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ABSTRACT

This paper proposes a neural network for carrying out paramet-
ric equalizer (EQ) matching. The novelty of this neural network
solution is that it can be optimized directly in the frequency do-
main by means of differentiable biquads, rather than relying solely
on a loss on parameter values which does not correlate directly
with the system output. We compare the performance of the pro-
posed neural network approach with that of a baseline algorithm
based on a convex relaxation of the problem. It is observed that the
neural network can provide better matching than the baseline ap-
proach because it directly attempts to solve the non-convex prob-
lem. Moreover, we show that the same network trained with only
a parameter loss is insufficient for the task, despite the fact that it
matches underlying EQ parameters better than one trained with a
combination of spectral and parameter losses.

1. INTRODUCTION

The equalizer (EQ) is an audio processor capable of selectively
adjusting the loudness of specific frequencies [1]. It is a basic and
important tool for the audio editor, which allows one to sculpt the
tone of a sound or allow many elements to sit harmoniously in
a mix. Arguably, the most popular form of EQ is the paramet-
ric EQ, largely due to its level of user control and low latency.
A parametric EQ is characterized by a number of bands, whose
type, frequency, gain, and quality factor (Q) can be specified by the
user. In their most basic form, parametric EQs are implemented us-
ing a cascade of second-order, biquadratic filters (biquads), where
each biquad corresponds to an EQ band that the user has control
over [2]. Common filter types in parametric EQs include shelving,
peaking, and high/low-pass filters.

EQ matching is the ability to (automatically) adjust EQ set-
tings such that the spectral qualities of a reference track are trans-
ferred to some source material [3]. It can be used on a per-case
basis, or to devise suitable criteria for automatic mixing [4] in
some contexts. A common approach for EQ matching involves
the computation of a desired magnitude frequency response by di-
viding the time-averaged spectrum of the reference by that of the
source. The matching is carried out by multiplying spectral blocks
of source material by the resulting magnitude frequency response
using a fast Fourier transform (FFT). While providing an accurate
matching, this method involves linear phase filtering, which can
suffer from pre-ringing, and incurs the latency involved in FFT-
based block processing. As such, a parametric EQ matching is
much more desirable in many applications. Parametric EQ match-
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ing involves the automatic determination of band type, frequency,
gain, and Q for each band in the EQ in such a way that it resembles
the desired magnitude frequency response.

A method for parametric EQ matching was developed in [5],
based on the observation that second-order peaking and shelving
filters can be made nearly self-similar on a log magnitude scale
with respect to peak and shelf gain changes. Band frequencies and
Qs are first estimated to form a spectral basis matrix (note that for
notational simplicity, we refer to both shelving slopes and peaking
quality factors as Qs throughout this paper). The basis matrix is
used to carry out a least-squares optimization to solve for band
gains. Though it can be effective, the performance of this approach
is dependent on the hand-tuned pre-estimation of frequency and
Q values. Moreover, the performance can be limited due to the
fact that it is a convex relaxation of the more general matching
problem, as the pre-estimation of frequency and Q prior to the gain
optimization does not ensure an optimal solution overall.

In [6], a similar approach to the method in [5] was used to
design a graphic EQ, i.e. a constrained form of a parametric EQ
with pre-determined type, frequency, and Q for each band. In fact,
this is a specific instance of [5] where the initial estimation step is
unneeded because spectral bases are determined a priori. Again,
a least-squares optimization is used to estimate EQ band gains to
match command gains, i.e. the desired magnitude frequency re-
sponse evaluated at the center frequencies of the graphic EQ bands.
This work was later extended in [7, 8] to make use of a neural
network to infer EQ band gains. In this case, the neural network
acts as a lightweight approximator of the closed form least-squares
solution, where model training bootstraps the original algorithm.
Though successfully retaining the performance of [6] at a lower
computational cost, the disadvantage of this approach is that it is
trained to minimize a loss on parameter values, rather than the
magnitude frequency response itself. Therefore, one would expect
limited generalizability of the approach to parametric EQs, where
frequency and Q are no longer fixed. In fact, the success of the ap-
proach was likely due to the constrained nature of the graphic EQ
matching problem, specifically the convex nature of the underlying
gain optimization, and the higher correlation between parameters
and their corresponding magnitude frequency responses relative to
a more general parametric EQ matching.

In this paper, we propose a neural parametric EQ matching al-
gorithm. The method provides a solution to the non-convex para-
metric EQ matching problem head-on without the need for any
initial estimation of parameters via hand-tuned heuristics. Rela-
tive to other machine learning approaches, the main advantage of
this model is that it is trained to optimize the spectral loss of its
parameter predictions. We train a system of this sort by explicitly
implementing biquads, specifically their coefficient formulae and
frequency response evaluation, using differentiable operators that
allow gradients to be back-propogated. This is motivated by a push
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Table 1: Biguad coefficient formulae for different filter types.

Coefficient Low shelf High shelf Peak
o sin(wo)y/(A2 + 1)(1/g — 1) + 24 | sin(wo)y/(42 + 1)(1/g — 1) + 24 sinfeo)
bo A(A4+1)—(A—1cos(wo)+a) | A(A+1)+(A—1cos(wo)+a) | 1+axA
b1 2A((A—1) = (A+1)cos(wop)) —2A((A—=1)+ (A+1)cos(wo)) | —2cos(wo)
ba A(A4+1)—(A—-1)cos(wo) —a) | A(A+1)+(A—-1)cos(wo) — ) | 1—axA
ao (A+1)+ (A—1)cos(wo) + (A+1)—(A—1)cos(wo) + 1+a/A
a1 —2A((A—=1)+ (A+1)cos(wo)) 2A((A—1) = (A+1)cos(wo)) —2 cos(wo)
as (A+1)4+ (A—1)cos(wo) — (A4+1)—(A—-1)cos(wo) — 1—a/A

towards the implementation of differentiable audio processors in
deep learning frameworks to enable end-to-end training [9]. As
such, the method enjoys the ability to model non-linear functions
by means of a neural network, while optimizing a loss that reflects
directly the relevant output of the system. We would expect that
such an approach would be more successful than a network trained
to minimize a parameter loss, as such a loss would be less corre-
lated to the direct output of the system [10]. While some prior
works consider modeling audio effects using a purely black-box
approach [11, 12], this paper serves as a step towards integrating
the commonly used parametric EQ directly into neural networks.

The remainder of this paper is structured as follows: the con-
struction of a parametric EQ using biquad filters and their related
formulae are reviewed in Section 2. A baseline parametric EQ
matching algorithm based on [5] and the proposed neural network
approaches are outlined in Section 3. A comparison between the
baseline algorithm and the proposed neural network solution is
provided in Section 4. Finally, conclusions and allusions to future
work are discussed in Section 5.

2. PARAMETRIC EQ USING BIQUADS

Biquads are a well-known and extensively studied class of infi-
nite impulse response (IIR) filters [13]. A biquad implements the
second-order difference equation

1
yln] = a—o(bom[n] + biz[n — 1] + bazx[n — 2] "
—ary[n — 1] — azy[n — 2])

where coefficients b = [bo, b1,b2] and a = [ao, a1, az] are the
feedforward and feedback gains of the filter, respectively. Often
times, coefficients are normalized such that ag = 1. Moreover,
common variations of the exact implementation of this (direct form
1) difference equation include the direct form 2 and transposed
direct forms. The corresponding system function of a biquad is
given as

1 —2
H(Z) _ bo + b1z + bz @)

ap +a1z7! +agzz—2

where the quadratic polynomials in the numerator and denomina-
tor affect the underlying poles and zeros of the system. Different
types of filtering operations can be achieved via the placement of
poles and zeros in specific ways.

The resulting frequency response of the filter can be evaluated
at a digital frequency w by evaluating equation (2) with z = .
It is common to see this evaluation being performed over a vector
of linearly-spaced digital frequencies €2, i.e. a uniform sampling of
the system function over the unit circle. We refer to this evaluation
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as the freqgz operation, according to its name in MATLAB or
Python/SciPy implementations. This vector {2 can be set to match
the frequency axis of an underlying N-point FFT. Given real input,
the FFT for even N is described completely by Ny = N/2 + 1
frequency bins, and accordingly, Q = 7 - linspace(0, 1, Np).

There exist formulae for constructing biquad filters of a cer-
tain type which match specifications for a given center/cutoff fre-
quency f in Hz, gain g in decibels (dB), and unitless Q/slope ¢
[14]. In this paper, we restrict outselves to (low/high) shelving and
peaking filters. For a given sampling rate fs, we first define the
terms wo and A as

wo = 2TI'L
fs (3)
A= 1094

Accordingly, filter coefficient formulae for the shelving and peak-
ing filters used here are given in Table 1. We refer to the conver-
sion of specified parameters f , g , ¢ into their respective b and a
coefficients as the p2c operation.

A K-band parametric EQ can be created by cascading K bi-
quads in series, where each biquad acts as an EQ band with its
own parameterization. In this paper, we impose the limitation that
the parameter EQ consists of exactly one low shelf, one high shelf,
and up to K — 2 peaking filters. The composite system function
of the parametric EQ is then given by

Heo(2) = [] He(2) “

The magnitude frequency response of the parametric EQ can be
evaluated over frequencies in §2 by

K-1
|Heol )| = | T] Hile'®) ®)
k=0

3. PARAMETRIC EQ MATCHING

3.1. Preliminaries

We compile the frequencies, gains, and Qs for bands comprising
the parametric EQ into their respective K -dimensional vectors v ¢,
vy, and v,. For example, the kth element of v, denoted as v x,
corresponds to the gain parameter of EQ band k. As such, the con-
catenation of the three vectors into a single 3 K -dimensional vector
is a parameter vector v = [vy, vy, V4] which fully characterizes
the settings of the EQ. Given a desired magnitude frequency re-
sponse x (in dB), the goal of a parametric matching EQ algorithm
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Figure 1: (a) Select frequency responses and (b) MSE loss as a function of frequency.

is to estimate EQ parameters v = [V ¢, V4, V4], whose correspond-
ing magnitude frequency response X is most similar to x.

It is instructive to verify the non-convexity of the parametric
EQ matching problem. We can confirm this easily by means of a
simple example using two peaking filters. We place the first band
at vyo = 1 KHz with vgo = 3 dB and vg,0 = 1.0, and the
secondbandatvy, =5 KHzwithvy 1 =6dBand v, = 0.5.
By setting the gains and Qs of these bands to different values, the
bands form distinct spectral bases that are not separated by a per-
mutation with respect to band frequency. We compute the fre-
quency response x of the resulting impulse response, as illustrated
in black in Figure la. Now, we can set V4 = vg4, V4 = Vg, and
vary the EQ frequencies v¢. The difference between the desired
magnitude frequency response (ground truth) and the deviated EQ
magnitude frequency response is measured via the mean squared
error (MSE), defined as
i~ 3 ©)

MSE(x,%x) = —
b

as illustrated in Figure 1b. We can clearly see two minima, im-
plying that the loss surface is non-convex. It should be no sur-
prise that the global minimum is achieved when vy = vy, and
corresponds exactly to the desired magnitude frequency response,
as shown in red in Figure 1a. The corresponding magnitude fre-
quency response of the non-global local minimum is shown in blue
in Figure 1a.

3.2. Baseline algorithm

The baseline EQ matching algorithm is an implementation of the
method described in [5]. The core observation for the algorithm is
that peaking and shelving filters are approximately self-similar on
the log magnitude scale with respect to gain changes. This is to
say that

9108\ q(€')| % log| Hy .o (677 )

where k is an arbitrary gain constant. The implication of equation
(7) is that on a log scale, the magnitude frequency response of the
parametric EQ can be approximately expressed as a linear combi-
nation of unit gain responses (i.e. £ = 1 dB) given known v and
vg4. The combination weights are exactly the filter gains v.

2
e DRFx

The self-similarity property enables an algorithm to approxi-
mate a desired magnitude frequency response using a parametric
EQ. The frequencies and Qs of each EQ band are first estimated
(it goes without saying that the effectiveness of the method is de-
pendent on this estimation). With a number of EQ bands identified
and frequency/Q estimates V; and v, the corresponding unit re-
sponses can be computed and stacked to form the basis matrix B,
defined as

T
20 log‘H\‘,fyo,Loq’O(ejQ)‘

B= ®)

20 log’H‘;'f,K—lﬂlaoq,K—l (ejQ)’

Given B, the gains which minimize equation (6) are determined
by

v, =(B"B)'BTx O)

noting that the estimated gains V4 are only optimal with respect to
the estimated v ¢ and V.

In the implementation used here, peaking filter center frequen-
cies are determined by scanning the desired magnitude frequency
response from left to right for local extrema, imposing that the
next potential peaking filter be placed at least a third octave away
from the previous one. Peaking filter Qs are estimated using the
design equations outlined in [15]. Shelf cutoff frequencies are esti-
mated as the closest frequencies which deviate from the frequency
response evaluated at DC and Nyquist, respectively, by more than
a factor of 0.5. Shelf slopes are set to a constant value of 0.75.
These hand-tuned design decisions were based on analysis carried
out during algorithm development, and deviate only slightly from
the original method.

3.3. Neural network algorithm

The proposed approach infers v and its corresponding X using the
neural network architecture depicted in Figure 2. In this work, the
input to the model is the desired magnitude frequency response x
in dB used "as is," though some transformation onto a logarithmic
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Figure 2: Parametric EQ matching neural network architecture.

frequency scale could have also been considered. The model con-
tains an EQ parameter inference network comprised of 3 fully con-
nected stacks cascaded in series. Each stack consists of a 256-unit
dense layer, layer normalization [16], and a ReLU activation. Note
that this part of the network architecture is similar to the multi-
layer perceptron network in [9]. The output of the final stack is
subjected to a dense layer whose output is of size 3K . This output
is split into 3 vectors of size K corresponding to the frequency,
gain, and Q of the different EQ bands.

A subtlety in the design of such a network is that a portion
of the output parameter space must/should be constrained. One
must be mindful that adding constraints directly to network out-
put layers by means of an activation function can eliminate gra-
dients during model training, causing outputs to saturate at one
of its extreme values. Accordingly, each parameter vector is sub-
jected to its own type of activation. Considering the range of hu-
man hearing, and more importantly, that digital frequencies are
cyclical around the Nyquist rate, the frequency vector is subjected
to the activation o#(-), consisting of a sigmoid function and scal-
ing to constrain its outputs to be in the range fmin = 20 Hz and
fmaz = 20 K Hz. Since there is no mathematical constraints on
gains imposed by the biquad formulae, no constraint/activation is
applied to the gain vector during training (indicated by the identity
operator in Figure 2). During inference, however, they are clipped
to gmin = —10dB and gmaz = 10 dB, acknowledging that most
EQs have some sort of maximum and minimum per-band gains
associated with them, and that larger per-band gains in practical
matching context are fairly uncommon. Values for Q must be non-
negative, and for shelving filters, must also be < 1. Accordingly,
the Q vector is subjected to the activation o4(-), consisting of a
sigmoid function and scaling to constrain its output to be in the
range ¢min = 0.1 and ¢maa, Where g¢maq = 1 for shelving filters
and gmax = 3 for peaking filters. The outputs of the respective ac-
tivations are the 3 parameter vectors V¢, Vg4, Vg4, representing the
frequencies, gains, and Q values for EQ bands, respectively. Fi-
nally, a concatenation of the resulting vectors forms the estimated
parameter vector V.

One fundamental challenge in developing a useful neural para-
metric matching EQ algorithm is that it is instructive to relate in-
ferred parameters to their resulting magnitude frequency response
in a differentiable way. One way of achieving this is by explic-
itly constructing biquadratic RNN layers [17], which would en-
able back-propogation through time, and generating frequency re-
sponses of truncated impulse responses when passing them through
these layers. Though this is certainly interesting, and may be use-
ful for other deep learning applications which make use of para-
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metric EQs, this is rather slow and computationally expensive in
practice (this is generally the case for IIR filters). Moreover, it is
unnecessary for the task at hand, assuming that there exists some
reasonable means of estimating the desired magnitude frequency
responses. Considering that the frequency response of cascaded
biquads can be efficiently evaluated using the cascaded freqz ex-
pression in equation (5), we create differentiable biquads for this
application by implementing the p2c and cascaded freqgz oper-
ations using an automatic differentiation library (such as Tensor-
Flow), making sure that the response is evaluated at the same fre-
quencies as the underlying FFT used to the generate desired mag-
nitude frequency responses. As such, the EQ frequency response
evaluation operations form a layer that is actually a part of the
model, enabling end-to-end training. Accordingly, the estimated
desired magnitude frequency response X can be determined by the
estimated EQ parameters v, forming the outputs of the model for
system training.

3.4. Loss function

The loss function of the network that is optimized during training
is comprised of 3 terms, given by

L(X, }27V7‘7) = aLQ(X7 )A() +BL5(V7‘A,) +7L‘/(‘A’9) (10)

where the weights «, 3, and -y are network hyperparameters that
balance between the different loss terms. The L, term is the recon-
struction error between the desired and predicted EQ magnitude
frequency responses. Here, we simply use the MSE loss, but note
that it is trivial to use any meaningful distance metric and include
any form of perceptually-based frequency weighting scheme. The
L g term is the reconstruction error between the true and predicted
EQ parameter values. Note that the inclusion of this term is only
possible if data is generated via the sampling of EQ parameter val-
ues. The design of the curve generator used for generating train-
ing and validation data in this work is discussed further in Section
4. Here, the MSE loss is used after rescaling parameters into the
range [0, 1] considering the values for fiin, fmaz> gmins Gmaz»
Gmin, and @maz, and is referred to as the M SE,. Lastly, The L,
term is an optional L; regularizer on the gain parameters of the
network, which can be used to provide sparsity to the EQ match
solution. Note that the training objective is fairly generalized, and
can be made identical to that in [7, 8] when v = v = 0.
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Figure 3: PDFs used for sampling EQ parameters.

4. EXPERIMENTAL RESULTS

4.1. Dataset description

Data is a critical component to the training and evaluation of deep
learning algorithms. Here, magnitude frequency responses are
generated via a random sampling of parametric EQ parameters,
with f, = 48 kHz, K = 12, and N = 4096 (N, = 2049), and
networks are configured to match this setup. This allows for an ex-
pressive generation of magnitude frequency responses, and offers
paired samples of desired magnitude frequency responses and their
underlying EQ parameters. The distributions used for the random
sampling of EQ parameters is dependent on band type, and the re-
sulting probability distribution functions (PDFs) for all parameters
and band types are summarized visually in Figure 3.

We chose training distributions, as shown in blue in Figure 3,
to generate EQ curves that resemble the type that one would ex-
pect to see in practice. It is assumed that bands 0 and K — 1 of
the EQ are low and high shelving filters, respectively, while bands
k € {1,..., K — 2} are peaking filters. Low shelf frequencies
are predominantly concentrated in the low end, while high shelf
frequencies span more uniformly across mid-high and high fre-
quencies, and are respectively sampled by

Vio = )\f,O : (fmaz - fmzn) + fmin (11)

where Ao ~ Beta(0.25,5) and Ay k1 ~ Beta(4,5). Peaking
band frequencies are sampled between low and high shelf frequen-
cies, or vy, ~ Uniform(vy o, vy x—1) fork € {1,..., K —2}.

VfK-1 = )\f,Kfl . (fmaac -

2
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The resulting PDF is a function of random variables, visualized
empirically in Figure 3. Peaking EQ bands are ordered by ascend-
ing frequency to minimize "confusion" of the parameter loss to
permutations. The PDFs for gains are similar between band types.
They are concentrated around 0 dB with some amount of variation,
largely in the range =6dB. Peaks in the PDF at 0 dB arise from
the fact that bands are actively disabled with some probability. Ac-
cordingly,

Vg,k = Vgk * )\g,k: . (gmaz — gmzn) + Gmin (13)

where vy ~ Bernoulli(py) with pr = 0.5 for shelving filters
and 0.333 for peaking filters, and Ay, ~ Beta(5,5). The PDFs
for Qs are concentrated towards their lower range, as matching
EQs are generally used more for tone shaping and less for surgical
applications, and are sampled by

Vg k = )\q,k . (qmaz - szn) + dmin (14)

with \; , ~ Beta(1,5).

Two different validation sets for evaluating EQ matching algo-
rithms were considered. Validation set 1 is a set of 8192 new points
generated from the training distribution that were not seen during
training. Validation set 2 is a similarly generated set of samples,
except that the underlying distribution of the magnitude frequency
response generator is changed dramatically by using uniform dis-
tributions for all parameters (spanning their full respective ranges),
as visualized in orange in Figure 3. This introduces a large mis-
match into the experiment used to analyze the generalization of
different approaches. Indeed, the uniformly distributed parame-
ters yield more complicated magnitude frequency responses that
are far more challenging to all approaches that are compared here.
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Figure 4: Parametric EQ matching examples from (a) validation set 1 and (b) validation set 2.

4.2. Performance assessment

We quantatively compare the performance of different methods
on both validation sets. We evaluated performance by measuring
spectral similarity using both the MSE defined in equation (6) and
the mean absolute error (MAE) defined as

N 1 N
MAE(x,%) = ﬁbﬂxfol (15)

The proposed network was trained with o = 1, 8 = 1073, and
v = 1072, noting that a small, non-zero value for 3 can speed up
training. Another network is trained solely using a parameter loss
(ie. « =0, 8 = 1, and v = 0), effectively matching the training
scenario in [7, 8]. Both networks were trained for 50000 steps
using the Adam optimizer with a learning rate of 10> and a batch
size of 16. The M SE, is also reported for the neural networks to
highlight the extent of correlations between spectral and parameter
losses. We omit this computation for the baseline algorithm, as it
selects a variable number of peaking filters for each sample.

Table 2 and 3 summarizes our performance evaluation. Fig-
ure 4 shows a few matching results on the two validation sets. We
see that while the baseline approach can be somewhat effective,
the proposed neural network approach with multiple losses visu-
ally and quantitatively provides closer matches to the ground truth
magnitude frequency responses on both validation sets. We also
see that while the network using only a parameter loss does capture
the general shape of the desired magnitude frequency responses,
its EQ matching is imprecise, and does not even offer performance
comparable to the baseline approach. This is particularly interest-
ing because its parameter loss is substantially lower than that of the
proposed network, indicated by their M S E,. This illustrates the
necessity for end-to-end training that can only be achieved when
the parametric EQ is itself part of the neural network.

Lastly, we illustrate the effectiveness of the proposed approach
on a real-world example. The source and reference material are
recordings of the same guitar performance using a dynamic and
large diaphragm condenser microphone, respectively. Critical-band
smoothing [5, 18] is applied to both the time-averaged source and
reference spectra xs and x,, respectively. Specifically, we bidi-
rectionally smooth [19] each spectrum using exponential moving

2
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Table 2: Quantitative performance assessment on validation set 1.

T
104

Method | MSE(x,%) | MAE(x,%X) | MSE,(v,V)
Baseline 0.1679 0.2457 —
Parameter 1.495 0.8710 0.0275
Proposed 0.0782 0.1072 0.0737

Table 3: Quantitative performance assessment on validation set 2.

270

Method | MSE(x,%) | MAE(x,%X) | MSE,(v,V)
Baseline 10.03 2.119 —

Parameter 25.29 3.881 0.0776
Proposed 7.021 1.842 0.1486

average filters. Given an input spectrum X(.) to the smoothing

procedure, we begin by initializing X(.), sm» = X(.). The first "for-

ward" smoothing step (applied from left to right) is then defined

by the recursive operation

1+ pli] - (x(),5m (1] = %¢),smli = 1])
(16)

X(.)’Sm[i] = X(.)ysm[i —

where ¢ is the frequency bin index. A second "backward" smooth-
ing step is then applied recursively from right to left as

X(),sm i) = X(),em[t + 1] + pli] - (X¢),sm[i] — %X(),sm[i +1])
a7

The filtering constant p[i] is a function of the equivalent rectan-
gular bandwidth of the corresponding frequency indexed at bin 4.
At a sampling rate fs, an IV-point FFT has a frequency resolution
Af = fs/N, and accordingly, the smoothing constant is given by

—Af
0.108(iAf) + 24.7)

uli] =1 —exp (18)
fori € {0,..., Ny—1}. This filtering procedure is applied to each
spectrum, yielding the smoothed, time-averaged source and refer-
ence spectra Xs sm and X, sm, respectively. Finally, the desired
magnitude frequency response is estimated as X = Xy, sm /Xs,sm.
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Table 4: Quantitative performance assessment on select examples.

Method Figure 4a Figure 4b Figure 5
MSE(x, %) | MAE(x,X) | MSE,(v,v) | MSE(x,X) | MAE(x,%) | MSE,(v,¥) | MSE(x,%) | MAE(x,X)
Baseline 0.4394 0.4668 — 13.68 2.869 — 0.2077 0.3686
Parameter 8.044 2.692 0.0072 18.48 3.536 0.1351 1.775 0.9924
Proposed 0.2762 0.2922 0.0730 5.703 1.899 0.2048 0.1035 0.2494

—— Ground Truth
--- Baseline
—=- Parameter
—-==- Proposed

-7

—

Magnitude (dB)

T T
103 104

Frequency (Hz)

Figure 5: Parametric EQ matching example on a real-world pair
of samples.

The results of the matching is illustrated in Figure 5. Quanti-
tative evaluation for the examples in Figures 4 and 5 are shown in
Table 4. It can be observed that the output of the proposed method
is more similar to the desired magnitude frequency response, seen
visually and indicated by their spectral distances. Again, the neu-
ral network trained solely on a parameter loss struggles with the
matching, as its parameter estimation does not correlate directly
to the resulting magnitude frequency response. Note that in this
case, the underlying EQ parameter values do not exist as the de-
sired magnitude frequency response was not synthetically created
by a parametric EQ.

5. CONCLUSIONS

In this paper, a novel application of deep learning to the problem of
parametric EQ matching was proposed. Central to the formulation
of the neural network solution was the differentiable implemen-
tation of a parametric EQ using cascaded biquads, allowing for
the optimization to occur directly in the frequency domain. The
proposed solution outperformed a baseline approach based on a
convex relaxation of the EQ matching problem. Moreover, it was
shown that a simpler neural network optimization in the parameter
space was insufficient for the problem at hand.

Future research will extend this work to classify different EQ
band types during the matching process, as fixing the band types
has remained a limitation imposed by different methods (includ-
ing this one). Another interesting follow-on to this work would
be to consider whether a neural network could learn a better no-
tion of a desired magnitude frequency response than the division
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of source and reference spectra, in a similar fashion to the feature
learning introduced in [20]. It could concievably learn to factor
out performance-driven contributions (i.e. the potentially different
pitches comprising the source and reference performances), lend-
ing itself closer to a true timbral matching.
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