Proceedings of the 24™ International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

TRANSITION-AWARE: A MORE ROBUST APPROACH FOR PIANO TRANSCRIPTION

Xianke Wang * , Wei Xu T , Juanting Liu , Weiming Yang , Wenging Cheng

Smart Internet Technology Lab
School of Electronic Information and Communications
Huazhong University of Science and Technology
Wuhan 430074, China

{M202072113, =xuwei,

ABSTRACT

Piano transcription is a classic problem in music information re-
trieval. More and more transcription methods based on deep learn-
ing have been proposed in recent years. In 2019, Google Brain
published a larger piano transcription dataset, MAESTRO. On this
dataset, Onsets and Frames transcription approach proposed by
Hawthorne achieved a stunning onset F1 score of 94.73%. Unlike
the annotation method of Onsets and Frames, Transition-aware
model presented in this paper annotates the attack process of piano
signals called atack transition in multiple frames, instead of only
marking the onset frame. In this way, the piano signals around
onset time are taken into account, enabling the detection of pi-
ano onset more stable and robust. Transition-aware achieves a
higher transcription F1 score than Onsets and Frames on MAE-
STRO dataset and MAPS dataset, reducing many extra note de-
tection errors. This indicates that Transition-aware approach has
better generalization ability on different datasets.

1. INTRODUCTION

Piano transcription is the process of inferring onset time, offset
time, and pitch of notes from the piano audio. Due to the lim-
ited modeling ability, traditional methods [1, 2, 3] based on non-
negative matrix factorization (NMF) undergoes slow development.
Since 2012, the emergence of new transcription approaches rep-
resented by deep learning and a larger dataset, MAESTRO, has
further promoted piano transcription technology evolution.
Before MAESTRO dataset [4] became available, MAPS
dataset [5] had been widely used for piano transcription studies.
MAPS dataset includes 210 pieces of synthetic audio and 60 real
performances recorded from Yamaha Disklavier piano. There are
some difficulties with studies based on MAPS dataset. The 210
training performances on MAPS dataset are synthesized using syn-
thesizer software, and only 60 performances for testing are played
on the Yamaha Disklavier piano. This results in a large audio char-
acteristics gap between the training set and the test set. As a result,
models trained on the training set often cannot be well generalized
to the test set. In addition, as mentioned by Gong [6], there are
still some errors in MAPS dataset annotations, which affects the
evaluation of different models. MAESTRO dataset proposed by
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Google Brain in 2019 solves these problems. It contains 1,184 real
performances of the International Piano-e-Competition, with 6.18
million notes and a total of 172.3 hours of audio. The entire au-
dios of MAESTRO dataset are recorded from Yamaha Disklavier
piano. Onsets and Frames transcription approach [4] achieves an
F1 score of 94.73% on this dataset.

Kong has proposed the High-resolution model [7], which in-
tegrates the velocity information into the onset branch and frame
branch of Onsets and Frames model. Meanwhile, High-resolution
model uses a probability model to annotate the frames near on-
set time, which theoretically overcomes the time resolution lim-
itation of hop_length in transcription systems. Besides, High-
resolution model also takes the pedal prediction into account. On
MAESTRO dataset, High-resolution model achieves an F1 score
of 97.38%. Apart from the model’s innovation, Kong has proposed
GiantMIDI-Piano dataset [8], which is beneficial for music infor-
mation retrieval and musical analysis.

The above methods have achieved good performance on
MAESTRO dataset, and they are verified on MAPS dataset and
OMAPS (Ordinary MIDI Aligned Piano Sounds) dataset in this
paper. OMAPS dataset contains audio and video for the purpose
of our further audio and video multimodal transcription research.
More details about OMAPS dataset will be given in the experiment
section. Compared with performance on MAESTRO dataset, the
accuracy of Onsets and Frames model and High-resolution model
decreases a lot on MAPS dataset and OMAPS dataset, revealing
the lack of generalization ability. Therefore, the goal of this paper
is to enhance the robustness of transcription models.

Onsets and frames annotates onset time with a single frame
(Figure 1a). In contrast, High-resolution annotates onset with mul-
tiple frames, and the label value of each frame is subject to a spe-
cific probability distribution (Figure 1b), which implies that tran-
sition has been considered in the annotation of High-resolution
model. The basic idea of attack transition was used in the seg-
ment boundary blurring method[9] to improve music segmenta-
tion, as well as frequency-based smearing[10] to improve funda-
mental frequency estimation. In both of those cases, the approach
can be understood as accounting for uncertainty or lack of pre-
cision in the annotation process. But in this paper, the concept
of transition is used to model the spectrogram evolution process,
which overcomes the problem that traditional annotation methods
only consider the center frame in the attack stage, like the spec-
trogram envelope of note’s attack, decay, sustain, release(ADSR)
proposed by Kelz[11]. The key idea of transition is to describe
piano audio from a process rather than a single moment. High-
resolution model adopts the method of multi-frame onset annota-
tion and achieves better results than single-frame annotation.

Despite its good performance on MAESTRO dataset, the tran-
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scription accuracy of High-resolution model on MAPS dataset and
our OMAPS dataset declines much more than that of Onsets and
Frames model. It demonstrates that both the complex multi-frame
onset annotation and the simple single-frame onset annotation will
affect the robustness of transcription models. Therefore, a com-
promise approach of multi-frame onset annotation, called attack
transition annotation, which uses constant values instead of prob-
ability model to annotate multiple frames around onset moment
(Figure 1c), is proposed in this paper. Furthermore, the three meth-
ods above all annotate a complete evolution process of the note
spectrogram called whole transition annotation (Figure 1d).
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Figure 1: The annotation method of attack transition and whole
transition. The rectangle represents the label value. a) Onsets
and Frames only annotates the onset frame. b) High-resolution
annotates attack transition with a probability model. c) Transition-
aware annotates attack transition with a constant value, one. d)
The three models annotate the whole transition in the same way.

Overall, this paper’s main contribution is that the transi-
tion concept is used to model the spectrogram evolution process.
Transition-aware model is divided explicitly into attack transition
and whole transition. Combined with joint training, the attack tran-
sition can more accurately predict onset, and the whole transition
can also reduce the interference of spectral noise on onset detec-
tion. The main contributions are as follows:

* A more robust piano transcription model: it proposes the
concepts of attack transition and whole transition and en-
hances the generalization ability of onset detection through
the joint training of two branches, which is superior to the
existing methods on MAPS dataset and OMAPS dataset.

Open source: code of our model and OMAPS dataset will
be all available on Github' when the paper is published.
The inference code and part of OMAPS dataset are now
available.

Uhttps://github.com/itec-hust/transition-aware
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2. RELATED WORK

2.1. The Effect of Time-frequency Representations

Different time-frequency representations have a great influence on
the performance of transcription models. Kelz [12] and Cheuk
[13] studied the impact of various transformations like CQT and
mel on CNN-based models. It indicated that spectrograms with
logarithmic frequency axis could get better onset detection results
than that of linear frequency axis, for the internal components of
the music signal are presented logarithmically. Gao [14] found
that using differential spectrograms as input could enhance spec-
tral changes at onset time, and significantly improve the recall of
transcription models. Bittner [15] used the spectrograms of har-
monic constant Q transform (HCQT) to capture odd harmonics.
Cwitkowitz [16] found that the spectrogram features extracted by
learning-based filters were not as good as those by fixed-parameter
filters, revealing that the end-to-end automatic music transcription
systems were not satisfactory.

2.2. Traditional Piano Transcription Methods

Traditional transcription models usually use NMF, SVM, Ad-
aboost, and other machine learning methods. These methods cost
less training time but generally could not achieve high accuracy.
Cheng [3] used non-negative matrix factorization (NMF) to model
piano signals as attack components and decay components, reach-
ing an F1 score of 81.80% on ENSTDKCI, a subset of MAPS
dataset. Cogliati [17] utilized convolutional sparse lateral inhi-
bition to reduce piano onset detection errors. Valero-Mas [18]
used multi-pitch estimation and onset detection modules to com-
plete note segmentation, and then tried Decision Tree, AdaBoost,
Support Vector Machine (SVM), etc., to accomplish pitch classi-
fication, finally achieving an F1 score of 73% on MAPS dataset.
Deng [19] sent the fundamental and harmonics of 88 pitches in
the spectrogram into 88 Adaboost binary classifiers, respectively,
so that the feature redundancy and interference of classifiers were
reduced.

2.3. Transcription Methods Based on Deep Learning

The development of computer vision has brought much inspira-
tion to piano transcription. Generally, time-frequency transforma-
tion is used to convert the one-dimensional audio sequence into a
two-dimensional spectrogram. Then convolutional networks are
employed to process the spectrogram to complete transcription
[20, 21, 22]. For example, Kelz [11] used three paralle]l CNN net-
works to predict onset, frame status, and offset, respectively, fol-
lowed by HMM in the late-stage according to the envelope model
of attack, decay, sustain, release (ADSR), achieving an F1 score
of 81.38% on MAPS dataset. Pedersoli [23] found that the tran-
scription accuracy of baseline convolutional neural networks could
be improved by pre-stacking a U-Net. From another perspective,
audio is a sequential signal with strong temporal correlation, so
many models are based on the CRNN framework for transcription.
Ullrich [24] used CNN’s framework with Seq2Seq to model the
time correlation and long-term signals dependency. Hawthorne
[4] and Kong [7] used CNN with bidirectional LSTM to accom-
plish onset detection and time correlation learning and achieved
F1 score of 94.73% and 97.38% on MAESTRO dataset, respec-
tively. Besides, transcription researches using musical language
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Figure 2: Overall structure of Transition-aware model.

models [25, 26, 27] and adversarial learning [28, 29] also have
been conducted.

3. METHOD

To improve the generalization ability of piano transcription mod-
els, Transition-aware model is proposed in this paper to model the
spectrogram evolution of played notes, with details described in
the following paragraphs.

3.1. Problem Definition

In the proposed model, constant Q transform (CQT) is adopted
to convert piano audio into CQT spectrogram, and then the CQT
spectrogram is cut into segments along the time axis. The onset
time and pitch® corresponding to the notes played in each segment
are detected. The complete (onset, pitch) sequence of a track is
obtained as the transcription result.

3.2. Overall Network Structure

Transition-aware model consists of three parts: attack-transition,
whole-transition, and peak selection. Whole-transition branch
integrates probabilities of attack-transition branch, as shown in
Figure 2.  Attack-transition and whole-transition are trained
jointly, but the transcription results are only extracted from attack-
transition branch through peak selection. Transition-aware frame-
work firstly uses a multi-layer convolutional neural network to ex-
tract features from the CQT spectrogram, then uses BiLSTM for
time-dependent modelling, and finally uses fully connected layers
as the classifier to complete onset detection and frame estimation.
The idea of Transition-aware model is as follows:

» Attack-transition branch realizes the note attack transi-
tion process’s modelling by annotating multiple frames

2The value range of 88 pitches is 21-108

Vlenna

SR

around onset and completing note onset detection. Attack-
transition branch can focus on the spectral attack process of
notes, which is more stable than the model that only anno-
tates a single frame.

¢ Whole-transition branch annotates all frames from onset
time to offset time to realize the modelling of the whole
transition process and complete the notes’ activation predic-
tion. Probabilities from attack-transition branch are fused
into whole-transition branch to enhance the stability of the
model.

» Peak selection takes the threshold for the probabilities of at-
tack transition branch, selects the peak values in the period
above the threshold, and finally obtains each of 88 notes’
onset time.

The most significant difference of Transition-aware model is
that attack-transition and whole-transition are used to model the
spectrogram evolution process, and peak selection is used for
post-processing. Compared with annotating only the onset frame,
Attack-transition enables the model to focus on the spectrogram
evolution of notes in the attack stage, making the onset detection
more stable. Whole-transition branch allows the model to focus
on the complete spectral evolution process of notes, and it also
plays an auxiliary role in stabilizing onset detection. The imple-
mentation details of the Transition-aware model are described in
the following sections.

3.3. Constant Q Transform

Constant Q transform (CQT) is a standard time-frequency transfor-
mation method in music signal processing, which realizes convert-
ing the one-dimensional audio sequence to the two-dimensional
spectrogram.  Compared with short time Fourier transform
(STFT), different frequency resolution is used for high and low
frequency signals in CQT, which is more suitable for music signal
processing. CQT in this paper is realized by the CQT function in
Librosa library [30]. The specific parameters are referred to [31].

2
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The sampling rate is 44100Hz, the frame hop_length is 512, the
frequency bins of each octave are 48, and the total frequency bins
are 356.

3.4. Attack-transition and Whole-transition

Attack-transition branch uses a five-layer convolutional network to
extract the features of CQT spectrogram segments and then uses
BiLSTM to conduct time-dependent modelling. Finally, through
fully connected layers, an 88-dimensional vector is output, repre-
senting the probabilities of note onsets, and the process modelling
of note attack transition is accomplished.

As shown in Table 1, each feature map’s size can be expressed
in the form of time_length X freq_bins x channels. For ex-
ample, the size of the input is (T + 8) x 356 x 2, where (T" + 8)
represents the number of the input spectrogram frames. The op-
timal value of 7" will be obtained in section 4.3. Since convolu-
tion operation will reduce the size, to ensure the predictions are
T frames, 8 frames of the spectrogram are padded around the T°
frames segment in the center. 356 is the CQT frequency bins, as
described in 3.3. Since dual-channel audios are used, the number
of input spectrogram channels is 2.

To ensure the size of the predictions is 7" frames, the size of
the feature map on the time axis can only be reduced by 8. So a
small convolution kernel size, 3, is used on the time axis. To get
a slightly large receptive field, 5 is used as the convolution kernel
size on the frequency axis. Thus the size of the convolution kernel
is 3 X 5. In order to learn the time dependence between different
frames, BIiLSTM is used in the model. And to speed up training
convergence, batch normalization layer is used behind each convo-
lutional layer. To prevent over-fitting, dropout layers are added to
the fully connected layers. Specific parameters of attack-transition
branch are shown in Table 1. The convolutional layer parameters,
H x W@CQ, refer to the height of the convolutional kernel as H,
width as W, and the number of kernels as C. The max-pooling
layer parameters, pH X pW/pSH x pSW , indicate that the height
of the pooling area is pH, the width is pWW, the moving step in the
high direction is pSH, and the moving step in the wide direction
is pSW.

Table 1: Attack-transition network parameters.

Input

Layer & Parameter

Output

(T4 8) x 356 x 2
(T'+6) x 352 x 8
(T'+6) x 352 x 16
(T 4 6) x 176 x 16
(T+4) x172 x 32
(T +2) x 168 x 64
(T+2) x 84 x 64
T x 80 x 128
T x 10240
T x 1024
T x 1024

Conv:3 x 5@8
Conv:3 X 5@16
Pool:2 x 2/1 x 2
Conv:3 x 5@32
Conv:3 x 5@64
Pool:2 x 2/1 x 2
Conv:3 x 5@128

Reshape
Dense:1024
BiLSTM:512
Dense:88

(T'+6) x 352 x 8
(T +6) x 352 x 16
(T +6) x 176 x 16
(T +4) x 172 x 32
(T +2) x 168 x 64
(T+2) x 84 x 64
T x 80 x 128
T x 10240
T x 1024
T x 1024
T x 88

Whole-transition branch also uses a five-layer convolutional
network to extract the features of the CQT spectrogram segments
and then uses fully connected layers to reduce the dimension.
Then, the features fused with attack-transition branch are sent to
BiLSTM for time-dependent modelling. Finally, an 88-dimension
vector is output, representing the probabilities of the activation
status of notes, realizing the whole-transition process modelling
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Table 2: Whole Transition network parameters.

Input

Layer & Parameter

Output

(T +8) x 356 x 2
(T'+6) x 352 x 8
(T + 6) x 352 x 16
(T +6) x 176 x 16
(T +4) x 172 x 32
(T'+2) x 168 x 64
(T +2) x 84 x 64
T x 80 x 128
T x 10240
T x 88
T x 176
T x 256

Conv:3 x 5@8
Conv:3 X 5@16
Pool:2 x 2/1 x 2
Conv:3 x 5@32
Conv:3 X H@64
Pool:2 x 2/1 x 2
Conv:3 x 5@128

Reshape
Dense:88
Concat
BiLSTM:128
Dense:88

(T +6) x 352 x 8
(T +6) x 352 x 16
(T +6) x 176 x 16
(T +4) x 172 x 32
(T'+2) x 168 x 64
(T+2)x 84 x 64
T x 80 x 128
T x 10240
T x 88
T x 176
T x 256
T x 88

of notes. The specific parameters of whole-transition branch are
shown in Table 2.

Transition-aware model combines the training of the attack-
transition branch and whole-transition branch and simultaneously
completes the modelling of the spectral process of notes in the at-
tack stage and the whole evolution, improving the detection prob-
abilities of note onset. The loss function /¢ of the joint training
can be expressed as:

()]

lnote = lattuck + lwhole

Where, lqttack and lynole are the cross entropy loss functions of
attack-transition branch and whole-transition branch respectively.

3.5. Peak Selection

Peak selection is the post-processing part of Transition-aware
model. Peak selection is performed on the probabilities of note
onsets output by attack-transition branch to obtain the final (on-
set, pitch) sequence as the transcription result. For each of the 88
notes, peak selection considers only the period in which the onset
probabilities are greater than the threshold of 0.5. Peak selection
then selects the peak values within each period and sets the corre-
sponding moment of peak value as the related note’s onset.

4. EXPERIMENT

4.1. Dataset

The principal datasets of piano transcription include MAPS dataset
[5] and MAESTRO dataset [4]. MAPS dataset has a total of
270 complete piano performances. Generally, 210 synthetic au-
dio recordings are used as the training set, and 60 real perfor-
mances are used as the test set. MAESTRO dataset has been
created by Google Brain in collaboration with the International
Piano-e-Competition. Besides, MAESTRO-v2 has also been pro-
posed, added 396 audio tracks from the 2018 contest compared to
MAESTRO-v1.

The OMAPS (Ordinary MIDI Aligned Piano Sounds) dataset
established in this paper contains complete playing videos, audios,
and corresponding annotations, primarily for our study of audio-
visual fusion transcription. The OMAPS dataset was recorded
from Yamaha electric piano P115 by a piano player. The Log-
itech C922 Pro HD stream webcam was used to record video and
audio simultaneously. The Logitech camera is available in both
1080p/30fps and 720p/60fps video configurations. To ensure the
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resolution of the video, we used the 1080p/30fps configuration.
The Logitech camera audio module’s sampling rate is 44100Hz.
Since the recorded videos and piano MIDI files were out of sync,
we manually aligned the exported MIDI files as annotations. The
OMAPS dataset contains 106 different pieces for a total of 216
minutes, with an average two minutes per piece. The number of
notes played per second is used to measure the playing speed. Ac-
cording to the playing speed, the OMAPS dataset is divided into
a training set and a test set. The training set and the test set have
the same playing speed distribution. The training set contains 80
videos, and the test set contains 26 videos, as shown in Table 3.

Table 3: Statistics of the OMAPS dataset.

Split | Performance | Duration, minutes | Size, GB | Notes
Train 80 123 3.18 60,589
Test 26 53 1.03 19,135
Total 106 176 4.22 79,724

Although OMAPS dataset contains videos and audios, and the
dataset is divided into training part and test part, only the audios
and annotations of the dataset are used in this paper. Besides, since
the total time of the audios is short, OMAPS dataset is not used
to train the model. Instead, both the training set and test set of
OMAPS are used for evaluation.

4.2. Evaluation Metrics

Precision, recall and F1 score are used to evaluate the performance
of piano transcription models. Precision represents the extra note
detection errors, recall represents the missed note detection errors,
and F1 score represents the model’s all-around performance. Pre-
cision, recall, and F1 score calculation formulas are as follows:

TP
PiTP—&—FP 2
TP
R_TP+FN &
2x PxR
F1=2"- "= 4
P+ R 4)

Where T'P is the number of correct detected notes, F'P is the
number of extra detected notes, and F'N is the number of missed
detected notes. At present, the evaluation algorithm implemented
in mir_eval library [32] is commonly used to evaluate transcrip-
tional models, and the time tolerance of onset is set to +50ms.

4.3. Hyperparameters Selection

As shown in Figure 1c, Transition-aware models the note attack
transition by successively annotating multiple frames around on-
set to improve the detection accuracy of note onset. Meanwhile,
whole-transition branch is used to model the whole transition
process to assist attack-transition. However, different annotation
lengths of attack-transition will make the model consider attack-
transition of different time scales. Spectrogram segments of differ-
ent lengths brings different context information to whole-transition
modelling, which will affect the detection accuracy of note onset.

To discuss the impact of the time scale, we defines the blurred
length and frame length. Blurred length represents the annota-
tion length of attack-transition process. Frame length describes

2 1. Vienna
OHRFx

the length of the input CQT spectrogram segments in the time di-
mension. Frame length is the 7" in section 3.4. To simplify the ex-
periment, it is assumed that the effects of blurred length and frame
length on the model are not coupled. First, the blurred length is
fixed at 5 to find the optimal frame length. Then fix the frame
length and search for the best blurred length. We train on MAE-
STRO dataset and test on OMAPS dataset. The experimental re-
sults are shown in Figure 3. It can be seen that the optimal frame
length, or 7', is 101, and the corresponding time scale is 1.173s.
The optimal blurred length is 5, corresponding to a time scale of
0.058s.

blurred length=5 frame length=101
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Figure 3: Performance of each model with different blurred length
and frame length on OMAPS dataset.

4.4. Different network structures

The structure of Transition-aware is shown in Figure 2, where
the features of the attack-transition branch are integrated into the
whole-transition branch but the whole-transition branch is not used
during prediction. This section will expand on this consideration
in detail. We separately studied the results of using only the attack-
transition branch, the attack features integrated into the whole-
transition branch, the whole-transition features integrated into the
attack-transition branch, and the fusion of the attack-transition fea-
tures and whole-transition branch features, as shown in Figure 4.
Figure 4b corresponds to Figure 2.

We use MAESTRO-v1 dataset to train the four models above,
and test them on MAESTRO-v1 test set, MAESTRO-v2 test set,
MAPS test set, and the whole OMAPS dataset respectively. The
results are shown in Table 4. The only attack model structure
only considers the modeling of the attack transition. Although
good results have been achieved on MAESTRO-v1 dataset and
MAESTRO-v2 dataset, the generalization ability is weak, and the
performance on MAPS dataset and OMAPS dataset is not very
good. Attack into whole model structure is slightly better than the
whole into attack model structure, and has achieved the best per-
formance on MAPS dataset and OMAPS dataset. Although the
attack-whole fused model structure performs best on MAESTRO-
v1 dataset and MAESTRO-v2 dataset, it does not perform well on
the MAPS dataset and OMAPS dataset. Maybe this fusion method
is more complicated, resulting in overfitting. So finally we choose
the attack into whole model structure as our optimal model struc-
ture.
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Figure 4: Four network structures.
Table 4: Performance of the four model structures.
MAESTRO-v1 MAESTRO-v2 MAPS OMAPS
P R F1 P R F1 P R F1 P R F1
Only attack 98.78 | 94.33 | 96.48 | 98.70 | 94.65 | 96.59 | 8591 | 87.04 | 86.41 | 77.87 | 89.73 | 83.24
Attack into whole | 99.10 | 92.17 | 95.45 | 98.96 | 92.37 | 95.47 | 89.64 | 85.62 | 87.52 | 89.87 | 86.80 | 88.21
Whole into attack | 98.69 | 93.33 | 95.89 | 98.49 | 9342 | 95.82 | 88.32 | 86.73 | 87.47 | 86.65 | 88.96 | 87.70
Attack-whole fused | 98.41 | 94.20 | 96.24 | 98.41 | 94.51 | 96.38 | 84.38 | 86.98 | 85.60 | 77.50 | 90.25 | 83.24

4.5. Comparison with the State-of-the-Art Methods

As described in the respective papers, MAESTRO-v1 dataset
was used to train and validate Onsets and Frames model [4],
and MAESTRO-v2 dataset was used to train and validate High-
resolution model [7]. Although Onsets and Frames model and
High-resolution model have used different training sets for train-
ing, the impact on the final performance of the models can be
ignored, for the difference between MAESTRO-v1 dataset and
MAESTRO-v2 dataset is very small. MAESTRO-v1 dataset is
used to train and validate Transition-aware model in our ex-
periment. In this paper, MAESTRO-v1 dataset, MAESTRO-v2
dataset, MAPS dataset and OMAPS dataset are used to test the
above three models. Test sets in MAESTRO-v1 and MAESTRO-
v2, the 60 real performances in MAPS dataset, and all recordings
in OMAPS dataset are used for testing. To illustrate clearly, the
dataset used for training and validation of each model is shown
in Table 5. All models are testing on MAESTRO-v1 test set,
MAESTRO-v2 test set, MAPS test set (i.e., 60 real performances)
and the whole OMAPS dataset ( i.e., training set and test set).

Table 5: Dataset configuration of the three models.

Training Validation

Onsets and frames
High-resolution
Transition-aware

MAESTRO-v1 training set
MAESTRO-v2 training set
MAESTRO-v1 training set

MAESTRO-v1 validation set
MAESTRO-v2 validation set
MAESTRO-v1 validation set

The performance of the three models on the above four
datasets is shown in Table 6. High-resolution model has the
best performance on MAESTRO-v1 dataset and MAESTRO-v2
dataset, with the onset F1 score reaching 97.38% and 96.77%, re-
spectively. However, High-resolution model’s performance is the
worst on MAPS test set and OMAPS dataset, which indicates that
High-resolution model has the problem of over-fitting and weak
generalization ability.

The F1 score of Transition-aware model is significantly higher
than that of High-resolution model on MAPS test set and OMAPS
dataset (4.35% and 10.31%, respectively), and slightly lower on
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MAESTRO-v1 test set and MAESTRO-v2 test set (1.93% and
1.3%, respectively). Besides, Transition-aware model is better
than Onsets and Frames model on the four datasets®. This shows
that the annotation method of Transition-aware is more effective
than that of Onsets and Frames. In conclusion, Transition-aware
model is a better choice in terms of piano transcription perfor-
mance and robustness.

To analyze the performance of each model in detail, the three
models’ error distribution on MAPS test set and OMAPS dataset
is shown in Figure 5. Compared with Onsets and Frames model
and High-resolution model, Transition-aware model reduces many
extra note errors, increasing the stability of onset detection, which
is consistent with the design goal of Transition-aware model in this

paper.

100000 M extra notes
B missing notes
total error
80000
60000

40000

- I I I I I I
0

high resolution

number of errors

onset and frames transition-aware

Figure 5: Error distribution of the three models on MAPS test set
and OMAPS dataset.

30nsets and Frames achieved 94.80% of F1 score on MAESTRO-v1 in
[4], but we found that only 94.73% of F1 score was achieved by repeating

the prediction process.
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Table 6: Performance of the three models.

MAESTRO-v1 MAESTRO-v2 MAPS OMAPS
P R F1 P R F1 P R F1 P R F1
Onsets and frames[4] | 97.91 | 91.82 | 94.73 | 97.88 | 92.26 | 94.93 | 87.42 | 8558 | 86.43 | 81.03 | 90.22 | 85.17
High-resolution [7] | 98.52 | 96.29 | 97.38 | 98.16 | 95.46 | 96.77 | 79.57 | 87.35 | 83.17 | 68.31 | 91.58 | 77.90
Transition-aware 99.10 | 92.17 | 9545 | 98.96 | 92.37 | 9547 | 89.64 | 85.62 | 87.52 | 89.87 | 86.80 | 88.21

High resolution model used complex annotation methods,
which might lead to the model fitting the noise pattern in the pi-
ano signal, resulting in many extra note errors. Onsets and Frames
model is robust, and its extra note errors and missing note errors
are few. However, its modeling of attack stage is not enough,
and its onset detection performance can not reach the optimal.
Transiton-aware model uses the method of annotating continuous
multiple frame around onset time combined with peak selection
post-processing to obtain the most robust onset detection results.
On the one hand, the continuous annotation of multiple frames
overcomes the over fitting problem of High resolution; on the other
hand, the peak selection is different from the method of directly
taking threshold of output probabilities proposed by Onsets and
Frames model and High resolution model, which makes the model
more insensitive to interference.

5. DISCUSSION AND CONCLUSION

In this paper, a simple and effective Transition-aware piano tran-
scription model is proposed. Joint training of attack-transition
branch and whole-transition branch enhances the perception abil-
ity of transcription model on the evolution process of piano sig-
nals and improves the stability and robustness of onset detection.
OMAPS dataset using the ordinary electric piano in the general
recording environment is established to expand the discussion on
the models’ generalization ability. Transition-aware model pro-
posed in this paper has a comprehensive optimal performance on
MAESTRO-v1 dataset, MAESTRO-v2 dataset, MAPS dataset and
OMAPS dataset.

Of course, there are many limitations to Transition-aware
model. First of all, the piano signal is a combination of funda-
mental and harmonics, and different playing methods and pianos
will lead to various combination forms of fundamental and har-
monics. Such complexity brings difficulties for the perception of
Transition-aware model. Secondly, most of the current piano tran-
scription models only complete transcription from a single audi-
tory or visual [33, 34]. In the future, transcription systems based
on audio and video multi modes will accomplish this task better.
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