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ABSTRACT

This paper presents a comparison framework to study the relative

benefits of the typical trapezoidal method with the lesser-used im-

plicit midpoint method for the simulation of audio lumped systems

at a fixed rate. We provide preliminary tools for understanding

the behavior and error associated with each method in connection

with typical analysis approaches. We also show implementation

strategies for those methods, including how an implicit midpoint

method solution can be generated from a trapezoidal method solu-

tion and vice versa. Finally, we present some empirical analysis of

the behavior of each method for a simple diode clipper circuit and

provide an approach to help interpret their relative performance

and how to pick the more appropriate method depending on desir-

able properties. The presented tools are also intended as a general

approach to interpret the performance of discretization approaches

at large in the context of fixed-rate simulation.

1. INTRODUCTION

Computational modeling of audio lumped systems (i.e., virtual

analog modeling) is a major topic of interest, including emulation

of electronic and acoustic systems such as vintage audio effects

or acoustic instruments. This main goal of this modeling process

is the design of discrete-time systems emulating the behavior of

a continuous-time system. When the set of differential equations

driving the dynamics of that system are known, a common proce-

dure is to discretize it using a discretization schemes [1–3].

Those methods have a variety of advantages and drawbacks.

Discretization schemes are generally designed following concepts

such as order of accuracy and stability. These properties guar-

antee the versatility of those methods for consistently generating

discrete-time models with some level of accuracy. In the con-

text of virtual analog modeling, a large part of the literature has

been developed focusing on using the trapezoidal method [3–10].

This method provides a good compromise between simplicity (as

a one-step method), accuracy (as a second-order method) and be-

havior (as an unconditionally stable method). A less-studied nu-

merical method with those same properties is the implicit midpoint

method [11]. While they share those properties, the two methods

differ in behavior for nonlinear systems, and results from previ-

ous papers have hinted to the possibility that the implicit midpoint

method could produce better-behaved simulations for some classes

of systems [12,13]. One particular point of interest to compare the

two methods is the oscillatory behavior for the simulation of stiff

systems [14].

Virtual analog modeling is also generally focused on fixed-

rate simulation, meaning that that controlling the error through the

modulation of the simulation rate is seldom considered. This is

mostly due to the computational cost of such control, as real-time

simulation is a desirable property of virtual analog approaches

[15]. In that context, typical error analysis methods have limited

interpretation since they mostly describe the behavior of the meth-

ods as the simulation rate tends to infinity. Simulation rates in

virtual analog systems tend to fall in regions where those asymp-

totic properties provide limited insight on the simulation behavior.

We then want to draw alternative design methods for discretization

methods that rather target the fixed-rate context [14, 16–18].

This paper presents a preliminary framework for the compar-

ison and error analysis of the typical trapezoidal method and the

lesser-used implicit midpoint method in the context of fixed-rate

simulation of audio lumped systems, as well as practical infor-

mation regarding their implementation in several existing frame-

works. Sec. 2 shows the general state-space formalism that we use

for our analysis. Sec. 3 shows the definition and the general prop-

erties of the two methods. Sec. 4 shows a discussion of strategies to

implement the midpoint method using current virtual analog mod-

eling approaches. Finally, Sec. 5 shows an empirical comparison

of the two methods on a diode clipper system [15, 19, 20].

1.1. Notation

In this paper, we use bolded letters (e.g., x, f ) to denote multi-

dimensional variables and multi-output functions. Discrete-time

sequences are denoted with an overline (e.g., x, x). Superscripts

are used to denote the number of a sample in a sequence (e.g., xn

is the nth sample in the sequence x). To avoid confusion, power

are indicated outside parentheses (e.g., (x3)2 is the 3rd sample of

the sequence x raised to the 2nd power). Subscripts are used to

denote differentiation (e.g., fxu(x, u) is the 2nd-order derivative

of the function f(x, u) with respect to x and u).

2. STATE-SPACE SYSTEM REPRESENTATION

2.1. Continuous-time state-space representation

A common way of representing time-invariant lumped systems is

in the so-called state-space representation, where the system is

characterized by the equations [21]

xt(t) = f(x(t),u(t)), (1a)

y(t) = g(x(t),u(t)), and (1b)

x(0) = x0, (1c)

where f , g are nonlinear functions, x is a vector of state variables,

u is a vector of input variables, y is a vector of output variables, x0

is a vector of initial conditions. For conciseness, we omit repeating

Eqs. (1b) and (1c) in the rest of the paper as they remain unchanged

by the discretization process.
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2.2. System discretization

The exact solution to Eqs. (1a) and (1c) is theoretically given by

x(t) = x0 +

∫ t

0

f(x(τ),u(τ))dτ. (2)

but we can also express the solution at times tn = nT (with a

fixed interval T ) by solving iteratively the problem

x(tn+1) = x(tn) +

∫ tn+1

tn

f(x(τ),u(τ))dτ. (3)

In typical cases, solving Eq. (2) or (3) analytically is intracta-

ble. One can however compute a discrete-time series xn approxi-

mating x(tn). To do so, we use numerical integration methods to

approximate the integral in Eq. (3) using some N past input values

and approximated state values. The update equation of xn is then

x
n+1 = x

n + Tf(xn+1, . . . ,xn−N ,un+1, . . . ,un−N ). (4)

Coupled with Eq. (1b), we can then form a sequence of ap-

proximated output values for our system of interest. Note that

when f depends on xn+1, Eq. (4) becomes implicit and cannot

always be solved analytically.

3. NUMERICAL INTEGRATION METHODS

Numerical integration methods aims at approximating the value of

the integral of a function using a finite number of function eval-

uations. As stated earlier, we can apply those methods to Eq, (3)

form a discretized update equation as in Eq. (4). In this paper, we

discuss specifically two common methods, the trapezoidal method

and the implicit midpoint method.

3.1. Trapezoidal method

The trapezoidal method approximates the value of f in the interval

[t, t+ T ] as the average of the function values at the start and end

point of the integral to compute the integral as [22]

∫ t+T

t

f(τ)dτ ≈ T
2
(f(t+ T ) + f(t)). (5)

Eq. (3) is then discretized to form the implicit update equation

for the trapezoidal method as

x
n+1 = x

n + T
2
f(xn+1,un+1) + T

2
f(xn,un). (6)

3.2. Implicit midpoint method

The midpoint method approximates the value of f in the interval

[t, t + T ] as its value at midpoint of the integral to compute the

integral as [22]

∫ t+T

t

f(τ)dτ ≈ Tf
(

t+ T
2

)

. (7)

To use this approach in Eq. (3), several implementations are

possible. It can be implemented as the explicit midpoint method,

but that method requires a way to compute the state and input val-

ues at time tn+ 1
2

. Additionally, this method (also called leapfrog

method) has poor stability properties as its stability region is re-

duced to the imaginary axis in the s-plane [1]. We focus instead on

the implicit midpoint method whose implicit update equation is

x
n+1 = x

n + Tf
(

1

2
(xn+1 + x

n), 1

2
(un+1 + u

n)
)

. (8)

For conciseness, we will refer to the implicit midpoint method

simply as “midpoint method” in the rest of the paper.

3.3. Stability analysis and pole mapping

In the following sections, we use the scalar version of Eq. (4) to

simplify the notation, as the results extend readily to the multidi-

mensional case using diagonalization and multivariable calculus.

A typical way of studying the stability of discretization meth-

ods is by studying the solution to linear time-invariant ordinary

differential equations (ODEs) of the form

xt(t) = λx(t), λ ∈ C, (9)

whose update equation can typically be written in the form

x(tn+1) =

N
∑

m=0

am(λ)x(tn−m), a0(λ), . . . , aN (λ) ∈ C. (10)

If we denote λm(λ) the N + 1 roots of the polynomial

p(z) = zN+1 −

N
∑

m=0

am(λ)zN−m, (11)

the stability region of a method is then defined as the set of λ such

that ∀m ∈ {0, . . . , N}, we have |λm(λ)| < 1 (i.e., λm(λ) is

inside the unit sphere). For both the trapezoidal method and the

midpoint method, we have a single root λ written as

λ(λ) =
1 + Tλ/2

1− Tλ/2
, (12)

so that the stability region corresponds to left half of the complex

plane {λ,Re(λ) < 0}. This means that the two methods have

the desirable property of being A-stable [23]. This also means

that, for linear systems, the two methods map the system poles

and zeros exactly the same way. We then expect both methods to

exhibit similar qualitative behavior, such as resonant peaks near

the Nyquist frequency for stiff systems (i.e., systems with strongly

damped poles) and frequency warping [14].

3.4. Discretization error and order of accuracy

The discretization error of a method is typically characterized us-

ing the equation xt(t) = f(x(t)) by deriving the error between

x(tn+1) solution of

x(tn+1) = x(tn) +

∫ tn+1

tn

f(x(τ))dτ (13)

and xn+1 solution of the discretized equation

xn+1 = x(tn) + Tf(xn+1, x(tn), . . . , x(tn−N )). (14)

This error is typically computed in terms of a polynomial in T
using the Taylor expansion of x(tn+1)− xn+1 [1] so that

x(tn+1)− xn+1 =

+∞
∑

n=0

ǫ(tn)T
n, (15)
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where ǫ(tn) can be expressed in terms of function derivatives fxk .

The order of accuracy of a method is then defined as the integer n
for which ǫm = 0 for all m ≤ n. As symmetric methods, both

the trapezoidal method and the midpoint method are second-order

accurate (ǫ0 = ǫ1 = ǫ2 = 0). Beyond that, for the trapezoidal

method, we have the 3rd and 4th order error terms as

ǫtr3 = −
(f)2fxx + f(fx)

2

12
and

ǫtr4 = −
(f)3fxxx + 4(f2)fxfxx + f(fx)

3

24
,

(16)

and, for the midpoint method, as

ǫmd
3 =

(f)2fxx − 2f(fx)
2

24
and

ǫmd
4 =

(f)3fxxx − (f)2fxfxx − 4f(fx)
3

48
.

(17)

We then see that depending on the nonlinear function charac-

teristics, different patterns of constructive or destructive interfer-

ence between the different terms will lead to different behaviors

between the two methods.

3.5. First-order fixed-point behavior

Many systems of interest usually tend towards a steady-state solu-

tion after infinite time. Note however that not all systems behave

this way (e.g., relaxation oscillators [24, 25]). Those steady-state

(equilibrium) solutions xe solve the implicit equation:

f(xe) = 0. (18)

A typical analysis of the equilibrium is to look at the value

fx(x
e) to find if the equilibrium is stable (fx(x

e) < 0) or unsta-

ble (fx(x
e) > 0). Physical systems composed with passive and

dissipative components typically present one or more stable equi-

libria due to the energy of the system being dissipated over time.

For such equilibria, as the state variable of a system approaches

xe, the Hartman-Grobman theorem [26] guarantees they will be-

have similarly as the solutions of the linearized system around xe

which follow the exponentially decaying profile

x(t) ≈ x(0) exp(tfx(x
e)) + xe. (19)

Sampled at times tn, the update formula is expressed as

x(tn+1) ≈ (x(tn)− xe) exp(Tfx(x
e)) + xe. (20)

By construction, the equilibria of the discretized system using

either the trapezoidal rule or the midpoint rule are identical to those

of the original system as they also verify Eq. (18). In the vicinity

of those equilibrium, both methods then behave as the linearized:

xn+1 ≈ α(xn − xe) + xe, (21)

with α related to fx(e) following Eq. (12), meaning

α =
1 + Tfx(x

e)/2

1− Tfx(xe)/2
. (22)

The stability properties of both methods guarantees that stable

equilibria (fx(x
e) < 0) are necessarily stable for the discretized

sequences (|α| < 1). However, we have no guarantee on the sign

Figure 1: Solution sequence behavior regions for xn+1 as a func-

tion of xn (in green) with reference to the point (xe, xe).

of α, so that if α < 0, the sign of xn − xe near the equilibrium al-

ternates at each iteration, creating an oscillation that is not present

in the original x(tn)− xe which remains of the same sign accord-

ing to Eq. (19). This oscillatory behavior matches the well-known

oscillations exhibited by the solution of stiff systems discretized

with the trapezoidal rule [14].

3.6. General fixed-point behavior

Further from an equilibrium, the first-order behavior from Eq. (21)

may be insufficient to understand the behavior of the system in

some regimes. Another tool we can use is to compute the transition

equation xn+1 as a function of xn. Once that transition function

is known, we can deduce regions indicating whether the method is

converging or diverging, i.e., (respectively):

|xn+1 − xe| < |xn − xe| or |xn+1 − xe| > |xn − xe| (23)

and whether the method is oscillating or not, i.e., (respectively):

|xn+1−xe| · |xn−xe| < 0 or |xn+1−xe| · |xn−xe| > 0 (24)

Those properties translate graphically as shown in Fig. 1. In

that representation, an quasi-exponential decay such as the one de-

scribed in Eq. (21) for α > 0 corresponds to a linear section of

curve in the convergent non-oscillating region. An oscillating ex-

ponential decay (α < 0) corresponds to a linear section of curve

in the convergent oscillating region.

3.7. Discretization error with variable input

When considering the influence of the input variables, the equation

of interest becomes xt(t) = f(x(t), u(t)). The error terms are

then expressed as function of the partial derivatives fxkul of f .

Expectedly, with the added input variables, both methods re-

main second-order accurate (ǫ0 = ǫ1 = ǫ2 = 0). The 3rd-order

error term for the trapezoidal method becomes

ǫtr3 = −
(

(f)2fxx + 2utffxu + (ut)
2fuu

)

/12

− ((ffx + utfu)fx + uttfu)/12, (25)

DAFX-170



Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

and one for the midpoint method becomes

ǫmd
3 =

(

(f)2fxx + 2utffxu + (ut)
2fuu

)

/24

− ((ffx + utfu)fx + uttfu)/12. (26)

Here again, we see how the two methods will present different

patterns of interference altering their behavior as a function of f
as the influence of the input on the error terms differ as well.

4. IMPLEMENTATION CONSIDERATIONS

Many publications have presented various implementations of the

trapezoidal method for the simulation of audio lumped systems so

we refer the reader to those articles for more details [3–10]. We de-

tail here approaches regarding the implementation of the midpoint

method in typical audio circuit simulation frameworks. Generally,

the implementation of the midpoint method can be derived in two

ways: either through simple modifications of the system obtained

using the more typical trapezoidal method or directly from the out-

put of that trapezoidal-rule system with a simple transformation of

the output as detailed below.

4.1. Direct implementation of the midpoint method

A direct implementation of the midpoint method computes the

xn+1

md
by solving the implicit equation given in Eq. (8), similarly

as what we do for the trapezoidal method when solving Eq. (6).

Depending on the equation, similar strategies can be exploited, us-

ing analytical inverse functions when available or numerical root-

finding methods otherwise. One potential downside of the mid-

point method is that the expressions relative to the time step tn+1

and the time step tn are grouped together inside the nonlinear func-

tion f which may complicate the derivation and use of analytical

inverse functions. On the other hand, notice that the update equa-

tion does not depend on two independent input samples un+1

md
and

un
md but on the combined 1

2
(un+1

md
+un

md) so that the dimensional-

ity of the update equation with respect to the input can be reduced

compared to the trapezoidal method.

4.2. Midpoint method using the trapezoidal rule

The midpoint method and the trapezoidal method are conjugate

methods [11]. More precisely, if the sequence xn
md verifies Eq. (8)

for the input sequence un
md, we can show that the sequence xn

tr =
1

2

(

xn
md + xn−1

md

)

verifies Eq. (6) for the modified input sequence

un
tr = 1

2

(

un
md + un−1

md

)

[27]. This means that if we want to im-

plement the midpoint rule to simulate the state equation

xt(t) = f(x(t),u(t)), (27)

we can do so by simulating that same equation using the trape-

zoidal rule replacing the input u(t) by 1

2
(u(t) + u(t− T )). As

a consequence, if a system has been designed to generate a simu-

lated sequence xn
tr of equation (27) using the trapezoidal rule, we

can obtain a simulated sequence xn
md for the input sequence un

md

iteratively as follows:

• Generate a new sample xn+1
tr from the trapezoidal rule sys-

tem using the input samples defined as

{

u
n+1
tr = 1

2

(

u
n+1

md + u
n
md

)

,

u
n
tr =

1

2

(

u
n
md + u

n−1

md

)

.
(28)

• Generate a new sample xn+1

md
using either the (recurrent)

equation:

x
n+1

md = 2xn+1
tr − x

n
tr (29)

or the (direct) equation:

x
n+1

md = x
n+1
tr + T

2
f
(

x
n+1
tr ,un+1

tr

)

. (30)

We also need to use the appropriate initial conditions for the

trapezoidal-rule system based on the initial conditions of the de-

sired midpoint sequence. In a typical case, those initial conditions

correspond to x0
md = x(0) for the state variables and u0

md =
u(t0) for the input variables, typically based on a specified input

function u(t) defined for t ≥ 0. In addition to specifying the

initial state value x0
tr, the trapezoidal-rule system requires to also

define u0
tr which depends on the unspecified u−1

md
. Note that x0

tr

and u0
tr cannot be chosen independently. We can pick any initial

condition pair (x0
tr,u

0
tr) as long as it verifies

x
0
tr +

T
2
f(x0

tr,u
0
tr) = x

0
md. (31)

A typical assumption is that the system was in a steady-state

condition before the simulation started, so that the initial condition

are given as a function of x0
md by solving

{

x
0
tr = x

0
md,

0 = f(x0
md,u

0
tr).

(32)

4.3. Trapezoidal method using the midpoint rule

A similar principle can be used to generate a simulation based on

the trapezoidal rule using a system designed to simulate that same

system using the midpoint rule using the procedure:

• Generate a new sample un+1

md
from the midpoint rule sys-

tem using the input sample defined recursively as

u
n+1

md = 2un+1
tr − u

n
md. (33)

• Generate a new sample xn+1
tr using either

x
n+1
tr = 1

2

(

x
n+1

md + x
n
md

)

(34)

or solving the implicit equation

x
n+1
tr + T

2
f
(

x
n+1
tr ,un+1

tr

)

= x
n+1

md . (35)

Finding the initial conditions is less complex in that case. The

initial source sample u0
md can be chosen arbitrarily. If the input

function u(t) is known for t ≥ 0, a possible choice would be

u0
md = u

(

T
2

)

. An alternative option is u0
md = 1

2

(

u1
tr + u0

tr

)

,

which does not require explicit knowledge of u(t). The initial

state x0
md is obtained as

x
0
md = x

0
tr +

T
2
f(x0

tr,u
0
tr). (36)

4.4. Considerations for typical audio systems

A large share of the audio systems presented in the literature are

characterized by having the dynamical elements only be linear

(e.g., capacitor, inductor), and having the nonlinear elements only

be memoryless (e.g., diode, transistor, operational amplifier). Sev-

eral simulation frameworks for audio systems (e.g., wave digital

filters [9, 28], nodal DK method [29], generalized state space [8])
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R

C v

Figure 2: Diode clipper circuit.

segregate the system between sets of memoryless nonlinear equa-

tions and sets of linear equations between the system variables.

For the midpoint method, discretizing the linear equations is

the same process as for the trapezoidal method, so the discrete

update equations are identical. Memoryless nonlinear equations

(e.g., voltage–current characteristics) are often of the form b(t) =
h(a(t)) (e.g., with a voltages and b currents for a voltage–current

characteristic). On the contrary to the trapezoidal method where

the update equations remain memoryless as b
n
= h(an), the mid-

point method equations become

b
n+1

= −b
n
+ 2h

(

1

2

(

a
n+1 + a

n)). (37)

This transformation would then be applied to the nonlinear

elements at the root of a wave digital filter tree [9, 28], or to the

nonlinear characteristic equations in the nodal DK approach [3]

and in the generalized state-space [8].

Alternatively, we can use the process described in Sec. 4.2

to exploit simulations that use the trapezoidal method, applying

the appropriate transformation to the input sequence (following

Eq. (28)), and adding the conversion equations (following Eqs. (29)

and (30)) to get the state variables for the midpoint simulation.

5. CASE STUDY

We study the diode clipper [14, 19, 20, 30] as shown in Fig. 2 to

illustrate the concepts developed in the previous sections, as we

study and compare the behavior of both methods in several scenar-

ios and provide tools to understand and forecast such behavior.

5.1. Circuit description

The circuit consists of a voltage input (i.e., a source), a resistor,

a capacitor and a diode. The diode and capacitor are in paral-

lel, their combination is in series with the resistor and the voltage

source, and we wish to simulate the voltage v across the diode as

a function of the source voltage e. The system behavior can then

be summarized as the state-space system

vt(t) =
e(t)− v(t)

RC
−

g(v(t))

C
, (38)

Table 1: Simulation parameters.

Name Value Description

fs 48 kHz sampling frequency

T 20.83 µs sampling period

R 2.2 kΩ resistor

C 10 nF capacitor

IS 2.52 nA N914 saturation current

VT 25.85mV thermal voltage

-200

-100

0

100

200

Trapezoidal

Midpoint

Reference

-400 -200 0 200 400

-100

-50

0

(a) e = 0V

100

200

300

400
Trapezoidal

Midpoint

Reference

-400 -200 0 200 400

-100

-50

0

(b) e = 0.5V

Figure 3: v(tn+1)/v
n+1 and error for as function of v(tn)/v

n for

two input conditions. The equilibria are indicated with a black +.

with g is the diode voltage–current characteristic. We then have:

vt(t) = f(v(t), e(t)), with

f(x, u) = (u− x)/RC − g(x)/C.
(39)

We use the common Shockley diode model [31] for which

g(x) = IS(e
x/VT − 1), (40)

with IS the saturation current and VT the thermal voltage.
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(a) Trapezoidal method
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(b) Midpoint method

Figure 4: Error (in dB) for both methods. The equilibria are indicated in red.

5.2. Simulation parameters

We adopt typical parameter values for fixed-rate virtual analog

simulations as shown in Tab. 1. The response of the reference sys-

tem is approximated using the MATLAB adaptive solver ode45

set to work with a target error at machine precision. The equilibria

and the implicit equations for both numerical methods are com-

puted using the MATLAB root finder fzero set to work with a

target error at machine precision.

5.3. Constant-input study

Many typical inputs are characterized by a constant-input regime.

For example, an impulse response will lead to a constant zero input

after the impulse. Similarly, a step response will lead to a constant

non-zero input after the transient. In such a case, the system can

be interpreted as an ODE (i.e., as a system without input), with the

input voltage becoming a constant in the equation such that

vt(t) = h(v(t)) = f(v(t), e(t)). (41)

First, we investigate the error made by each method on a sin-

gle simulation step, i.e. when computing the new state vn+1 (or

v(tn+1)) from a current state vn (or v(tn)). Fig. 3 show the new

state vn+1 and the error |v(tn+1) − vn+1| as a function of the

current state vn (or v(tn)) for two constant voltage source values

(respectively e = 0 and 0.5V). The plots show that while the two

methods expectedly compare with one another and the reference

for lower v(tn) values where the system behaves quasi-linearly,

the error for the trapezoidal rule rises sharply for higher values

(roughly 200mV and higher). That region corresponds to the re-

gion where the system is highly non-linear and stiff. Those obser-

vations extend readily to other choices of input voltage and state

values as shown in Fig. 4 where we display the error as a function

of the current state v(tn) and the constant input value e.

5.4. Fixed-point analysis

Using the analysis described in Secs. 3.5 and 3.6 for Fig. 1, we

further understand the behavior for the two methods and the refer-

ence. In Fig. 3a, we see that for both methods and the reference,

the first-order behavior around the system equilibrium is a non-

oscillating decaying exponential. Furthermore, the transition func-

tions are quasi-linear functions for a large region of state values

around the equilibrium, where we have a quasi-exponential decay

of the state sequence once a state value falls within that region. For

high state voltages however, while the midpoint method stays close

to the reference in the convergent non-oscillating region, the trape-

zoidal method drops sharply in the oscillating region. This means

that a state sample in that region will iterate to a sample with a

much lower voltage than the true solution (i.e., overshoot the true

voltage) before entering the convergent non-oscillating regime.

In Fig. 3b, we see clearly that the first-order behavior near

the equilibrium is substantially different for the reference on the

one hand and the two methods on the other hand. The reference

follows again a non-oscillating exponential decay in that region,

while the two methods present an oscillating exponential decay as

shown by the negative slope of the transition function at the equi-

librium. Beyond that region, the behavior of the two methods are

actually very different. The midpoint method shows a decaying

oscillating behavior on a large section of state values both above

and below the equilibrium and only match the non-oscillating ex-

ponential decay behavior of the reference solution for low state

values (. −100mV). On the other hand, the trapezoidal method

presents a non-oscillating quasi-exponential decay close to the ref-

erence for almost all state values below the equilibrium, with small

oscillation only close to the equilibrium. However, the behavior

above the equilibrium is again characterized by a transition func-

tion dropping again sharply in the oscillating region.

Fig. 5 shows the behavior of both methods for a wide range

of e and vn values. Knowing that the reference is always con-

verging non-oscillating (i.e., light gray), its behavior is matched

by the trapezoidal method only if the state variable does not ex-

ceed a value with a similar order of magnitude across the tested

e values. The method becomes however oscillating above those

values, becoming even diverging oscillating for very high vn. The

midpoint method is convergent non-oscillating over a wide range

of values for e and vn values. As hinted in Fig.3b, we also see that

high values of vn, for which the trapezoidal method is oscillating,

keep a converging non-oscillating behavior if the input value e is

low. However, the midpoint method is oscillating for an increasing

range of high vn values as the input value e becomes high.
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(a) Trapezoidal method

(b) Midpoint method

Figure 5: Behavior regions for both methods (Light gray: con-

vergent non-oscillating, dark gray: convergent oscillating, black:

divergent oscillating). Equilibria are indicated in red.

5.5. Step response

Finally, we look at the step response of the system for various ini-

tial states v(0) = v0 and input values e in Fig. 6. The behavior

matches the results from the previous section with all systems con-

verging to the equilibrium ve (with f(ve, e) = 0). In particular,

we can observe how, in the case of a low input voltage with a high

initial state, the trapezoidal method systematically overshoots the

true response, resulting in a significant simulation error. We also

observe in Fig. 6d that for a high input voltage and a high initial

state, both the trapezoidal method and the midpoint method oscil-

late significantly around the equilibrium. Finally, Fig. 6c shows

how for a high input voltage and a low initial state, the oscilla-

tion amplitude for the midpoint is much greater. In general, we

see that each method shows regions of that neither method is ab-

solutely superior in all scenarios, so that the best method should

rather be determined with a scenario-dependent approach. It also

shows how some behaviors are shared among both methods and

cannot be avoided, such as the oscillations in Fig. 6b and 6d.

6. CONCLUSION

In this paper, we presented a comparison of the implicit midpoint

method with the more commonly used trapezoidal method as dis-

cretization methods for time-invariant audio lumped system sim-

ulation, with a specific focus on fixed-rate simulation. We pre-

sented some of the relevant theoretical similarities and differences

between the two methods. We particularly focused on quantify-

ing of the oscillatory behavior that both methods exhibit for stiff

systems. We then discussed the practical implementation of the

implicit midpoint method and how an implicit midpoint solution

sequence could be computed from a trapezoidal-based implemen-

tation and vice versa. Finally, we compared the behavior of those

two methods on a simple diode clipper system, drawing from our

earlier theoretical analysis, in order to predict their behavior and

identify cases of better performance for each method.

From a larger perspective, this paper is also meant as the pre-

liminary of tools for the design and comparison of discretization

methods for the specific purpose of fixed-rate simulation of audio

lumped systems. Future work will focus on extending and improv-

ing those tools, as well as integrating into our analysis additional

considerations relevant to the audio field, such as aliasing. Ulti-

mately, we intend on applying those tools to a wide class of nu-

merical methods to derive heuristics for the systematic design of

accurate and efficient fixed-rate simulations.
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