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ABSTRACT

Practical experience with audio effects as well as knowledge of

their parameters and how they change the sound is crucial when

controlling digital audio effects. This often presents barriers for

musicians and casual users in the application of effects. These

users are more accustomed to describing the desired sound ver-

bally or using examples, rather than understanding and configur-

ing low-level signal processing parameters. This paper addresses

this issue by providing a novel control method for audio effects.

While a significant body of works focus on the use of semantic de-

scriptors and visual interfaces, little attention has been given to an

important modality, the use of sound examples to control effects.

We use a set of acoustic features to capture important character-

istics of sound examples and evaluate different regression models

that map these features to effect control parameters. Focusing on

dynamic range compression, results show that our approach pro-

vides a promising first step in this direction.

1. INTRODUCTION

The invention of recording in the late nineteenth century democra-

tised music listening and gave rise to a new industry concerning

the production, distribution and reproduction of music. Due to

technical and aesthetic requirements, the industry developed an

increasingly large number of tools for the manipulation of audio

content to achieve desired sound qualities. Changing the dynamic

range, timbre or frequency balance of recordings have first become

widely possible with the introduction of analogue signal process-

ing techniques, for instance, linear filters and non-linear effects

like the compressor. Digital technologies such as software plug-

ins or audio effects embedded in Digital Audio Workstations have

significantly extended and, to some extent, replaced analogue ef-

fects. However, from the users’ point of view, they rarely go be-

yond mimicking the operation of analogue counterparts.

Controlling effects requires significant experience and know-

how, especially when used for aesthetic purposes during music

production [1]. This often involves mapping a concept or idea

concerning sound qualities to low-level signal processing param-

eters with limited meaning from a musical perspective. Knowl-

edge of signal processing, which was requisite for engineers in

early studios, as well as good understanding of their control pa-

rameters and function constitute the skills of sound engineers and

producers. Acquring these skills however present a high barrier to

musicians and casual users in applying today’s production tools.

Consequently, the development of intelligent tools, as it has been

done in other industries, may greatly benefit music production.

Substantial amount of works in this area are concerned with

automating the mixing and mastering process (see e.g. [2] or [3]).

Our work is significantly different from previous studies in that

it does not directly target multitrack mixing and mastering, or at-

tempt to use high-level semantic descriptors to control effects. Our

focus is on the novel task of estimating the parameters of audio ef-

fects given a sound example, such that the processed audio sounds

similar in some relevant perceptual attributes (e.g. timbre or dy-

namics) to the reference sound. This has applications in various

stages of music production. For instance, while creating an initial

rough mix of a track, artists may describe how they would like an

instrument to sound using an actual sound example [1]. An intelli-

gent tool that provides audio effects settings based on a reference

audio track is useful to meet this requirement. It may also help

hobbyists and amateur to make their own music or create remixes,

an activity encouraged by well-known bands such as Radiohead,

by releasing stems and multitrack recordings.

It may be a considerable effort to develop an intelligent tool

that estimates the parameters of different types of effects using

complex audio material. To assess the feasibility of solving this

problem, we first simplify the task and focus on a single effect:

dynamic range compression, and simple audio material: mono-

timbral notes and loops. The proposed solution consists of 1) an

audio feature extractor that generates features corresponding to

each parameter, 2) a regression model that maps audio features

to audio effect parameters and 3) a music similarity measure to

compare the processed and the reference audio.

The rest of the paper describes the proposed algorithm in de-

tail. It is structured as follows: Section 2 outlines related work,

Section 3 shows the workflow of our system, the evaluation and

analysis is discussed in Section 4, followed by future work and

conclusion in Section 5.

2. RELATED WORK

In this section, we provide a brief overview of intelligent audio

production technologies with and emphasis on the dynamic range

compressor (DRC), a non-linear time dependent audio effect. The

area of intelligent audio production has become a burgeoning field

over the last decade, with solutions ranging from automatic mixing

systems [2] to intelligent audio editors [4][5]. These systems typi-

cally rely on audio feature extraction to analyse one or more chan-

nels and embed expert knowledge into procedural algorithms to

automate certain aspects of the production workflow. The goal in

many cases is the delivery of a technically correct mix by control-

ling the gain or loudness balance of sources in multitrack record-

ings. Finding the optimal dynamic range for each instrument[3] or

reducing the number of user configurable parameters of an effect

[6] have also been considered.

Other approaches aim at providing alternative control mecha-
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nisms, such as the use of semantic descriptors or simplified graphi-

cal interfaces. Loviscach [7] for instance describes a control method

for equalisation that allows drawing points or using free hand curves

instead of setting parameters. Subsequent work [8] provides a cre-

ative method to map features to shapes. However, the shapes of

this system do not link directly with the "meaning" of settings,

rather they are classifications of the settings. Cartwright and Pardo

[9] outline a control strategy using description terms such as warm

or muddy, and demonstrate a method of applying high-level se-

mantic controls to audio effects. Wilmering et al. [10] describe a

semantic audio compressor that learns to associate control parame-

ters with musical features such as the occurrence of chord patterns.

This system provides intelligent recall functionality.

The idea of cross adaptive audio effects [2] was introduced

in the context of automatic multitrack mixing. In this scenario,

audio features extracted from multiple sources are utilised and au-

tomatic control is applied to optimise inter-channel relations and

the coherence of the whole mix. These systems often follow ex-

pert knowledge obtained from the literature about music produc-

tion practice, or interviews with skilled mixing engineers. In [3],

the authors explored how different audio engineers use the com-

pressor on the same material to train an intelligent compressor.

An automatic multitrack compressor based on side-chain feature

extraction is presented in [6] providing automatic settings for at-

tack/release time, knee, and make up gain based on low-level fea-

tures and heuristics. An alternative implementation of DRC us-

ing non-negative matrix factorisation (NMF) is proposed in [11].

Here, the authors consider raising the NMF activation matrix to 1

R
to obtain a compressed signal with ratio R after re-synthesis. This

is viewed as a compressor without a threshold parameter.

The goal of our work is substantially different from these solu-

tions. At this initial stage, we focus on individual track compres-

sion, rather than trying to fit the signal into a mix, therefore we

do not assume the presence of other channels. We do not aim to

incorporate expert knowledge into the system or automate control

parameters in a time varying manner, instead, we assume an audio

example, and aim to configure the compressor to yield an output

that sounds similar to the example. This requires the prediction of

each parameter.

To estimate the settings of a compressor with hidden param-

eter values, Bitzer et. al. [12] proposes the use of purposefully

designed input signals. Although this provides insight into pre-

dicting DRC parameters, in most cases, including ours, only the

audio signal is available and the original compressor and its set-

tings are not available for black-box testing. A reverse engineer-

ing process is proposed for the entire mix in [13]. The authors

estimate a wide range of mixing parameters including those of

audio effects. This work however focusses on the estimation of

time-varying gain envelopes associated with dynamic non-linear

effects rather than their individual parameters. A recent work pro-

poses the use of deep neural networks (DNN) for the estimation of

gain reduction [14]. The use of DNN in intelligent control of au-

dio effects is quite novel, but this work targets only the mastering

process and only considers the ratio factor.

Our work focuses on comparing linear and non-linear regres-

sion models to map low-level audio features discussed in Section

3 to common parameters of the dynamic range compressor. We

propose using a reference audio example as target and evaluate

the regression models in terms of how close the processed sounds

get to the target in overall dynamic range and audio similarity.

This is motivated by the need to analyse and compare changes in

the dynamic and spectral characteristic of the processed sounds,

since both are affected by DRC. To this end, we measure peak-to-

RMS ratio and also use a simple baseline model of audio similarity

consisting of a Gaussian Mixture Model (GMM) trained on Mel

Frequency Cepstrum Coefficients(MFCCs) [15]. The Kullback-

Leibler (KL) divergence is a robust method to measure the sim-

ilarity between single Gaussian distributions [16][17]. However,

the divergence between multiple Gaussian models is not analyt-

ically tractable, therefore we use the approach proposed in [18]

based on variational Bayes approximation. In the next section, we

discuss regression model training and DRC parameter estimation.

3. METHODS

3.1. Training procedure

This study uses a single-channel, open-source dynamic range com-

pressor developed in the SAFE project [19]. In the interest of

brevity, we do not discuss the operation of the compressor and as-

sume the reader is familiar with relevant principles[20, 6]. We con-

sider the estimation of the most common parameters: threshold,

ratio, attack and release time from reference audio and leave other

parameters e.g. make up gain and knee width for future work. To

form an efficient regression model, we need to choose the most

relevant features first. Section 3.1.1 describes the features derived

from a series of experiments. The system is then discussed in Sec-

tion 3.1.2 outlining the data flow and system structure.

3.1.1. Feature extraction

Audio features are selected or designed for each specific effect

parameter. Since DRC affects perceptual attributes in terms of

loudness and timbre, six statistical features are selected for all

four parameters. The RMS features reflect energy, which is re-

lated to loudness, while the spectral features reflect the spectral

envelope, which is related to timbre. The statistical features are

calculated frame-wise, with a frame size of 1024 samples and a

50% overlap. For spectral features, we use 40 frequency bins up to

11kHz. We assume this bandwidth is sufficient for the control of

selected DRC parameters. We define the magnitude spectrogram

Y (n, k) = |X(n, k)| with n ∈ [0 : N − 1] and k ∈ [0 : K]
where N is the number of frames and k is the frequency index

of the STFT of the input audio signal with a window length of

M = 2(K + 1). We extract the spectral features described in

Equations 1 - 4 as follows:

SCmean = E[

∑K−1

k=0
k · Y (n, k)

∑K−1

k=0
Y (n, k)

], (1)

SCvar = V ar[

∑K−1

k=0
k · Y (n, k)

∑K−1

k=0
Y (n, k)

], (2)

SVmean = E[(E[Y (n, k)2]− (E[Y (n, k)])2)1/2], (3)

SVvar = V ar[(E[Y (n, k)2]− (E[Y (n, k)])2)1/2], (4)

where SC stands for spectral centroid, and SV stands for spectral

variance. The mean and variance in the equations are calculated

across all M length frames.
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Figure 1: Workflow of initial system with access to the reference sound and its corresponding unprocessed version (see Section 3.2.2)

We also extract the following temporal features described in

Equations 5 - 6:

RMSmean = E[(
1

M

M−1∑

m=0

x(m)2)1/2], (5)

RMSvar = V ar[(
1

N

N−1∑

m=0

x(m)2)1/2], (6)

where x(m) represents the magnitude of audio sample m within

each M length frame, and the mean and variance are calculated

across all the N time frames as with the previous spectral features.

We designed four types of time domain features related to the

attack and release of the notes as well as the speed of the com-

pressor. The attack and release times TA = TendA − TstartA and

TR = TendR − TstartR are calculated using the RMS envelope

through a fixed threshold method (c.f. [21]) that determines start

and end times of the attack and release parts of the sound. The

end of the attack is considered to be the first peak that exceed 50%

of the maximum RMS energy. The RMS curve is smoothed by a

low-pass filter with a normalised cut-off frequency of 0.47 rad/s.

We also extract the RMS amplitude at the end of the attack and the

start of the release rms(TendA) and rms(TstartR) respectively,

as well as the mean amplitude during the attack and release parts

of the sound.

Aatt =
1

TA

TendA∑

n=TstartA

rms(n), (7)

Arel =
1

TR

TendR∑

n=TstartR

rms(n), (8)

where Tstart and Tend are indices of the start and end of the at-

tack or release. Finally, we compute a feature related to how fast

the compressor operates. We first calculate the ratio between the

time-varying amplitudes of input or original sound and the refer-

ence sound s(n) = rmsref (n)/rmsorig(n). We then calculate

the amount of time for s(n) to reach a certain value using a fixed

threshold. This relates to the speed of compressor to reach the de-

sired compression ratio, which is controlled primarily by its attack

time. The same process is applied at the end of the note to extract

how fast the ratio curve drops back to one. The design of these

features was motivated by visual inspection of the signal. They are

shown to improve the ability of the regression model to predict the

parameters (see Section 4).

3.1.2. Regression model training

This section outlines the datasets and training procedure for the

regression models that are used to map features to effect parameter

settings. In the first stage of our research, we consider two types of

instruments: snare drum and violin. The former is one of the most

common instruments that requires at least a light compression to

even out dynamics. The drum samples are typically short and,

considering a typical energy envelope, exhibit only the attack and

release (AR) part. The violin recordings typically consist of a long

note with fairly clear attack, decay, sustain and release (ADSR)

phase. All audio samples in our work are taken from the RWC

isolated note database [22].

Table 1 describes the four violin note datasets denoted A, ...,D
that are used for training. In each dataset, one parameter of the

effect is varied while the others are kept constant. The number

of training samples in each dataset equals to the number of notes,

i.e., 60 in case of the violin dataset, times the number of grid points

(subdivisions) for each changing parameter. In this study, we use

50 settings for threshold and ratio, and 100 settings for attack and

release time as it is shown in the first column of Table 1. The

same process is applied to 12 snare drum samples to form the drum

dataset. Each training set A, ..., D is used for predicting a specific

parameter.

Training sets (size)
Conditions

Thr(dB) Ratio Att(ms) Rel(ms)

A (60*50) 0:1:49 2 5 200

B (60*50) 37.5 1:0.4:20 5 200

C (60*100) 37.5 2 1:1:100 200

D (60*100) 37.5 2 5 50:10:1000

Table 1: Training set generation
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Figure 2: Flowchart of training data generation

Figure 2 describes the workflow. Taking training set A as an

example, the original notes N are the recorded violin notes. The

processed notes denoted Npro on the right hand side of the fig-

ure are generated from N , which are processed by the compres-

sor with different threshold values. There are 60 different notes

N , and each N generates 50 processed notes Npro. This yields

60 × 50 = 3000 Npro in the training dataset for threshold. Be-

cause the features from Npro are highly correlated with the orig-

inal note N , the ratio between them is used to focus on how the

features change as a result of dynamic compression. Therefore,

it is the difference we actually used to train the regression model.

There are 6 features related to the threshold extracted from each

note, therefore training data A comprises 3000 Npro ×6 feature

vectors. In the following, this training data is used to generate the

regression model. The same principle applies to training sets B, C

and D.

In our work, two regression models are compared and evalu-

ated (see Section 4), simple linear regression, as well as random

forest regression [23]. Random forest uses averaging over sub-

samples from the dataset to improve the predictive accuracy of the

model as well as to mitigate over-fitting problems. The use of this

latter model is motivated by the hypothesis that the relationship be-

tween the audio features and the compressor parameters may not

be modelled accurately enough with simple linear regression due

to the non-linearities in the process. In the evaluation, we use the

implementations available in [24].

3.2. System design and testing procedure

3.2.1. Numerical test at the isolated note level

In this paper, we propose two system designs. The first aims only

at verifying the basic idea behind the use of a reference sound

(or note) to be approximated. This is not a realistic scenario, be-

cause it assumes we have access to both the processed and unpro-

cessed (original) version of the sound used as reference. This is

needed because the predictor variables, i.e., the input to the re-

gression model is calculated as the ratio of the audio feature data

extracted from these recordings. This requires access to all pairs of

(N,Npro) in the training data. This scenario is presented in Figure

1 consisting of two parts. The components within the dashed line

box represent the actual control system for the compressor with

three inputs: the input note R to be processed, the reference note

Npro to be approximated, and its corresponding original note N
from the training set. The output note T outside of the dashed

line box will be used in the evaluation, where we compare the

similarity of the output and the reference. As it is mentioned in

Section 3.1.2, the regression model is trained on the ratio, there-

fore, we need to provide the same data for the model to predict the

compressor parameters. The original note N is used only in the

process of generating feature vectors.

Before we use the similarity model depicted on the right hand

side of Figure 1, we first evaluate the regression model accuracy.

This first study compares predicted parameter values with the ac-

tual ones. The workflow is the same as Figure 2, providing a stan-

dard testing step for regression models. In this study, we use re-

peated random sub-sampling validation (Monte Carlo variation).

10% of each feature vectors are used for testing, while the remain-

ing 90% are used as training data. This experiment is repeated 100
times and the average results are reported in Section 4.

3.2.2. Similarity assessment at the isolated note level

Considering the motivations and use cases described in Section 1,

the desired output of this algorithm is to make an unrelated note R
sound similar to the reference note Npro, where Npro is generated

through a compressor with e.g. its threshold set to xdB. However,

even if the prediction is perfect with xp = x, the same compres-

sor for note R and note N can give different perceptual results.

Therefore, a similarity model which takes this into account is used

to evaluate the similarity between Npro and the algorithm output

T . The processing and evaluation workflow is represented in Fig-

ure 1 with the structure within the dashed line box used to control

the system while the components on the right hand side are used

in the similarity test.

In the similarity assessment, we use a simple and frequently

used model of audio similarity [15] as well as a simple feature

which is a good (although partial) indicator of the overall dynam-

ics of the signal. First, we consider the crest factor and report the

difference between the reference and the processed sound. Second,

we follow the similarity model using a Gaussian Mixture Model

trained on Mel Frequency Cepstrum Coefficients. Accordingly,

the feature extraction in the workflow indicates the calculation of

the divergence between two multiple Gaussian models, which pro-

vides the similarity information. We use the symmetrised Kullback-

Leibler (KL) divergence, which is commonly used for Gaussian

models, and since we use a GMM, an approximation of the KL

divergence is calculated using the approach presented in [18]. The

results of this test and analyses are provided in Section 4.

3.2.3. Note level similarity assessment in a realistic scenario

In a real world scenario, if the reference Npro is a commercial au-

dio track, its corresponding unprocessed original sound N is not

likely to be available. In this case, we propose to use the system

design outlined in Figure 3, where the input of the system are lim-

ited to the input note R to be processed and the reference note

Npro. In the feature computation workflow, the original note N
is replaced by the input note R, because the features capture the

difference between the reference note and the original note. Mea-

suring the difference between the reference note N and the input

R can be seen more reasonable and closer to a real world scenario.

3.2.4. Loop level similarity assessment in a realistic scenario

This study extends the objective of the experiment from using

mono-timbral notes to longer mono-timbral loops. The loops we

used are approximately 5 seconds long, consisting of violin loops

taken from the RWC Instrument Sound Database [22]. Under the
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Figure 3: Realistic workflow with only the input and reference sound available (see Section 3.2.3)

constraint of mono-timbre, i.e., only a single instrument is sound-

ing at a time, we assume that the statistical properties of the un-

derlying features remain constant. Therefore, the rest of the algo-

rithm remains the same. A possible method to apply our algorithm

to loops is to consider them as notes, with the attack of the first

note in the loop and release of the last. It is a reasonable simpli-

fication in practice, noting that the rest of the attack and release

parts of notes are likely to be overlapping. As before, the results

are reported and discussed in Section 4.3.

4. EVALUATION

4.1. Direct assessment of parameter estimation

Using the test procedure outlined in Section 3.2.1, here we report

the accuracy of direct parameter estimation using random sub-

sampling validation. Two regression models are compared and

evaluated: simple Linear Regression (LR) and Random Forest re-

gression (RF) [23] available in [24]. Table 2 & 3 show the abso-

lute errors for both instruments and regression models. Since the

observed feature values are relatively small, we linearly scale the

feature values to [0, 1] and compare the errors. The highlighted

values in the table show that the smallest error is always observed

when using the scaled features and the random forest regression

model. For completeness, the range for the four parameters are

(0,50] dB for threshold, [1,20] for ratio, (0,100] ms for attack time,

and (0,1000] ms for release time. Scaling is reasonable in this pilot

experiment, because the test data (reference) is selected randomly

from the database mentioned above, which means all Npro has its

original N available. However, in a real world scenario, the ref-

erence sound is not taken from the database prepared to train the

regression models. It is more likely to be a produced sound or

track without access to its unprocessed version. Therefore scaling

will not be used in the subsequent studies. Please note that we do

not overfit the models, because in the evaluation the reference note

and the corresponding original is excluded from the training set of

the regression model.

The results also illustrate that the prediction accuracy for drums

is better than for violins in all cases. One reason is that drum sam-

ples are shorter and exhibit a simpler structure - short sustain, fol-

lowed by release and there is no pitched content. It shows that the

system can predict the compressor parameters from drums better

than for violins. In subsequent studies, we will therefore focus on

the more complex case of similarity measurement for violin notes

and loops.

Violin LR RF

Threshold(dB)
error 3.756 2.601

scaled error 1.860 1.731

Ratio
error 2.065 1.583

scaled error 0.110 0.091

Attack(ms)
error 15.503 0.719

scaled error 1.012 0.686

Release(ms)
error 210.43 13.973

scaled error 78.913 10.583

Table 2: Numerical test using linear and random forest regression

model for violin notes

Snare Drum LR RF

Threshold(dB)
error 1.185 0.800

scaled error 0.408 0.345

Ratio
error 1.571 0.999

scaled error 0.669 0.305

Attack(ms)
error 6.867 0.860

scaled error 2.260 0.017

Release(ms)
error 23.045 0.999

scaled error 40.960 6.851

Table 3: Numerical test using linear and random forest regression

model for snare drum samples

4.2. Results of similarity assessment between notes

In this section, we evaluate the changes in estimated similarity us-

ing the system outlined in the right hand side of Figure 1 and Fig-

ure 3. Firstly, we extract the crest factor, i.e., peak-to-RMS ratio as

the similarity feature because it is correlated with the overall dy-

namic range of the signal. Based on our design, the crest factor of

the reference note Npro should be closer to the output note T than

the input note R. An example of this test is given in Figure 4 with

25 test cases. The crest factor of the input signal is represented by
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the constant at the top of the figure and the crest factor of a series

of reference notes are depicted by the blue curve at the bottom.

The crest factor of the output signal from the system is shown in

the middle (green curve). It is consistently brought closer to the

reference which fits our expectation here.

Figure 4: Example of changing crest factor with a fixed input and

decaying reference sound

We test 50 reference notes and present the results in Table 4 for

violin notes and Table 5 for snare drum, where DCrest(A,B) =
mean(|Crest(A)− CrestB|). The results indicate that the sys-

tem manages to bring the output closer to the reference using both

regression models. In all parameters except threshold, the random

forest model performs better than simple linear regression.

Violin Threshold Ratio Attack Release

DCrest(Npro, R) 60.31 94.13 104.93 85.31

DCrest(Npro, T )LR 12.53 39.72 46.76 48.62

DCrest(Npro, T )RF 15.27 38.24 45.23 47.19

Table 4: Average of Crest factor difference - Violin

Snare Drum Threshold Ratio Attack Release

DCrest(Npro, R) 49.14 70.04 50.47 70.68

DCrest(Npro, T )LR 27.99 43.85 27.28 44.63

DCrest(Npro, T )RF 29.33 43.45 27.20 43.44

Table 5: Average of Crest factor difference - Snare drum

Next, we discuss the resuts of similarity assessment as de-

scribed in Section 3.2.2. An this stage, we use a simple audio sim-

ilarity model to test the efficiency of the system. We use MFCC

coefficients as features and fit a GMM on the MFCC vectors. An

approximation of the symmetrised KL divergence is then calcu-

lated and used as a distance measure. Using the same procedure

as in the previous part, the compressor settings provided by this

algorithm should bring the output note T closer to the Npro com-

pared to the input note R. Thus it is reasonable to assume that

D(Npro, R) > D(Npro, T ) holds and the performance of the re-

gression models can be tested. In this experiment, we select 50

Npro and change one parameter at a time. Table 6 & 7 indicate the

efficiency of the algorithm. Since the similarity algorithm theoreti-

cally captures the timbre information as well, it will yield different

results on different instruments. In this test, the distance reduction

achieved by the system is larger for violins, i.e., the violin notes

exhibit better results than the snare drums. This is possibly due to

the fact that the MFCC features used here do not model the drum

sounds well enough. Finding a better feature representation for

percussive instruments constitutes future work.

Violin Threshold Ratio Attack Release

D(Npro, R) 38.122 53.187 44.018 55.206

D(Npro, T )LR 19.799 20.911 22.852 20.994

D(Npro, T )RF 19.742 20.856 22.213 20.807

Table 6: KL Divergences for the first workflow in 3.2.2 - Violin

Snare Drum Threshold Ratio Attack Release

D(Npro, R) 77.497 112.368 73.559 91.487

D(Npro, T )LR 73.749 88.574 73.307 85.022

D(Npro, T )RF 73.696 88.487 73.238 86.081

Table 7: KL Divergences for the first workflow in 3.2.2 - Drum

Finally, we investigate how the proposed algorithm works in

a more realistic scenario. When the original note N is not avail-

able, it is reasonable to use the input note R in place of N . Under

this condition, we repeat the same test for both crest factor and the

MFCC-based similarity model. The results for crest factor are pro-

vided in Table 8 for violin and in Table 9 for snare drum samples.

The system is still able to bring the crest factor of the output T
closer to the reference Npro, but the efficiency is worse compared

to the case when the original note is available. Random forest re-

gression still yields better performance in almost all cases.

Violin Threshold Ratio Attack Release

DCrest(Npro, R) 60.31 94.13 104.93 85.31

DCrest(Npro, T )LR 34.86 29.37 68.74 75.94

DCrest(Npro, T )RF 30.11 25.36 67.82 54.02

Table 8: Average of Crest factor difference - Violin

Snare Drum Threshold Ratio Attack Release

DCrest(Npro, R) 49.14 70.04 50.47 70.68

DCrest(Npro, T )LR 38.01 66.18 21.37 44.05

DCrest(Npro, T )RF 42.90 45.24 27.37 42.75

Table 9: Average of Crest factor difference - Drum

The result using the MFCC-based similarity model is illus-

trated in Figure 5 & 6, with D(Npro, R) on the left, D(Npro, T )LR

in the middle and D(Npro, T )RF on the right of each subplot. In

Figure 5 for violin notes, the average divergence is not as promis-

ing, especially when comparing with the results in Table 6, but

it is clear that even if the given reference sounds have a large di-

versity, the algorithm reduces this significantly, and shows a very

stable improvement in the similarity result. On average, the ran-

dom forest regression performs better than linear regression in all

cases except when predicting threshold. This shows the benefit of

modelling non-linearities. Therefore we will build our system us-

ing random forest regression. Figure 6 shows that the output of the

system did not manage to achieve a dramatic reduction in the sim-

ilarity distance in case of the snare drum. As explained before, we
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need to further investigate the influence of timbre on this similarity

algorithm. Furthermore, due to the size of the snare drum dataset,

we have a limitation in the choice of test data.

Figure 5: Similarity for four parameters in the second workflow,

assuming the origin note N is not available. - Violin

Figure 6: Similarity for four parameters in the second workflow,

assuming the origin note N is not available. - Snare drum

4.3. Results of similarity between loops

We can extend the study by changing the audio material from

mono-timbral notes to mono-timbral loops. The final experiment

tests the efficiency of the workflow in Figure 3 without using the

original notes, and replaces both R and Npro with violin loops.

The results displayed in Table 10 and Figure 7 correspond to 50

violin loops which have the duration of 3-5 seconds. A promising

trend is observed using the average divergence. However, unlike

in the previous studies, the divergence does not drop very signif-

icantly. These results indicate that the algorithm works better for

attack/release time, but the performance is not yet satisfactory for

threshold. A possible reason is that we selected six features for

threshold/ratio but ten for attack/release while the features used

may not be sufficient or accurate enough in this more generic case.

Threshold Ratio Attack Release

DCrest(Npro, R) 545.48 580.10 574.33 569.69

DCrest(Npro, T )LR 301.59 237.24 326.68 314.11

DCrest(Npro, T )RF 301.75 209.06 325.08 321.23

Table 10: Average of Crest factor difference - Loops

Figure 7: Similarity for four parameters in the second workflow,

assuming the origin note N is not available. - Loops

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method to estimate dynamic range

compressor settings using a reference sound. We demonstrate the

first steps towards a system to configure audio effects using sound

examples, with the potential to democratise the music production

workflow. We discussed progress from using a linear regression

model to a random forest model and from a designated test case

to a real world scenario. The evaluation shows a promising trend

in most cases and provides an initial indication of the utility of

our system. Our current research focuses on simple audio mate-

rial, notes and mono-timbral loops. The study discussed in Section

3.2.4 considers loops as signal notes, which ignores a lot of infor-

mation. In future work, we will assess the use of an onset event

detection to identify notes from loops or more complex recordings

and measure their attributes using the method applied to individual

notes. A useful intelligent audio production tool will be devised for

audio tracks that are more complex, while polyphonic tracks will

also be considered in future research.

The algorithm itself may also need improvement. The features

we chose to train the regression model can be extended. Thor-

ough research on how to design audio features specific to com-

pressor and other audio effects parameters would be beneficial. At

the same time, the regression models employed in this work may

be improved using optimisation techniques that take the similarity

features into account. An improved similarity model may be used

as an objective function, rather than being used only during eval-

uation. We note however that the currently employed technique

in the assessment of similarity is only considered a starting point.

More realistic and complex auditory models will be applied in fu-

ture work. Additionally, we plan to evaluate the system using real

human perceptual evaluation, i.e., using a listening test. In con-

clusion, this paper provides an innovative and feasible method for

intelligent control of dynamic range compressor. However, this re-

search is still in early phase and further considerations are needed

to optimise feature design and the regression model.
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