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ABSTRACT

Modal representations—decomposing the resonances of objects

into their vibrational modes has historically been a powerful tool

for studying and synthesizing the sounds of physical objects, but

it also provides a flexible framework for abstract sound synthesis.

In this paper, we demonstrate a variety of musically relevant ways

to modify the model upon resynthesis employing a carillon model

as a case study. Using a set of audio recordings of the sixty bells

of the Robert and Ann Lurie Carillon recorded at the University

of Michigan, we present a modal analysis of these recordings, in

which we decompose the sound of each bell into a sum of decaying

sinusoids. Each sinusoid is characterized by a modal frequency,

exponential decay rate, and initial complex amplitude. This analy-

sis yields insight into the timbre of each individual bell as well as

the entire carillon as an ensemble. It also yields a powerful para-

metric synthesis model for reproducing bell sounds and bell-based

audio effects.

1. INTRODUCTION

The modal approach conceives of resonant objects and rooms by

their modes of vibration, where each mode is characterized by a

frequency, decay rate, and complex amplitude [1]. Historically,

this concept has informed acoustic analysis of both interiors [2]

and musical instruments [3], and has informed digital audio syn-

thesis techniques including the Functional Transformation Method

[4], MODALYS [5], MOSAIC [6], and advanced numerical mod-

eling of strings [7–9] and bridges [10]. Recently, modal analysis

of rooms has informed a new family of artificial reverberation al-

gorithms called “modal reverb,” where a room’s modal response

is synthesized directly as a sum of parallel filters [11, 12]. Mod-

ifications to the basic modal reverb algorithm have been used to

produce novel abstract audio effects based on distortion, pitch,

and time-scale modification [13] as well as an abstract Hammond-

organ-based reverberation algorithm [14].

In this paper, we show that extensions to a modal synthesis

algorithm based on analysis of recordings can also be used to pro-

duce interesting and musically useful abstract audio synthesis al-

gorithms. We use recordings of 60 bells of the Robert and Ann

Lurie Carillon at the University of Michigan as a case study of

this approach [15]. Because bells are struck by a metal clapper,

the driving force is impulsive. It excites a large number of inhar-

monic modes to resonate and decay exponentially.1 A modal rep-

resentation provides an intuitive interpretation for bell-modeling.

Moreover, the model is well suited for manipulations allowing us

to augment bell-sound synthesis for extended audio processing.

The University of Michigan released the audio recordings of

one of their carillons as part of an initiative to promote contem-

1In this paper, we use the words mode and partial interchangeably.

porary composers to write electroacoustic music for their carillon.

While the samples could be manipulated in a variety of ways, a

parametric model of the carillon is useful for producing an ex-

tended range of bell-based sounds and effects. Our modal analysis

yields insight into the timbre of each individual bells as well as the

entire carillon as an ensemble, and provides a powerful parametric

synthesis model.

Carillons date back to the middle of the seventeenth century.

A carillon is a musical instrument consisting of at least 23 bells

that are tuned chromatically and played with a baton keyboard in-

terface [16].2 Carillons are usually held in towers and are the sec-

ond largest instrument following the pipe organ. Over the last 350

years, bell casting technology has improved and musical sensibili-

ties have changed. The Lurie Carillon consists of sixty Royal Eijs-

bouts bells that were cast in 1995–6 in the Netherlands [17, 18]. It

is one of the largest, heaviest, and youngest carillons in the United

States.

Carillons and bells in general have been widely studied by

acoustic researchers. Some are interested in the physics of bell

sound production [3, 19]. Others have investigated the perception

of strike tones [20]. Of particular relevance to this work, [21–25]

have made measurements of carillons and investigated the tuning

of carillon bells. While some researchers start with physical mea-

surements or models of bells for finite element analysis, we are

performing our analysis on single recordings of each bell.

In §2 we discuss the process extracting the modal frequencies,

decay rates, and initial complex amplitudes. Next, §3 presents an

analysis of the harmonic structure and tuning of the Lurie Carillon,

discusses methods for using the analysis data to retune the carillon

in the resynthesis process, and proposes novel audio effects that

make use of the modal data as a framework. Finally, §4 offers

some concluding thoughts.

2. ANALYSIS

There are a number of ways to estimate modal parameters, in-

cluding Prony’s method [26] and the matrix pencil [27]. In this

paper, we use a technique based on successive estimation of fre-

quencies, then decay rates, then complex amplitudes, which uses

well-known and fundamental signal processing tools like the FFT,

bandpass filtering, and linear least-squares estimation. Similar ap-

proaches are used to estimate parameters for modal reverb [12] and

other bell studies [21].

2An instrument consisting of fewer than 23 bells is called a chime and
a grand carillon requires at least 47 bells.
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2.1. Modal Approach

We use modal analysis to represent each bell of the Lurie Carillon

as a sum of exponentially decaying sinusoids

x =

M
∑

m=1

ame
j2πωmt

e
−t/τm , (1)

where am is the complex amplitude, ωm the frequency, and τm
the decay rate for each mode m. An analysis block diagram can

be seen in Fig. 1, and the steps for estimating the parameters a, ω,

and τ are as follows:

1. Perform peak picking in the frequency domain

2. Form band-pass filters around each peak

3. Compute Root-Mean-Squared (RMS) energy envelopes of

the band-passed signals

4. Estimate the decay rate on the energy envelopes

5. Estimate the initial complex amplitudes

2.2. Estimating Frequency

The first step in our analysis is to estimate the modal frequencies

of each bell. We use a peak picking algorithm in the frequency do-

main to identify candidate frequencies. Before taking the Fourier

Transform for each bell, we high-pass filter the time domain sig-

nal half an octave below the hum tone for that bell (see Table 1

for a detailed list of carillon bell modes). The carillon is located

outdoors in a high-noise environment and this reduces the likeli-

hood of picking spurious peaks that are simply background noise.

Additionally, we use a portion of the time domain bell recording

beginning 10ms after the onset so the bell’s noisy transient does

not produce a large number of false peaks in the FFT. We use a

length 214 Hann window, which produces side-lobes that roll off

approximately 18dB per octave.

Our algorithm identifies peaks around points in the frequency

domain signal where the slope changes sign from both sides. We

then integrate the energy in the FFT bins surrounding the identified

peaks and discard peaks that have low power or fall too close to one

another. Finally, we pick the N highest candidate peaks that are

above some absolute threshold (set by inspection for each bell).

For the lowest bells, we estimate around 50 modes and for the

highest bells we estimated fewer than ten.

While longer-length FFTs provide better frequency resolution,

the fact that we are estimating decaying sinusoids runs counter to

this argument. With a long FFT and modes that decay quickly, we

will amplify noise that occurs later in the recording. Therefore,

the signal to noise ratio is best at the beginning of the recordings.

Experimentally, we found 214 samples to be an ideal length across

the sixty bells of the carillon, and Fig. 2 shows the results of the

peak picking algorithm for several bells.

2.3. Estimating Exponential Decay

We use each frequency found in §2.2 as the center frequency for a

fourth-order Butterworth band-pass filter. We find the energy en-

velope for each partial by averaging the band-pass filtered signals

using a 10ms RMS procedure. We then perform a linear fit to the

amplitude envelope using least squares to estimate the decay rate

of each partial. The region over which the linear fit is performed

Table 1: Partial name and intervalic relationship to the fundamen-

tal (prime)

Partial Name Partial Interval

Hum Octave (below)

Prime Fundamental

Tierce Minor Third

Quint Perfect Fifth

Nominal Octave

Deciem Major Third

Undeciem Fourth

Duodeciem Twelfth

Double Octave Octave

Upper Undeciem Upper Fourth

Upper Sixth Major Sixth

Triple Octave Octave

was found by hand as the bell recordings had large variance of

partial-signal-level and noise floor. The result of the slope fitting

can be seen in Fig. 3.

2.4. Estimating Complex Amplitude

Once we have estimated the frequency and decay rate of each

mode, we estimate the initial amplitude of each partial required

to reconstruct the original bell recording. To do this, we form a

matrix where each column holds each partial independently as in

M =











1 . . . 1

e(jω1−τ1) . . . e(jωM−τM )

... . . .
...

e(jω1−τ1)T . . . e(jωM−τM )T











, (2)

where ωm are the frequencies, τm the decay rates, and T is the

length of the time vector. We use least squares to find the complex

amplitudes

a = (M⊺
M)−1

M
⊺
x , (3)

where x is the original bell recording and a the vector of complex

amplitudes.

2.5. Results

As a result of our analysis, we have estimated frequencies, decay

rates, and initial complex amplitudes necessary to model the bells

as they were recorded. Fig. 4 plots these parameters for three bells

throughout the range of the instrument.

3. RESYNTHESIS

We can resynthesize a “noiseless” copy of the original carillon

recordings by directly plugging in the estimated amplitudes, fre-

quencies, and decay rates, into Eq. (1). We can also implement the

bell as a filter with the transfer function

X(z)

U(z)
=

M
∑

m=1

2ℜ{am} − 2e−1/τmℜ{ame−jωm}z−1

1− 2e−1/τmcos(ωm)z−1 + e−2/τmz−2
, (4)
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Figure 1: Block diagram detailing the analysis process for finding the modal frequencies (ω), decay rates (τ ), and complex amplitudes (a).
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Figure 2: Frequency spectrum of three Bells from the Lurie Caril-

lon showing the results of the peak picking algorithm (in blue).

where U is the input. This is the same as a parallel sum of M

standard second order (biquad) transfer functions

X(z)

U(z)
=

M
∑

m=1

β0,m + β1,mz−1 + β2,mz−2

1 + α1,mz−1 + α2,mz−2
(5)

with coefficients

β0,m = 2ℜ{am}

β1,m = −2e−1/τmℜ{ame
−jωm} α1,m = −2e−1/τmcos(ωm)

β2,m = 0 α2,m = e
−2/τm .

If U is an impulse, we reconstruct the sound of the bell, and Eq. (4)

is equivalent to Eq. (1). Both synthesis models take the form of

summing modes as seen in Fig. 5.
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Figure 3: Estimated decay rates for three partials of bell seven.

Each plot shows the recorded bell signal band-pass filtered around

the partial frequency (blue), the RMS smoothed energy envelope

(black), and the estimated decay rate (red). Dotted lines show the

region over which the linear fit was performed.

We find that thirty modes for a low-pitched bell and ten for a

high-pitched bell do a reasonable job reproducing the sound of the

recordings. Using the modal data extracted from the recordings

of the Lurie Bells, we find the correlation coefficient between the

recorded bells and synthesized bells was on average 0.837 with a

standard deviation of 0.117. Fig. 6 shows the result of this resyn-

thesis for one of the bells of the Lurie Carillon. One major advan-

tage to the resynthesis is that the real bells ring for a significantly

long time. The recordings faded out once the bell is indistinguish-

able from the noise floor. The resynthesis does not have this limita-

tion and is therefore more impervious to amplitude modifications.

As a result of our analysis, we have a parameterized model

rather than simply a means for synthesizing the sound of the orig-
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Figure 4: Frequency vs decay rate for three analyzed bells with

marker diameter showing each partial’s amplitude.

inal recordings. In addition to providing a way to study the har-

monic structure and tuning of the Lurie Carillon, we can manip-

ulate the model to synthesize bell sounds with different charac-

teristics or bell-based audio effects. The analysis/resynthesis di-

agram can be seen in Fig. 7. The modifications we make in the

resynthesis primarily involve scaling and adding offsets to the es-

timated frequencies, amplitudes, and decay rates, as well as the

use of external control data. Some bell related processing is de-

scribed below. Audio examples and code to produce them can

be found at https://ccrma.stanford.edu/~kermit/

website/bells.html.

3.1. Computer Aided Electronic Bell Foundry

Carillons bells are designed to function together as a cohesive in-

strument, however the range of the instrument, the process of cast-

ing bronze bells, and the way the instrument wears when played

make this challenging. The Lurie Carillon has sixty bells that span

five octaves. The largest bells weigh up to 5000kg while the small-

est weigh only 5kg. Naturally this means the bells across the in-

strument are cast with different shapes and it takes skill and pa-

tience to tune the instrument as a whole. Furthermore, the bells

are often exposed to extreme weather conditions as they are lo-

cated in semi-open spaces atop towers. Over time the bells do not

necessarily wear in the same way due to how often each is struck

and its independent location within the belfry. Last, bell foundry

technology and playing techniques have developed over time [28].

Bells cast by each manufacture have subtle differences, and while

most modern instruments are tuned to equal temperament, this is

not the case for older instruments.

For these reasons, we propose a collection of manipulations

using the modal data from the Lurie Carillon to modify the sound

u(t) Mode

M

· · ·

Mode

2

Mode

1

+

y(t)

Mode m

ejωmt

e−t/τm

am

×

Mode
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Figure 5: Direct resynthesis (top) and biquad (bottom) models.

in ways that could be relevant to carillonists and musicologists.

Fig. 8 shows all the bells of the Lurie Carillon, pitch-shifted to

share a common fundamental. From inspection, one can see that

the lowest two partials are in tune across the whole instrument

but the quint (fourth partial) starts going sharp to the point that

it is almost half an octave sharp in the highest bells. Addition-

ally, the highest bells have partials that are significantly flatter than

the other bells. Even so, the bells of the instrument sound well

matched lending precedence to the fact that one cannot use a sin-

gle bell and pitch shift it up and down to synthesize bells at all

pitch-hights.

3.1.1. Fixing Irregularities Due to Wear

Tuning carillon bells is an arduous process. The procedure of-

ten involves turning the bells on a lathe to evenly remove material

at specific points on the bell to sharpen specific partials. Mod-

ern technology has improved bell tuners’ ability to make carillon

bells sound more homogeneous, however, material can only be re-

moved. This makes it impossible to flatten the pitch of a bell.

Furthermore, even though the bells are designed to sound like the

rest of the bells of a specific instrument, the nature of bell cast-

ing makes this idealism impossible. With our analysis of the full

set of bells from the Lurie Carillon, we can average the modal pa-

rameters of several consecutive bells in order to smooth out any

irregularities caused by a poorly tuned bell.
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Figure 6: Spectrograms showing original recording and resynthe-

sis of bell number seven.

Bell

Recording
Analysis Resynthesis

Scaling

&

Control

Figure 7: Analysis/Resynthesis block diagram.

3.1.2. Retuning the Carillon

In addition to making the carillon bells sound more consistent

with one another, we can also retune the entire carillon. While

modern instruments are tuned in equal temperament, there is an

enormous repertoire that was written for mean-tone and other tun-

ing schemes. Some music was written to be played in mean-tone

temperament and does not sound as the composer intended when

played in equal temperament. With the modal data, we can make

two types of adjustments. First, we can resynthesize a set of caril-

lon bell samples with the same characteristics as the Lurie Carillon

but shift the frequencies of each bell’s partials such that the funda-

mentals are tuned to a scheme other than the current equally tem-

pered bells. Second, we can modify the tuning within each bell,

correcting irregularities and ill-tuned partials.

3.1.3. Extending the Range of the Carillon

The Lurie Carillon consists of sixty bells, however there are larger

instruments. For example, the Laura Spelman Rockefeller Memo-

rial Carillon at the Riverside Church in New York City has a car-

illon with 74 bells [29]. Carillons this large are rare as they are

expensive to construct and the towers that hold them must be able

Figure 8: Estimated parameters of all the bells of the Lurie Car-

illon with common fundamental. Marker diameter corresponds to

bell-power integrated over the first second. The measured partial

frequencies are overlaid on the theoretical 12-tone equal tempera-

ment tunings (blue lines).

to support the immense weight of such a heavy instrument. More-

over, the Lurie Carillon, like many instruments, is missing the sec-

ond largest bell for the above mentioned reasons and the fact that it

is rarely needed to perform the standard carillon literature. By ex-

trapolating from the measured modal data, we can virtually extend

the range of the instrument to incorporate missing bells and ones

higher or lower in pitch than the physical bells. Additionally, we

can interpolate between bells to produce notes other than the 12-

tone equally tempered pitches. This allows us to synthesize, for

example, a set of quarter-tone bells that would be useful to con-

temporary composers, but would be impractical to cast otherwise.

3.1.4. Adapting the Decay Rate

The tradition of writing and performing carillon music has natu-

rally progressed alongside the technical developments of bell cast-

ing and carillon construction. In many ways, the style of carillon

music has worked around physical limitations of the acoustic in-

strument. One fundamental property of a carillon is that the higher

pitched bells ring for a shorter amount of time than the lower ones.

A Dutch technique was developed for playing slower tempo pieces

that utilizes playing tremolo and trill gestures in the high bells to

mimic a sustain [30]. Some carillonists find this technique dis-

pleasing to the ear. To overcome the fact that the high bells decay

much faster than the lower bells, we can modify the decay rates of

the higher bells so they last a similar length as the lower bells. This

would allow one to play legato pieces and circumvent the physical

limitation inherent in the physical instrument. We can also render

the low bells with a quicker decay rate so that they can be played

faster without sounding muddy to their natural, long decay rate.
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3.1.5. Major Third Bells

Until recently (1980s), the spectrum produced by most bells has

prominently featured a minor third.3 This pronounced harmonic

structure caused bell-to-bell harmonies to often have a "rough"

sound due to the clashing of the tunings. Due primarily to the

immense construction cost, there are very few major-third caril-

lons in existence. It is rather humorous, but carillonists are used to

the sound of old bells and mostly prefer the traditional sound while

modern composers say they prefer major-third bells for major-key

pieces and minor-third bells for minor-key pieces [30]. It is easy

for us to resynthesize the Lurie Carillon samples with the partial

related to the minor third modulated up a half-step.

3.2. Electroacoustic Modifications

In addition to manipulating the modal parameters and synthesiz-

ing exponentially decaying bell sounds, we can produce a host

of time-varying bell effects that could be useful to electroacous-

tic composers.

3.2.1. Adapt the Decay Rates

A limitation that contemporary composers writing for carillon of-

ten encounter is the speed at which the low bells can be re-struck.

Physically, there is a minimum time necessary to move the clap-

per into the bell. Ignoring that, the long ring time of the lowest

bells makes the sound of re-striking the bell blend together. The

articulations become indistinguishable from the previous strike’s

sustain. If one simply scales the decay rates of all the partials of a

bell, the resulting sound appears to be low-pass filtered as the high

frequencies would decay quickly. To improve the result, we pro-

pose scaling the decay rates nonlinearly to only shorten the ring

time of the lowest frequencies. This affords a composer the ability

to re-trigger the low bells quickly without the transients becoming

blurred out and without the whole bell sounding filtered.

3.2.2. Add Arbitrary Amplitude Envelopes

Typically, bells are characterized by an exponentially decaying en-

ergy envelope. In resynthesis, we can use the estimated frequen-

cies and replace the amplitude envelopes with arbitrary functions

(e.g., ADSRs). In effect, this allows us to allude to the harmony

of the carillon bells without producing sounds that decay exponen-

tially like the bells.

3.2.3. Spectral Morphing

In his magnum opus, Mortuos Plango, Vivos Voco, Jonathan Har-

vey uses the spectrum of the tenor bell from the Winchester Cathe-

dral as the basis for the harmony and structure of his piece [31].

Using the modal data, we can morph between various bells by con-

necting the partials together with glissandi. In Harvey’s piece, the

composer resynthesizes the individual partials of the bell using a

pitch-shifted sample of a boy’s voice. We too can use the extracted

frequencies for each partial to control other musical parameters,

such as the rate at which a buffer is read, the pitch of a synthesizer,

or the center frequency for a filter.

3Unlike the harmonic spectrum produced by most musical instruments.

Figure 9: Spectrogram of exponentially-enveloped Gaussian noise

passed through band-pass filters centered around the estimated

modal frequencies.

3.2.4. Bells as Reverb

Our default synthesis model resynthesizes each partial as an expo-

nentially decaying sinusoid. Instead, we can pass Gaussian noise

through band-pass filters, each centered around the bell-partial fre-

quencies. We can additionally control the Q factor of the filters in

order to control the bandwidth of the noise at each partial. Alone,

this resynthesis creates an airy sound effect that has bell-like char-

acteristics (see Fig. 9), but we can also use it as a reverberation

effect applied to other sounds.

3.2.5. Add Modulation and Doublets

Natural sounding bells have beating due to minor imperfections.

Across the measured bells, there is a high variance for how much

beating there is (both how different the frequencies are and how

strongly the two modes differ in amplitude and phase). In the

resynthesis, we can specifically control how much beating occurs

on a partial-by-partial basis. We can achieve this in two ways.

First, for each measured partial we can synthesize two partials that

have small differences in the modal parameters. Second, we can

apply a low frequency oscillator (LFO) to each partial to apply

amplitude or frequency modulation. Both approaches allow us to

synthesize natural sounding bell sounds. By applying severe de-

tuning or modulation, we can create additional effects (e.g., vi-

brato, tremolo, FM distortion, etc). Moreover, we can change this

effects dynamically. For example, we can have the sound of a bell

that has no modulation, one second into the decay apply vibrato,

and two seconds into the decay increase the modulation depth and

speed to create distortion.

3.2.6. Spatialization and Time Modifications

Since we have control of each partial, we can modulate their spatial

positioning and onset timing independently. Thus we can decon-

struct the bell into an arpeggio, randomize the entrance time for

each partial, or spread the bell across the stereo field.

3.3. Summary

Fig. 10 shows a full sound example using several of the techniques

described above. At the beginning, the bell is synthesized three

times with each partial entering at a different time. Over the first
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Figure 10: Spectrogram of a through composed example demonstrating scaling and modulation effects.

eight seconds, the timing between each partial’s entrance decreases

and the decay rates for each partial is slowly lengthened. At ten

seconds, the unmodified bell is sounded. The bell is struck once

more around second twelve with a long decay and a modulation

applied on each partial. The modulation depth is increased until a

frequency modulation effect is apparent before slowing back to a

vibrato.

Overall, this is not a comprehensive list of modal resynthesis

techniques. In fact, this exploration just shows that the range of

sonic possibilities is enormous, even when constrained by a simple

model consisting of frequency, decay rate, and initial amplitude.

4. CONCLUSIONS

In this paper we demonstrate how a modal model for sound syn-

thesis can be manipulated to achieve a wide range of musical ef-

fects. Using the carillon as a case study, we provide an analy-

sis of the University of Michigan’s Lurie Carillon. By model-

ing each bell as a sum of decaying sinusoids at each modal fre-

quency, we provide a versatile model that lends itself well to a

host of audio manipulations consisting primarily of scaling and

shifting the parameters. As a tool for composers, we hope this

analysis of the Lurie Carillon will help encourage new electroa-

coustic music for carillon. The modal data generated from ana-

lyzing the samples from [15] is freely available under a creative

commons license and can be downloaded at https://ccrma.

stanford.edu/~kermit/website/bells.html.

The method used in this paper has a limited ability to resolve

very closely spaced partials, known as “doublets” in the bell con-

text. Future work will attempt to estimate doublet parameters us-

ing nonlinear optimization. An alternate approach to modeling

doublet behavior is shown in [32, 33], where groups of closely-

spaced modes are approximated using ARMA modeling.

5. ACKNOWLEDGMENTS

The authors thank Jonathan Abel for his helpful comments.

6. REFERENCES

[1] Stefan Bilbao, Numerical Sound Synthesis, Wiley, 2009.

[2] Vesa Välimäki, Julian D. Parker, Lauri Savioja, Julius O.

Smith, and Jonathan S. Abel, “Fifty years of artificial rever-

beration,” IEEE Transactions on Audio, Speech, and Lan-

guage Processing, vol. 20, no. 5, pp. 1421–48, July 2012.

[3] Tomas Rossing and Robert Perrin, “Vibrations of bells,” Ap-

plied Acoustics, vol. 20, pp. 41–70, 1987.

[4] Lutz Trautmann and Rudolf Rabenstein, Digital Sound Syn-

thesis by Physical Modeling Using the Functional Transform

Method, Springer, New York, 1st edition, 2003.

[5] Gerhard Eckel, Francisco Iovino, and René Caussé, “Sound

synthesis by physical modelling with Modalys,” in Proceed-

ings of the International Symposium on Musical Acoustics,

Dourdan, France, 1995.

[6] Joseph Derek Morrison and Jean-Marie Adrien, “MOSAIC:

A framework for modal synthesis,” Computer Music Jour-

nal, vol. 17, no. 1, pp. 45–56, Spring 1993.

[7] Maarten van Walstijn and Jamie Bridges, “Simulation of dis-

tributed contact in string instruments: A modal expansion

approach,” in Proceedings of the 24th European Signal Pro-

cessing Conference (EUSIPCO), Budapest, Hungary, August

29 – September 2 2016, pp. 1023–7.

[8] Maarten van Walstijn, Jamie Bridges, and Sandor Mehes, “A

real-time synthesis oriented tanpura model,” in Proceedings

of the 19th International Conference on Digital Audio Effects

(DAFx-16), Brno, Czech Republic, September 5–9 2016, pp.

175–82.

[9] Clara Issanchou, Stefan Bilbao, Cyril Touze, and Olivier

Doare, “A modal approach to the numerical simulation of

a string vibrating against an obstacle: Applications to sound

synthesis,” in Proceedings of the 19th International Confer-

ence on Digital Audio Effects (DAFx-16), Brno, Czech Re-

public, September 5–9 2016.

[10] Esteban Maestre, Gary P. Scavonne, and Julius O. Smith,

“Design of recursive digital filters in parallel form by linearly

constrained pole optimization,” IEEE Signal Processing Let-

ters, vol. 23, no. 11, pp. 1547–50, 2016.

[11] Jonathan S. Abel, Sean Coffin, and Kyle S Spratt, “A modal

architecture for artificial reverberation,” The Journal of the

Acoustical Society of America, vol. 134, no. 5, pp. 4220,

2013.

DAFX-253

https://ccrma.stanford.edu/~kermit/website/bells.html
https://ccrma.stanford.edu/~kermit/website/bells.html


Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

[12] Jonathan S. Abel, Sean Coffin, and Kyle Spratt, “A modal ar-

chitecture for artificial reverberation with application to room

acoustics modeling,” in Proceedings of the 137th Convention

of the Audio Engineering Society, Los Angeles, CA, October

9–12 2014.

[13] Jonathan S. Abel and Kurt James Werner, “Distortion and

pitch processing using a modal reverberator architecture,” in

Proceedings of the 18th International Conference on Digital

Audio Effects (DAFx-15), Trondheim, Norway, November 30

– December 3 2015.

[14] Kurt James Werner and Jonathan S. Abel, “Modal processor

effects inspired by Hammond tonewheel organs,” Applied

Sciences, vol. 6, no. 7, pp. 1421–48, 2016, Article #185.

[15] Isaac Levine, Ashton Baker, Rowena Ng, Rachael

Park, Anjana Rajagopal, Tiffany Ng, and John

Granzow, “Download Lurie carillon samples,”

https://gobluebells.wordpress.com/2016/

09/21/lurie-carillon-samples/.

[16] “World carillon federation,” http://www.carillon.

org/.

[17] “Lurie carillon,” https://www.music.umich.edu/

about/facilities/north_campus/lurie/

lurie.htm.

[18] “Ann & Robert H. Lurie Carillon,” http://www.

towerbells.org/data/MIANNAU2.HTM.

[19] Robert Perrin and T. Charnley, “A comparative study of the

normal modes of various modern bells,” Journal of Sound

and Vibration, vol. 117, no. 3, pp. 411–420, 1987.

[20] William Hibbert, The Quantification of Strike Pitch and

Pitch Shifts in Church Bells, Ph.D. thesis, The Open Uni-

versity, 2008.

[21] Xavier Boutillon and Bertrand David, “Assessing tuning and

damping of historical carillon bells and their changes through

restoration,” Applied Acoustics, vol. 64, pp. 901–10, 2001.

[22] Vincent Debut, Miguel Carvalho, and Jose Antunes, “An

objective approach for assessing the tuning properties of his-

torical carillons,” in Proceedings of the Stockholm Music

Acoustics Conference, Stockholm, Sweden, July 2013.

[23] Wiegman van Heuven, Acoustical measurements on church-

bells and carillons, Ph.D. thesis, De Gebroeders van Cleef,

The Hague, Netherlands, 1949.

[24] Andre Lehr, “The system of the Hemony-carillons tuning,”

Acustica, vol. 3, pp. 101–104, 1951.

[25] Albrecht Schneider and Marc Leman, Studies in Musical

Acoustics and Psychoacoustics, chapter Sound, Pitches and

Tuning of a Historic Carillon, pp. 247–98, Springer, 2016.

[26] T. W. Parks and C. S. Burrus, Digital Filter Design, Wiley-

Interscience, New York, NY, USA, 1987.

[27] Y. Hua and T. K. Sarkar, “Matrix pencil method for esti-

mating parameters of exponentially damped/undamped sinu-

soids in noise,” IEEE Transactions on Acoustics, Speech, and

Signal Processing, vol. 38, no. 5, pp. 814–24, May 1990.

[28] Andre Lehr, “Contemporary Dutch bell-founding art,”

Netherlands Acoustical Society, , no. 7, pp. 20–49, 1965.

[29] “The Riverside Church carillon,” www.trcnyc.org/

events/carillon?/.

[30] Brian Swager, A History of the Carillon: Its origins, De-

velopment, and Evolution as a Musical Instrument, Ph.D.

thesis, Indiana University, 1993.

[31] Jonathan Harvey, “Mortuos Plango, Vivos Voco: A realiza-

tion at IRCAM,” Computer Music Journal, vol. 5, no. 47,

1981.

[32] Matti Karjalainen, Paulo A. A. Esquef, Poju Antsalo, Aki

Mäkivirta, and Vesa Välimäki, “Frequency-zooming ARMA

modeling of resonant and reverberant systems,” Journal of

the Audio Engineering Society, vol. 50, no. 12, pp. 1012–29,

December 2002.

[33] Matti Karjalainen, Vesa Välimäki, and Paulo A. A. Esquef,

“Efficient modeling and synthesis of bell-like sounds,” in

Proceedings of the 5th International Conference on Digi-

tal Audio Effects (DAFx-02), Hamburg, Germany, September

25–28 2002, pp. 181–6.

DAFX-254

https://gobluebells.wordpress.com/2016/09/21/lurie-carillon-samples/
https://gobluebells.wordpress.com/2016/09/21/lurie-carillon-samples/
http://www.carillon.org/
http://www.carillon.org/
https://www.music.umich.edu/about/facilities/north_campus/lurie/lurie.htm
https://www.music.umich.edu/about/facilities/north_campus/lurie/lurie.htm
https://www.music.umich.edu/about/facilities/north_campus/lurie/lurie.htm
http://www.towerbells.org/data/MIANNAU2.HTM
http://www.towerbells.org/data/MIANNAU2.HTM
www.trcnyc.org/events/carillon?/
www.trcnyc.org/events/carillon?/

	1  Introduction
	2  Analysis
	2.1  Modal Approach
	2.2  Estimating Frequency
	2.3  Estimating Exponential Decay
	2.4  Estimating Complex Amplitude
	2.5  Results

	3  Resynthesis
	3.1  Computer Aided Electronic Bell Foundry
	3.1.1  Fixing Irregularities Due to Wear
	3.1.2  Retuning the Carillon
	3.1.3  Extending the Range of the Carillon
	3.1.4  Adapting the Decay Rate
	3.1.5  Major Third Bells

	3.2  Electroacoustic Modifications
	3.2.1  Adapt the Decay Rates
	3.2.2  Add Arbitrary Amplitude Envelopes
	3.2.3  Spectral Morphing
	3.2.4  Bells as Reverb
	3.2.5  Add Modulation and Doublets
	3.2.6  Spatialization and Time Modifications

	3.3  Summary

	4  Conclusions
	5  Acknowledgments
	6  References

