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ABSTRACT

This paper presents a computationally efficient and easily interac-

tive system for the estimation and compensation of speed varia-

tions in musical recordings. This class of degradation can be en-

countered in all types of analog recordings and is characterized by

undesired pitch variations during the playback of the recording.

We propose to estimate such variations in the digital counterpart

of the analog recording by means of sinusoidal analysis, and these

variations are corrected via non-uniform resampling. The system

is evaluated for both artificially degraded and real audio record-

ings.

1. INTRODUCTION

The problem of speed variations in old recordings is quite ubiq-

uitous: for example, the puncture of vinyl and gramophone disks

could be not well centered, and this kind of media, when subject

to high temperature, could be bent; also, poorly stored magnetic

tapes can be stretched. In both cases, when the degraded media

is reproduced the playback speed will not be constant, causing an

effect that is perceived as a pitch variation along the signal. Be-

cause of this audible effect, this defect is also known as “wow” in

the literature. When considering historical collections, where it is

very common to have only one copy of the recording available, it

is then important to develop methods to identify and remove this

effect of the degraded recording.

The study of quantification of “wow” dates back to the 40’s

[1, 2]. Depending on the cause of the degradation, mechanical

methods can be used to restore such recordings: for example, cor-

rectly centering the puncture on a disk is a quite efficient way of

undoing the degradation, but it only works in this particular case.

For more general causes of this degradation, more sophisticated

methods are required, that enable the use of digital signal process-

ing, since the basic idea behind all the proposed restoration meth-

ods is to re-sample the degraded signal in a non uniform way such

that the speed variation is compensated [3]. Therefore, it is then

necessary to firstly estimate the so-called pitch variation curve

(PVC) from the degraded signal. Then, a time-varying resampling

algorithm is applied on the PVC. One of the first proposed meth-

ods following this guideline is [4, 5], where the curve is estimated

via a statistical procedure from the spectrogram of the degraded

signal and then used to resample it. A drawback of this method is

that it is quite computationally intensive. This same idea was also

explored in [6, 7], where an improved method for estimating the
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peaks in the spectrogram is proposed, as well as a different model-

ing for the pitch variation curve is employed. Since this modeling

is parametric and sinusoidally-based, it can fail to describe more

general curves. Other methods for determining the distortion are

proposed in [8], although they are difficult to implement. Also in

[8] an extensive discussion and comparison of several estimation

methods is presented. Lastly, commercial tools are also available,

for instance Capstan1.

In this paper we propose a computationally efficient and non-

parametric method which requires low amount of user interaction

for determining the PVC based on a sinusoidal analysis of the de-

graded signals, as well as a time-varying resampling scheme that

uses the estimated curve to restore the degraded signal.

The paper is organized as follows: in Section 2 an outline of

the proposed solution is presented, and the next sections describe

each step in more details; Section 3 presents the peak detection

method employed in the sinusoidal analysis, followed by the peak

tracking algorithm in Section 4; in Section 5 it is shown how the

PVC is obtained from the estimated tracks, and Section 6 describes

how the PVC is used in the time-varying resampling algorithm; re-

sults are presented and conclusions are drawn in Sections 7 and 8,

respectively.

2. OUTLINE OF THE PROPOSED SOLUTION

The proposed solution has essentially three steps, as shown in Fig-

ure 1: the degraded signal is given as input to a sinusoidal analy-

sis algorithm, whose estimated tracks are used to obtain the PVC,

subsequently used in the time-varying resampling algorithm in or-

der to restore the degraded signal. In this Section we briefly re-

call some aspects of the sinusoidal analysis and outline how these

aforementioned steps are interconnected.

Sinusoidal analysis is a well-known multi-purpose technique

in audio processing where small excerpts of a digital audio signal

x[n] are described as a sum of sinusoidal components [9]:

x[n] =
∑

j

Aj [n] cos(Ψj [n]), (1)

where Aj [n] and Ψj [n] represent the time-varying envelope and

the phase modulations of each component j, respectively.

The main goal is to estimate the parameters Aj [n] and Ψj [n]
from the respective audio excerpt. With this set of parameters in

hand, several tasks could be performed, for example, feature ex-

traction or some modification and posterior re-synthesis of the sig-

nal [9]. In our case, this framework is used to estimate the PVC,

based on the idea that all the frequencies present in an audio signal

1http://www.celemony.com/en/capstan
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Figure 1: Main steps of the proposed method.

degraded by speed variation must contain some degree of devia-

tion, more discussed in Section 5. Therefore, in this work it is

more important to estimate the frequencies and amplitudes present

within short excerpts of the audio signal than other quantities, and

this estimation is performed as follows (see [10] for more details):

1. The whole signal x[n] is segmented, with each segment be-

ing multiplied by a window function w[n] (here the Hann

window was employed) of length NW, and contiguous seg-

ments have an overlap of NH samples. Denote the n-th

sample of the b-th block as xb[n], for n = 1, . . . , NW;

2. The NFFT-point DFT of each segment is computed, its re-

sult being denoted by X(k, b), representing the coefficient

of the k-th frequency bin in the b-th block.

3. The most prominent peaks of each block that are more likely

to be related to tonal components of the underlying signal

are estimated via a procedure described in Section 3, based

on [11];

4. Finally, in order to form tracks with the peaks estimated in

the previous step, a simple algorithm is applied, where es-

sentially a peak in some particular block is associated with

the closest peak in the following block. This is a modifi-

cation of the MQ algorithm [12], and is explained in more

details in Section 4. The frequency of the i-th track in the

b-th block of signal is denoted by fi[b].

Now, using an weighted average of the previously obtained

tracks, the PVC is estimated via a simple procedure described in

detail in Section 5. Finally, the PVC is given, together with the

degraded signal, as input to a non-uniform resampling algorithm,

detailed in Section 6. In the next Sections, the aforementioned

steps are thoroughly discussed.

3. PEAK DETECTION

Since the presented method for estimating the PVC is based on

sinusoidal analysis, it is important to employ a peak detection al-

gorithm that rejects those noise-induced. Several methodologies

have been proposed to detect tonal peaks in audio signals, includ-

ing threshold-based methods [9, 13] and statistical analysis [14].

To separate genuine peaks from spurious ones, we adopt the

Tonalness Spectrum, introduced in [11], since it is an easily exten-

sible and flexible framework for sinusoidal analysis. This is a non-

binary representation which indicates the likelihood of a spectral

bin to be a tonal or non-tonal component. In this metric, a set of

spectral features V = {v1, v2, ..., vV} is computed from the signal

spectrum and combined to produce the overall tonalness spectrum:

T (k, b) =

(

V
∏

i=1

ti(k, b)

)1/η

, (2)

where ti(k, b) ∈ [0, ..., 1], which is referred to as the specific tonal

score, is calculated for each extracted feature vi according to:

ti(k, b) = exp
{

− [ǫi · vi(k, b)]
2
}

. (3)

This measure can be explained as the probability of the given fea-

ture present a tonal component in the bin k of block b. The factor ǫi
is a normalization constant which ensures that all specific features

will equally contribute to the tonalness spectrum when combining

them, and it is obtained by setting in Eq. 3 the specific tonal score

of the median of the feature in each block to 0.5. This yields the

following expression for the normalization constant:

ǫi =

√

log(2)

mvi

, (4)

where mvi(b) is the median value of feature i in the block b and

mvi is the mean over all blocks of all files (in the case that a dataset

is being analyzed).

The feature set comprises simple and established features, in-

cluding a few that are purely based on information from the cur-

rent magnitude spectrum of a block, such as frequency deviation,

peakiness and amplitude threshold; some that are based on spec-

tral changes over time, such as amplitude and frequency continu-

ity; and one feature that is based on the phase and amplitude of the

signal, which is the time window center of gravity.

Although the proposed method for estimating speed variations

is based on a time-frequency representation, the peak detection

stage is characterized by analyzing each frame individually. There-

fore we take into account only those features which extract infor-

mation from a single block.

The evaluation of results in [11] showed that, although the

combination of features intuitively and empirically performs better

than individual scores, combinations of more than three features

did not achieve better representations. Moreover, it was also re-

ported that combination with a simple product, that is, setting η to

1 in Eq. 2, yielded better results than with the distorted geometric

mean.

Taking these information into account, our tonalness spec-

trum is formed by the combination of the amplitude threshold and

peakiness features, since in [15] the combination of these features

achieved good results on the detection of fundamental frequencies

and their harmonics in music signals. Therefore, in our case, the

expression in Eq. 2 can be simplified to:

T (k, b) = tPK(k, b) · tAT(k, b), (5)

with tPK(k, b) and tAT(k, b) being the specific tonal scores of the

peakiness and amplitude threshold, respectively.

The peakiness feature measures the height of a spectral sample

in relation to its neighboring bins, and it is defined as:

vPK(k, b) =
|X(k + p, b)|+ |X(k − p, b)|

|X(k, b)|
, (6)

where the distance p to the central sample should approximately

correspond to the spectral main lobe width of the adopted window

function when segmenting the signal, so side lobe peaks can be

avoided.

The amplitude threshold feature measures the relation of the

magnitude spectrum by an adaptive magnitude threshold, and it is

defined as:

vAT(k, b) =
rTH(k, b)

|X(k, b)|
, (7)
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where rTH(k, b) is a recursively smoothed version of the magni-

tude spectrum:

rTH(k, b) = β · rTH(k − 1, b) + (1− β) · |X(k, b)|, (8)

with this filter being applied in both forward and backward direc-

tion in order to adjust the group delay, and β ∈ [0, 1] being a factor

that is empirically tweaked.

3.1. Peak Selection

After computing the tonalness spectrum, all peaks ki are selected

in each block, and those which do not fulfill the following criterion

are discarded:

T (ki, b) ≥ TTH, (9)

where TTH ∈ [0, 1] is an empirically adjusted likelihood thresh-

old.

Moreover, since our tonalness spectrum measurement evalu-

ates peaky components and their surroundings, independently of

their absolute magnitude amplitudes, some small and insignificant

peaks could present a high tonalness likelihood and thus be se-

lected. Hence the following criterion is employed in each block to

discard such irrelevant peaks:

|X(ki, b)| ≥ γ ·max|X(k, b)|, (10)

where γ is a percentage factor, and satisfactory peak selections

were obtained by setting this factor to around 1%.

Figure 2 illustrates the peak selection stage in a block of an

audio signal containing a single note being played by a flute. The

criteria in Eq. 9 and 10 were set to 0.8 and 1%, respectively. It can

be seen that the tonalness spectrum is a powerful representation of

tonal components, when comparing it with the original magnitude

spectrum.
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Figure 2: Illustration of the peak detection stage. The thicker and

brighter line represents the tonalness spectrum of a block from

an audio signal, whose magnitude spectrum is indicated on the

thinner and darker line. The likelihood threshold is represented by

the horizontal dashed line and the selected peaks are marked with

asterisks.

4. PARTIAL TRACKING

To conclude the sinusoidal analysis stage, the spectral peaks se-

lected in each frame are grouped into time-changing trajectories

in which both frequency and amplitude can vary. This process is

referred to as partial tracking.

Several methods have been proposed to track spectral peaks.

Relevant works include the classical McAuley & Quatieri (MQ)

algorithm [16], its extended version using linear prediction [17],

and a solution via recursive least-squares (RLS) estimation [18].

In this work, a modified version of the MQ algorithm is em-

ployed, which is described in [12], since this is a computationally

efficient technique that is easily implementable and achieves good

representation of sinusoidal tracks.

In this algorithm, a track can be marked with three different

labels: it emerges when a peak is not associated with any existing

track, remains active while it is associated with peaks, and van-

ishes when it finds no compatible peak to incorporate. Defining

fi,b and Ai,b the frequency and magnitude amplitude of the ith
detected peak in frame b, the algorithm can be explained as fol-

lows:

1. For each peak fj,b+1 a search is performed to find a peak

fi,b from a track which had remained active until the frame

b, satisfying the condition |fi,b − fj,b+1| < ∆fi,b. The pa-

rameter ∆fi,b controls the maximum frequency variation,

and is set to a quarter tone around fi,b.

2. If the peak fj,b+1 finds a corresponding track in the pre-

vious frame satisfying the condition described in step 1, it

associates with this track, which remains active. If two or

more peaks satisfy the condition, the peak that minimizes

J = (1− κ)
|fi,b − fj,b+1|

fi,b
+ κ

|Ai,b −Aj,b+1|

Ai,b
(11)

is selected, where κ ∈ [0, 1] is a weighting parameter that

controls the influence of the relative frequency and ampli-

tude differences in the cost function in Eq. 11.

3. When the peak of a track in b is not associated with any peak

in b + 1 satisfying the condition, it is marked as vanishing

and a virtual peak with its same frequency and amplitude

is created in b + 1. When the track reaches D consecutive

virtual peaks, it is then terminated.

Except for the first frame, where all the peaks invariably start

new tracks, these steps are performed in all frames, until all peaks

are labeled. Lastly, short tracks whose length is less than a number

E of frames are removed.

5. GLOBAL PITCH VARIATION CURVE

A consequence of speed variations in musical signals is the devia-

tion of all their frequencies by the same percentage factor, that is,

a pitch modification. Therefore, a curve which combines the vari-

ations of the main frequency components of the signal is a suitable

metric for estimating the defect.

In [4, 5] a Bayesian procedure is proposed to estimate the

pitch variation curve, but it is quite computationally expensive.

An alternative is to determine the distortion using only the most

prominent spectral component of the signal, a technique proposed

in [8]. However, this method is not practical, and such spectral

component may contain frequency modulations not corresponding

to speed variations, interfering then with the correct curve estima-

tion.

Our proposed approach consists of calculating a weighted av-

erage curve from the computed tracks, thus exhibiting an overall
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behavior of how the tracks vary with time. If a global frequency

variation in a part of the signal is detected, this might be a promis-

ing evidence of a speed variation in that part.

The weights in this average are the magnitude amplitudes of

the detected peaks. The motivation for weighting the curve is that

the most important tracks should contribute more to the PVC than

the less prominent ones. This metric can be interpreted as an ex-

tended version of the method proposed in [8]. Since this metric

takes into account more frequency components and it is refined by

their magnitude amplitudes, it is expected that this overall pitch

variation curve can be more reliable than taking only one compo-

nent.

For aesthetic reasons, it is quite common the presence of notes

played with ornaments in music recordings, such as vibrato. This

is often seen in bowed string or woodwind instruments, and in

singing voice as well. Thus, when tracking an instrument record-

ing with such effect, parts where vibrato occurred could be erro-

neously detected as speed variations. However, if the instrument

is in a recording with other musical instruments, which would not

necessarily be synchronized with its vibrato, that effect would be

attenuated by computing an average of the tracks. Nevertheless,

the method presented in this paper can be implemented in a way

that the user may select the specific parts of the audio signal to be

restored.

5.1. Extraction of the weighted global average of the tracks

In the first step of the global pitch variation curve extraction, the

mean of all tracks are shifted to zero, and then each of them are

normalized by its respective frequency average in time, this way

obtaining the percentage average of each sinusoidal trajectory. For

a track i, this stage is mathematically described as:

f̃i[b] =
fi[b]− f̄i

f̄i
, (12)

with fi[b] being the frequency of the ith track in the frame b, and

f̄i being the arithmetic mean of all frequencies in the ith track.

Following that, the weighted average of each frame b is calcu-

lated:

f̃ ′[b] =

∑

i Ai[b]
αf̃i[b]

∑

Ai[b]α
, (13)

where Ai[b] represents the magnitude amplitude of the ith track in

the frame b and α ∈ [0, 1] is a parameter that controls the influence

of large amplitudes over smaller ones, which we will from now on

refer to as the weighting factor. The motivation for this parame-

ter is that the magnitude amplitude of the harmonic components

of tonal peaks drop sharply as the harmonic order increases, and

one may desire to increase the participation of such medium and

small amplitude harmonics in the computation of the pitch varia-

tion curve.

It can be noticed that when α = 0, the Eq. 13 happens to be

the arithmetic mean of the tracks, indicating that all tracks will

equally contribute to the PVC; analogously, when α = 1, the PVC

is set so the small-amplitude peaks influence less in its estimation.

To minimize the effects of false tracks, the weighting factor would

naturally be set to a value close to 1, and empirical tests indicate

that setting α between 0.7 and 1 achieve satisfying results.

The curve f̃ ′[b] may present undesired small irregularities,

which are caused by frequency inaccuracies and the tracking of

non-tonal peaks which do not correspond to frequency compo-

nents. Hence, this curved is smoothed by a moving average filter,

f̃ [b] =
1

NMA

NMA−1
∑

i=0

f̃ ′[b+ i], (14)

where NMA is the order of the filter, and the final PVC is then the

vector f̃ , whose components are f̃ [b], for m = 1, . . . , NB, with

the latter term being the total number of blocks.

It is then expected that the pitch variation curve of a signal ex-

hibits values around zero. For a better interpretation of this curve,

it is interesting to normalize it, which is realized by shifting its av-

erage to 1. This is a better notation when it is necessary to adopt a

frequency reference. For example, curves related to parts in which

there was no speed variations now exhibit values around 1, indi-

cating that the frequencies of their tracks have all been multiplied

by 1. If in a frame transition there is a deviation of 0.6%, this now

is represented in the curve as 1.006, that is, all frequencies in this

transition on average were multiplied by 1.006.

6. NON-UNIFORM RESAMPLING

In this section, it is described how non-uniform sampling rate con-

version can be employed from the PVC to compensate speed vari-

ations in digital audio signals.

When an audio signal is played back with a different rate from

that which was originally sampled, the perceived pitch is modi-

fied, as well as its time duration is distorted. It turns out, as ex-

plained in Section 1, that speed variations yield exactly pitch and

time variations. Therefore sampling rate conversion is a suitable

technique for compensating such defects in digital versions of de-

graded recordings.

Furthermore, since speed variations are not constant in time,

this sampling rate conversion must be non-uniform, which can

also be referred to as time-varying resampling. In [3] different

methods for “wow” reduction are compared, and the sinc-based in-

terpolation [19] achieved less distortions in reconstructed signals.

Therefore, an algorithm that receives as input the digital version of

the degraded signal and its PVC, and its output the reconstructed

signal using the sinc-based time-varying resampling was imple-

mented.

The sinc-based interpolation is closely related to the analog in-

terpretation of resampling, which is the reconstruction of the con-

tinuous version from the discrete signal, followed by resampling it

with the new desired rate. The expression for the converted signal

xrec[n
′] with new rate F ′

s using the sinc-based resampling is given

by [19]:

xrec[n
′] =

NT
∑

n=−NT

x[n] sinc

(

π

(

n′

fr
− n

))

, (15)

where fr = F ′

s/Fs is the resampling factor, i.e. the ratio between

the desired and original sampling rates, and 2NT + 1 is the num-

ber of samples used in the interpolation. The reconstruction of a

sample is illustrated in the Figure 3.

6.1. Implementation

Since the pitch variation curve f̃ from Eq. 14 is normalized to 1,

each of its elements correspond exactly to the term fr in Eq. 15.

However, each element is associated to a block of the signal, which

was segmented during the STFT procedure. Hence the transition

between blocks must be modeled sample by sample.
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Figure 3: Illustration of the sinc-based interpolation method.

The following steps summarize the non-uniform resampling

procedure that was implemented in this work, given a digital audio

signal and its pitch variation curve:

1. Firstly, each element f̃ [b] of the vector f̃ is associated to the

central sample of its respective block;

2. Secondly, the number of samples which will be reconstructed

between each pair of consecutive central samples of f̃ [b]

and f̃ [b + 1] is calculated, so the transition between these

central samples be smooth. This is obtained by realizing a

linear interpolation to obtain the positions of each sample

to be reconstructed (which can generically be represented

by the sample in n′ in Figure 3);

(a) This process inevitably involves numerical approxi-

mations, which in this context are translated into phase

deviations. Such approximations must be taken into

account, and therefore compensated in order to elim-

inate audible artifacts.

3. Finally, the expression in Eq. 15 is applied for each new

sample.

It is also worth mentioning that the correction of speed varia-

tions can be performed offline, so NT can be chosen large enough

in order not to compromise the quality of the reconstructed signal.

Experiments in [3] showed that using NT = 100 achieved inaudi-

ble distortions. Moreover, our experiments with such number of

samples or even less also did not degraded the signal.

7. RESULTS

This section presents the evaluation of the proposed algorithm.

Several degraded signals were investigated, and two of them are

shown in this paper, one from an artificially degraded recording,

and one from a real recording. The audio signals presented here

as well as all implemented codes in this work are available in [20].

All tests were realized with the same set of parameters, which are

summarized in Table 1.

The first test was performed with an excerpt of orchestral mu-

sic, containing long notes being played by bowed instruments. An

artificial sinusoidal pitch variation was imposed into this signal and

the proposed method was applied, so both true and estimated PVCs

can be compared. Although the curves slightly differ in terms of

their amplitudes, as can be seen in the first graph of Fig. 4, a sat-

isfactory correspondence can be observed between them. As can

be seen in the second graph of Fig. 4, the pitch variation curve of

the resampled signal shows only slight variations, which can be

explained by the amplitude difference mentioned before; however,

informal listening tests reported no audible pitch variations. It is

Table 1: Parameters used to estimate the PVC.

Parameter Value

NW 4096 samples

NH 256 samples

NFFT 16384 samples

β 1500/NFFT

TTH 0.75
γ 1%
κ 0.6
D 5 blocks

E 10 blocks

α 0.8

0.5 1 1.5 2 2.5 3 3.5

Time (s)

0.98

1

1.02

P
V
C

0.5 1 1.5 2 2.5 3 3.5

Time (s)

0.98

1

1.02

P
V
C

Figure 4: Restoration of the signal ‘orchestra’. In the first graph,

the solid line and dotted line represent the estimated and true

PVCs, respectively. The PVC of the restored signal is shown in

the second graph.

also worth mentioning that there are no precise objective measure-

ments to compare the original signal with the restored one.

The second test was realized on a piano recording which presents

genuine speed variations. Figure 5 shows the PVCs of the de-

graded and restored signals, respectively. What sorts out from

the graphs is that the proposed method estimated the shape of the

variations with considerable accuracy, and therefore the result was

considered satisfying. However, the PVC of the restored signal

still presents some slight variations, but this can be explained by

the inaccuracies of the sinusoidal analysis stage, more precisely

during the partial tracking stage.

8. CONCLUSION

This work has presented a computationally efficient system which

requires minimum user interaction for the estimation and correc-

tion of speed variations in the playback of musical recordings. The

stage of estimating the pitch variation curve was based purely on

sinusoidal analysis, and the good results indicated that the pro-

posed framework can serve, for example, as the core of a more

sophisticated and robust professional tool for audio restoration.

It can be said that the partial tracking stage appears as the less

robust stage in the system, and it may have the biggest influence

in the inaccuracies reported in Figures 4 and 5. Therefore, fu-

ture works include the development of a more robust algorithm

for peak tracking, possibly operating simultaneously with a group
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Figure 5: Restoration of the signal ‘piano’. The estimated PVC is

depicted in the first graph, and the restored PCV is shown in the

second one.

of blocks, as proposed in [17]. Other potential improvements to

be implemented include the development of a better method for

converting the set of tracks into the pitch variation curve, and the

assessment of results via subjective tests.

As stated in [8], a fully automatic system, although tempting,

is not feasible. Since the nature of pitch variations in old mu-

sic recording is wide [5], this class of audio degradation requires

a human operator for applying restoration algorithms. However,

we believe that such systems can be minimally and friendly in-

teractive, so non-professional users can restore their old domestic

recordings by their own.
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