3c)

Hence, one has

P
(s)
n−1,n = φ(un−1)

[

1 + s(α+ 1)x+ s(α+ 1)α
x2

2

]

(9)

where

x ,
un − un−1

ūn−1
. (10)

The potential energy will be non-negative if and only if the dis-

criminant of the quadratic above is less than or equal to zero, i.e.

s2(α+ 1)2 − 2s(α+ 1)α ≤ 0. (11)

This is a parametric inequality that must be evaluated according

the sign of s and (α+1). Notice that, for the potentials in (3), one

must check that the solutions are valid ∀α ≥ 1. This gives

0 < s ≤ 1. (12)

Such values will ensure that P
(s)
n−1,n is non-negative, and therefore

that the discrete Hamiltonian (7) is non-negative, ∀α ≥ 1.

In this case, boundedness of the potential energy can be achieved

for values of s which do not guarantee non-negativity of the poten-

tial energy. In fact, given the particular form of the potential energy

(9), if the coefficient multiplying x2 is positive, then the parabola

will always have a minimum regardless of the value of un−1, and

hence ∀n (remember that φ is non-negative by definition). Such

coefficient is s(α + 1)α and, because in this work α ≥ 1, the

potential energy will then be bounded from below ∀s ≥ 0. The

bound depends on the intial conditions, and tends to zero as the

sampling rate is increased, see also Fig. 5.

Summarising, in this work

s > 0, α ≥ 1 (13)

with the particular case 0 < s ≤ 1 guaranteeing non-negativity of

the potential energy.

3.2. Energy conservation. Finite difference scheme

A finite difference scheme can be derived from the Hamiltonian

above by imposing

δt+h
n−1/2 = 0. (14)

Before deriving the scheme, notice that when the potential energy

is non-negative, one immediately finds a bound similar to (4), i.e.

(δt−u
n)2 ≤ 2h0

M
, (15)

When the potential energy is not positive, but bounded from below,

such inequality is true up to a correction of the order of k2. Upon

the introduction of the variable y , un+1 − un−1, the scheme is

Ay +B +
C

y
= 0, (16)

where the coefficients A,B,C depend on previous values, and are

given as

A =
M

k2
+ sφ′′(un)

B = −2M

k2
(un − un−1) + 2sφ′(un) + 2s(un−1 − un)φ′′(un)

C = 2P
(s)
n,n−1 − 2P

(s)
n−1,n

Under the assumption y 6= 0, the scheme can be written as a

quadratic in y, i.e.

Ay2 +By + C = 0. (17)
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Figure 1: Nonlinear forces. (a): nonlinear power law, as per (3a), for K = 1, α = 1, 3, 5. (b): one-sided power law, as per (3b), for

K = 1, α = 1, 1.7, 2.8, h = 0.2. (c): center limited power law, as per (3c), for K = 1, α = 1, 1.7, 2.8, h = 0.3.

3.3. Existence and Uniqueness

Scheme (17) requires the knowledge of the roots of a quadratic

function at each update, and is thus very attractive numerically as

one may employ the well-known closed-form solution for quadrat-

ics instead of a nonlinear root finding algorithm. However, exis-

tence of the roots must be checked, and a condition on existence

must be given. Also, if the roots exist, they come in pairs, pos-

ing a question on uniqueness. Existence is first checked, and the

question of uniqueness is discussed later.

3.3.1. Existence

The condition to impose is

∆(α)
, B2 − 4AC ≥ 0. (18)

The discriminat ∆(α) depends on the particular choice of the ex-

ponent α. Existence of the solutions will be checked for ∆(1), and

a discussion for larger values of α will be given later. Also, be-

cause potential (3b) and (3c) depend on the positive part of their

argument, various cases must be discussed. These are

1. φ(un) = φ(un−1) = 0. This scenario corresponds to the

particle not being in contact with the barrier/spring. In this

case C = 0 and therefore ∆(1) ≥ 0 .

2. φ(un−1) > 0, φ(un) = 0. This scenario corresponds

to the particle moving away from the barrier/spring, and

this gives C = −2P
(s)
n−1,n and because A > 0 one has

−4AC > 0 and therefore ∆(1) ≥ 0 (remember that P
(s)
n−1,n

under condition (12) is positive-definite).

3. φ(un) > 0, φ(un−1) = 0. This scenario corresponds to

the particle colliding against the barrier/spring, and must be

checked.

4. φ(un) > 0, φ(un−1) > 0. This scenario corresponds to

(3a), as well as to (3b), (3c) when the particle and the bar-

rier/spring are in full contact (spurious interpenetration).

This case must also be discussed.

Hence, the only cases to discuss are 3 and 4.

Case 3. Upon the definition of K̄ = K/M and uh = u − h, this

case gives

∆(1) =
A

k2
(un−1

h )2 + (un
h)

2

[

1

k4
−AK̄ + sAK̄

]

− 2

k2
Aun

hu
n−1
h .

Remembering that for this case un
h > 0, un−1

h < 0 one can find a

sufficient condition for positivenenss by imposing

−AK̄ + sAK̄ ≥ 0, → s ≥ 1.

Case 4. Using again the same definition of K̄ and uh, one has (up

to a positive constant of proportionality)

∆(1) = K̄s2(un−1
h )2 +

1

k2
(δt−u

n
h)

2

− 2

[

s

k
K̄un−1

h +Ak

(

K̄

2
− sK̄

)

(µt−u
n
h)

]

(δt−u
n
h)

Hence ∆(1) is a parabola in (δt−u
n
h). Also, for s ≥ 1

2
, ∆(1)

could take on negative values only if un−1
h > un

h . Under such

assumptions, the discriminant of the parabola is calculated, and

again the requirement is that such discriminant be negative. Using

the fact that un−1
h > un

h one finds a sufficient condition on the

time step to be

k2 ≤ s+ 1
2

K̄s(s− 1
2
)

for s >
1

2

unconditionally positive for s =
1

2
.

Summarising

• for potential (3a), ∆(1) will be unconditionally positive for

s = 1
2

, otherwise a sufficient condition can be given as:

s > 1
2

, k2 ≤ s+ 1

2

K̄s(s− 1

2
)

• for potentials (3b), (3c), a sufficient condition can be given

as: s ≥ 1, k2 ≤ s+ 1

2

K̄s(s− 1

2
)

3.3.2. Uniqueness

Assuming realness of the roots of (17), at each time step one has

to choose either y+ or y−, defined as

y± =
−B ±

√
∆(a)

2A
. (19)

The choice is made according to the following rule

• if B ≥ 0 choose y−

• if B < 0 choose y+
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To understand why this rule holds, consider the case of a free par-

ticle, i.e. for which the potential is zero at all times. In this case,

scheme (17) reduces to

Ay2 +By = 0, (20)

with solutions

y± =
−B ±

√
B2

2A
=

−B ± |B|
2A

, (21)

but because the solution y = 0 is ruled out, one recovers the rule

above.

3.3.3. Comments on existence, ∆(α>1) and bounds

In this subsection, some comments are given regarding the real-

ness of the roots of (17), for α > 1. A discussion on the sign of

∆(α>1) is somewhat complicated by the fact that un
h , un−1

h appear

nonlinearly with rational exponents, or with high-order powers,

and hence it is difficult to carry on a study of the sign of ∆(α>1)

along the same lines as ∆(1). A possible procedure is to consider

a parametric study of the function d∆(α)/dα, and hence find con-

ditions on maxima and minima of ∆(α) for the various signs of

un
h , un−1

h . This rigorous approach, though desirable, is somewhat

lengthy and perhaps beyond the scope of the current work. A less

rigorous, though revealing approach is to make use of brute force,

i.e. to launch many simulations testing out large portions of the

parameter space, and to empirically verify the robustness of the

algorithm.

In Fig. 2, the scheme is checked for potential (3a), for s =
1
2
, 1, 3. The particle has mass M = 1 kg, and the spring has stiff-

ness K = 103. Each case presents two subcases, i.e. standard and

very high initial velocities (1 m/s, 20 m/s). The figures report the

minimum of ∆(α), for α ∈ [1, 3, 5, 7, 9, 11, 13]. Each colour is

associated with a different time step. Missing points correspond

to simulations returning complex roots. The time steps are chosen

as ki = 2i−2

√
K̄

, for i = 1, 2, 3, 4. Notice that k3 is the limit of

stability of the classic second-order accurate scheme for the sim-

ple harmonic oscillator, (22). For s = 1
2

, ∆(1) is always positive,

in accordance with the previous observation that for such value of

s, ∆(1) is unconditionally positive. However, the scheme is quite

poorly behaved for higher values of α, especially under extreme

initial conditions. Things look much better for s = 1, where the

scheme always returns real roots for v = 1 m/s, as well as for

v = 20 m/s when α = 1, 3, k = k1, k2, k3. When s = 3, the

scheme always returns real roots, for both v = 1 and v = 20 m/s.

In fact, in this case the minimum of ∆(α) seems to have reached an

asymptote. Notice that the values of α selected for the figures are

unreasonably high for applications in musical acoustics (in prac-

tice, one always chooses 1 ≤ α ≤ 3). However, it is remarkable

that the scheme still works under such extreme conditions, at no

extra computational cost.

A discussion for potentials (3b) and (3c) is not reported here,

but the same conclusions apply.

Similar plots suggest that computability is increased as the pa-

rameter s is increased.

Summarising, empirical observations suggest that scheme (17)

gives real roots in the following cases

• conditional realness for 1 ≤ α ≤ 3 if s = 1, the condition

being (at worst) k ≤ 2√
K̄

• unconditional realness ∀α ≥ 1, if s > 2
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Figure 2: Computability of proposed scheme: values of ∆(α)

for the selected values of the free parameter s. Missing points

correspond to complex roots. For the simulations, M = 1 kg,

K = 103, α ∈ [1, 3, 5, 7, 9, 11, 13]. Time steps chosen as

k1 =
√

M
4K

(dark blue), k2 =
√

M
K

(green), k3 =
√

4M
K

(red),

k4 =
√

16M
K

(light blue). Notice that k3 is the largest timestep al-

lowed for the classic simple harmonic oscillator scheme, (22). Top

row: initial velocity v0 = 1 m/s, initial displacement u0 = −1
mm. Bottom row: initial velocity v0 = 20 m/s, initial displace-

ment u0 = −1 mm.
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Figure 3: Simple harmonic oscillator. Comparison of current

scheme, for potential (3a) with α = 1 (solid line), and classic

scheme (22) (dashed line). Top row: time domain. Bottom row:

frequency domain. Free parameter s chosen as indicated on top.

Natural frequency of the oscillator is f0 = 11 Hz. Sampling

rate chosen as fs = 2300 Hz. Initial conditions: v0 = 0.5 m/s,

u0 = −0.1 m.
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4. APPLICATIONS

Scheme (17) is now tested against various benchmark schemes.

First, the problem of the simple harmonic oscillator is considered.

Then the dynamics of a particle colliding against a stiff barrier is

studied, followed by the cubic oscillator.

4.1. Simple Harmonic Oscillator

In order to assess the properties of scheme (17), the simple har-

monic oscillator is numerically simulated under various choices of

the parameter s, and comparated against a second-order accurate

benchmark scheme (see [11] for details) given by

un+1 = (2− k2K̄)un − un−1, k ≤ 2√
K̄

. (22)

Fig. 3 presents a few such comparisons, for s = 1
2
, 1, 3. The ques-

tion of accuracy for the current scheme is an interesting one. For

the case of the simple harmonic oscillator considered here there

are two sources of error: the first one is numerical dispersion (in

fact, this is known as phase errors for the lossless case); the second

one is due to the truncation of the Taylor series (6) to second or-

der. Frequency domain analysis (i.e. z-transform techinques) are

in this case out of hand, because for scheme (17) the values of the

solution at the times n+1, n, n−1 appear nonlinearly even under

linear conditions for the potential (3a).

There are some interesting facts about Fig. 3. First of all, the

scheme is less and less accurate as s is increased. This observation

is somewhat in contrast with the observation on existence of the

roots of (17) (see also Fig. 2): there is a trade-off between accu-

racy and computability. In particular, for s = 1, 3 the fundamental

frequency is higher than the one obtained with the classic scheme,

resulting in the sinusoids shifting apart in the time domain. The

second interesting fact is that ∀s 6= 1
2

the simulated system is non-

linear, even though the model equation of the simple harmonic

oscillator is completely linear. Nonlinearities appear as odd har-

monics in the spectra of the cases for s = 1, 3. Even though such

peaks are much lower in energy than the fundamental (for s = 1
the second harmonic is lower than 60 dB in amplitude), as s is

increased they become more and more prominent. However, the

amplitude of such peaks is insensitive to the initial conditions (in

particular they do not grow when higher inital velocities or dis-

placements are used).

It is of course the case to point out that scheme (17) is prob-

ably not very well suited for the problem of the simple harmonic

oscillator, at least ∀s 6= 1
2

. This is because in general the scheme

does not make a distinction between linear and nonlinear cases, so

long as the potential φ is positive-definite and therefore the prop-

erties of existence of the roots and of positiveness of the discrete

Hamiltonian are preserved. In other words, the scheme offers a

general way to treat a large class of nonlinear problems, including

the linear case as some sort of “sub-case”, but where the scheme

remains nonlinear.

4.2. Colliding Mass

In this subsection the dynamics of a colliding mass against a stiff

barrier is simulated. Fig. 4 presents the comparison of the current

scheme, under various choices of the parameter s, and a bench-

(a)
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u
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m
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(b)

29.95 30 30.05 30.1

−20

0
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t (ms)

u̇
(m

/s
)

Figure 4: Collision of a fast particle against a stiff barrier. Com-

parison of benchmark scheme (blue) (23) and proposed scheme,

for s = 1
2

(green), s = 1 (red), s = 3 (cyan). Particle has mass

M = 1 kg, and is started at u0 = −0.5 m with initial velocity

v0 = 20 m/s against a barrier located at h = 0.1 m; barrier param-

eters are K = 5 · 109, α = 1.3. For both figures, solid lines and

dashed lineds are obtained using, respectively, fs = 44100 and

fs = 441000. (a): Particle displacement during collision (spuri-

ous interpenetration). (b): Particle velocity during collision.

mark scheme presented in [1], which reads

y+
k2

My

[

φ(y + un−1)− φ(un−1)
]

+2un−1 − 2un = 0, (23)

where y , un+1 − un−1. The scheme is second order accurate,

and unconditionally stable provided that one is able to calculate y
which appears implicitly in the argument of φ. In order to solve

for such scheme, one must employ a nonlinear root finding algo-

rithm, such as Newton-Raphson. Considering Fig. 4, it is seen

that the current scheme departs more and more from the bench-

mark scheme as s is increased; this observation is consistent with

what was already noted for the case of the harmonic oscillator.

In particular, for s = 1
2

the proposed scheme is virtually undis-

tinguishable from the benchmark scheme, whereas for s = 1, 3
differences can be noticed. When the sampling rate is increased,

such differences are reduced, providing evidence that the bench-

mark scheme and the proposed scheme display the same dynamics

in the limit of infinite sampling rate, and ∀ s.

From this simulation, it is interesting to plot the energy com-

ponents for the benchmark scheme and for the proposed scheme.

This is done in Fig. 5. In accordance to what was noted previously,

for s = 3 the potential energy is not non-negative, but remains

bounded from below and thus stability is guaranteed. When the

sampling rate is increased, the minimum of the potential energy

tends to zero.

4.3. Cubic Oscillator

Another interesting system is offered by the cubic oscillator, de-

scribed by an equation of the type

ü = −K

M
u3, (24)

and for which a second-order accurate, unconditionally stable scheme

is offered by (see [11])

un+1 =
2

1 + K
2M

k2(un)2
un − un−1. (25)
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Figure 5: Collision of a fast particle against a stiff barrier, energy components. Comparison of benchmark scheme (23) and proposed

scheme, for s = 1 and s = 3. For all plots, red line is total energy, green is kinetic, and blue is potential. (a)-(c): fs = 44100, (d)-(f):

fs =441000. The energy components are taken from the same simulation as Fig. 4

This benchmark scheme is compared in Fig. 6 to the proposed

scheme for various values of s. As in the previous examples, the

choice s = 1
2

gives results that are virtually undistinguishable

from the benchmark scheme, with more and more discrepancies

as s is increased. As for the case of the simple harmonic oscillator,

several spectral peaks appear for s 6= 1
2

in the higher frequency

range, and also the oscillations of the solution in the proposed

scheme are a little faster than for the benchmark scheme. With

respect to the case of the simple harmonic oscillator, in this case

the spectral content of the solution is sensitive to the initial con-

ditions, and in particular the oscillator displays a hardening effect

(i.e. shift of the spectrum to higher frequencies for higher ini-

tial velocities and displacements). Unlike the case of the simple

harmonic oscillator, the spurious spectral peaks appearing in the

spectrum for s 6= 1
2

also display such hardening effect, resulting

in some high frequency spectral content which can be quite clearly

heard when comparing against the benchmark scheme. Increasing

the sampling rate reduces this perceptual effect.

5. CONCLUSIONS

Nonlinear forces, and in particular collisions, are of prime impor-

tance for many applications in musical acoustics. In this paper, a

novel family of finite difference schemes was presented for colli-

sions in the lumped case, as well as for nonlinear oscillators of any

odd power. With respect to previous numerical models, the current

scheme requires only the evaluation of a square root at each up-

date, therefore no iterative root finders are needed. The scheme is

energy-conserving, and conditions for boundedness of the nonlin-

ear energy can be given in terms a free parameter in the Hamilto-

nian. The robustness of the algorithm was tested for a large number

of cases, showing very good computability properties ∀α ≥ 1 for

a choice of the free parameter s ≥ 1. The choice of s = 1
2

gives

the most accurate results, however preliminary brute force analy-

sis shows that such case is also the least computable (i.e. the roots

of the quadratic are complex in many cases). Although brute force

s = 1
2

s = 1 s = 3
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Figure 6: Cubic oscillator. Comparison of current scheme, for po-

tential (3a) with α = 3 (solid black line), and benchmark scheme

(25) (dashed blue line). Top row: time domain. Bottom row: fre-

quency domain. Free parameter s chosen as indicated on top. Stiff-

ness of the oscillator is K = 1010, and mass is M = 1 kg. Sam-

pling rate is fs = 44100. Initial conditions: v0 = 5 m/s, u0 = 0
m.
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analysis cannot be exhaustive, there is strong evidence that higher

values of s do increase the overall robustness of the algorithm, at

the expense of accuracy. It is hoped that the current algorithm can

be extended to the case of collisions of one lumped and one dis-

tributed object (for example, a string and a rattle), for real-time

applications.
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