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ABSTRACT

Component-wise circuit modeling, also known as “white-box”
modeling, is a well established and much discussed technique in
virtual analog modeling. This approach is generally limited in ac-
curacy by lack of access to the exact component values present in
a real example of the circuit. In this paper we show how this prob-
lem can be addressed by implementing the white-box model in a
differentiable form, and allowing approximate component values
to be learned from raw input–output audio measured from a real
device.

1. INTRODUCTION

Digital emulation of analog audio circuits, also known as virtual
analog (VA) modeling, is a highly active and mature field of re-
search within musical signal processing. Over more than 20 years,
research in the field has covered a wide variety of audio systems
such as analog synthesizers [1, 2], effects units [3–5] and vacuum
tube guitar amplifiers [6].

VA modeling techniques are commonly divided into two main
categories depending on their scope: “white-box” and “black-
box”. White-box modeling consists in deriving and discretizing
the underlying governing equations of a circuit by means of cir-
cuit analysis and standard numerical methods. Due to the labor
intensive nature of this process, particularly for the case of large
circuits with multiple nonlinearities, a vast proportion of research
in this field has focused on the development of automated general-
purpose circuit modeling frameworks [7–11]. A key characteristic
of white-box modeling is that it requires full knowledge of the
circuit under study, ideally through circuit schematics and compo-
nent datasheets. In cases where schematics are not readily avail-
able these have to be traced manually from the physical circuit.
Furthermore, determining exact component values requires them
to be measured in isolation from the circuit, which is not only im-
practical but can also compromise the integrity of the circuit.

The black-box approach, on the other hand, does not rely on
access to the internals of the system under study and is based en-
tirely on measurements. This process requires designing a general-
purpose parametric structure that can be tuned manually or opti-
mized automatically to replicate the input–output relationship ex-
hibited by the captured data. For linear systems, this process is
somewhat trivial, as this relationship is fully described by their
impulse response. However, for the case of nonlinear systems
with memory, such as guitar amplifiers and pedals, more com-
plex structures and optimization techniques are required. Exam-
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ples of black-box VA modeling techniques include the Volterra se-
ries [12], dynamic convolution [13, 14] and block-oriented struc-
tures such as Wiener-Hammerstein models [15,16]. In some cases,
partial knowledge of the internals of the system is used in the de-
sign of a black-box modeling system at the cost of generality. In
such cases, the term “gray-box” modeling is commonly used [17].

The rise in popularity of Machine Learning (ML), and deep
learning in particular, has seen the emergence of new lines of re-
search in the field of VA modeling. A portion of this research has
focused on the use of standard deep-learning architectures, such
as Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs), to produce black-box models of analog au-
dio systems such as vacuum tube amplifiers [18–21], guitar dis-
tortion circuits [22] and modulation effects [23]. Other research
has formulated the problem in a form that could be described as
gray-box or pseudo white-box [24], where the governing equations
for the system under study are discovered and approximated from
measurements of the input, output and internal state values. Ap-
proaches have also been proposed that attempt to characterise a
wide class of audio-effects as transformations of the latent-space
of an autoencoder-like structure [25].

In a recent study, Engel et al. pointed out that the use of stan-
dard deep-learning structures, known for their universality, can of-
ten lead to overengineered, inefficient and uninterpretable solu-
tions for certain audio signal processing tasks [26]. To remedy
this, the authors introduced the DDSP library, a set of differen-
tiable classical DSP processors that can be integrated into larger
deep learning models for end-to-end training using backpropaga-
tion. These differentiable blocks enable the encoding of structural
and domain knowledge into the network, hence potentially reduc-
ing model size and training times.

In our previous work, we extended the scope of DDSP and
studied the relationship between RNNs and IIR filters, proposing
three differentiable IIR filter topologies [27]. As an example appli-
cation, we presented a fixed (i.e. without user-facing parameters)
VA model of a nonlinear guitar distortion pedal implemented using
a differentiable Wiener-Hammerstein model consisting of two IIR
filters and a multilayer perceptron (MLP), a class of feedfoward
artificial neural network. This idea of utilizing differentiable DSP
structures for VA modeling is developed further in a recent arti-
cle by Nercessian et al., where a general modeling architecture
comprised of many cascaded differentiable biquad filters and non-
linear activations is proposed and applied to a guitar distortion cir-
cuit [28].

Following our previous research, in this paper we introduce
the concept of differentiable white-box VA modeling. In a similar
fashion to differentiable IIR filters, discretized circuit models can
be optimized (i.e. trained) using backpropagation to fit raw input–
output measurements from a real device. This technique allows
us to improve the accuracy of white-box VA models by compen-
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sating for errors introduced, for example, by mislabeled schemat-
ics, component tolerances or parasitic capacitances. Moreover, it
can be used to uncover unknown component values and parame-
ters, as well as potentiometer curves. The proposed approach to
white-box system identification has the advantage that it can be in-
tegrated within larger deep learning models and can benefit from
some of the features of ML frameworks, such as their ability to
handle large amounts of data. Of related interest to this study is
the work of Holmes and van Walstijn [29], who proposed the use
of a Genetic Algorithm to optimize the parameters of a fixed non-
linear treble booster circuit.

This rest of this work is structured as follows. The proposed
method will be outlined for the static case in Sec. 2, alongside a
case study on a linear RC Filter, including results. In Sec. 3 we
discuss how the method can be modified for the parametric case,
with both a linear and a nonlinear case study, including results.
Finally, Sec. 4 provides concluding remarks.

2. STATIC CIRCUITS

In this section, we introduce the proposed method for the case of
static (i.e. non-parametric) circuits. As a first case study, a one-
pole lowpass RC filter is considered.

2.1. Method Outline

In the continuous-time domain we can write the underlying system
of ODEs governing a circuit in state-space form as

ẋ(t) = f(x(t),u(t)) (1)
y(t) = g(x(t),u(t)) (2)

where the vectors x, u and y represent the states, inputs and out-
puts of the system, respectively. Throughout this work, dot no-
tation is used to indicate a derivative taken with respect to time,
i.e. ẋ ≡ dx/dt.

We can extend the state-space formulation to include parame-
ters, giving us

ẋ(t) = f(x(t),u(t) ; λ) (3)
y(t) = g(x(t),u(t) ; λ), (4)

where vector λ is comprised of the system parameters which for
the case of circuits have a physical significance, they represent
the component values and other electrical constants. We then dis-
cretize (3) and (4) to get

xn+1 = fd
(
xn+1 . . .xn−k,un . . .un−k ; λ

)
(5)

yn = gd
(
xn . . .xn−k,un . . .un−k ; λ

)
, (6)

where xn ≡ x[n] is shorter notation for the samples of a discrete-
time signal. Functions fd and gd along with the value of k, which
determines the maximum number of previous sample points used
in the discretazion, will depend on the discretization/numerical
method used.

The task is then to implement this discretized form of the sys-
tem in a framework that allows automatic differentiation of com-
putational graphs, e.g PyTorch or Tensorflow [30, 31], and train
the parameters λ to minimise an appropriate loss metric, based on
measured input–output data of a real example of the system. This
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Figure 1: Schematic for a first-order RC lowpass filter.

implementation step is a relatively trivial task as these frameworks
can handle the operations typically needed in circuit modeling, in-
cluding matrix inversions and nonlinearities. It is worth noting that
usual downsides of back-propagating through a recursive system
apply, particularly the strong growth of computational complexity
and memory usage as longer training sequences are considered,
and the potential for vanishing gradients. Chen et al. [32] present
a solution to these problems via the application of the adjoint state
method to compute the gradient of system at a particular time-step.
This is not applied in this work, but could be useful for more com-
plex circuits if extended to support systems with input.

The loss metric used for training in this work is the standard
Mean Squared Error (MSE) applied directly in the time domain,
but other metrics like Error to Signal Ratio (ESR) or some type of
spectral or perceptually weighted loss metrics could be appropri-
ate [26, 33]. Reference PyTorch implementations for the circuits
considered in this study are provided in the accompanying reposi-
tory1.

2.2. Case Study: RC Filter

The first circuit considered in this study is the first-order RC low-
pass filter shown in Fig. 1. Given the structure of this circuit, we
can expect its governing ODE to be of the form

V̇out(t) = f (Vin(t), Vout(t) ; [R,C]) , (7)

where Vin(t) and Vout(t) represent the input and state/output of the
circuit, respectively, and f is a linear mapping. Using Kirchhoff’s
Voltage Law (KVL) and Kirchhoff’s Current Law (KCL) we can
determine function f , which gives us the ODE:

V̇out(t) =
Vin(t)− Vout(t)

RC
. (8)

The product of parameters R and C forms what is known as the
RC time constant, which has a unit of seconds and determines the
cutoff frequency fc (in Hz) of the filter by fc = 1/ (2πRC).

Next, we discretize (8) using the trapezoidal rule, arriving at
the difference equation

V n
out =

ρ
(
V n

in + V n−1
in

)
+ (1− ρ)V n−1

out

1 + ρ
, (9)

where ρ = Ts/(2RC) and Ts is the sampling period. The trape-
zoidal rule, which in the linear case is equivalent to the bilinear
transform, is widely used in DSP due its desirable stability prop-
erties, as it maps poles located on the left-hand side of the s-plane
to the inside of the unit circle. For the case of a discrete-time RC
filter this stability condition is guaranteed as long as the RC time
factor remains positive real.

1https://github.com/fabianesqueda/
differentiable_va_modeling

DAFx.2

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

42



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

Figure 2: RC Filter Loss Surface

2.2.1. Training and Results

Learning the parameters of an RC circuit involves finding the val-
ues of R and C that minimize a loss metric for a given dataset. To
demonstrate this, a set of measurements from a physical RC cir-
cuit with nominal component values R = 12 kΩ and C = 68 nF
(RC ≈ 8.16 × 10−4 s and fc ≈ 195Hz) were collected. The
circuit was built on a breadboard and the input and output sig-
nals were recorded using an analog-to-digital converter (ADC).
As in [24], unity gain op-amp buffers were placed between the
measurement points and the ADC to prevent loading of the cir-
cuit. A 3-minute long audio signal composed of a logarithmic sine
sweep, followed by a white noise ramp and a combination of gui-
tar, bass and drum recordings, was used for these measurements.
All measurements in this study were performed at a sampling rate
of 96 kHz.

Figure 2 shows the MSE loss surface of (9) w.r.t. the measured
data for different values of R and C. We can clearly see how the
global minimum of this loss surface is not given by a single point,
but rather by an infinitely-long line. This is due to the fact that – at
least in theory – there exists an infinite combination of values of R
and C that will yield any given cutoff frequency. A similar prob-
lem concerning multiple local minima in circuit parameter search
spaces is reported in [29].

As an additional step before training, we introduce two scaling
factors GR and GC so that ρ in (9) is redefined as

ρ =
Ts

2(GRR)(GCC)
. (10)

Rather than learning optimal values for R and C directly, we train
these two scaling factors instead. This nondimensionalization step
is done to compensate for the difference in ranges between these
two parameters, which are several orders of magnitude apart.

The RC filter was trained for 100 epochs on the measured data.
To simulate a scenario in which the original component values are
either wrong or unavailable, parameters R and C in the model
were initialized to 4.7 kΩ and 47 nF, respectively (i.e. RC ≈
0.22ms and fc ≈ 720Hz). Figure (3) shows the magnitude re-
sponse of the RC filter before and after training, plotted against
that of the real circuit. This result shows a good match between
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Figure 3: Magnitude response an RC lowpass filter before and af-
ter training, plotted against the measured target response.

the trained and target responses, and corresponds to a learned RC
time constant of approx. 0.745 ms (for GR = GC = 1.837) or
fc ≈ 224Hz. This represents a 29 Hz difference w.r.t. the nomi-
nal cutoff frequency, indicating the system was also able to learn
variations due to component tolerances. Due to the linear nature
of this system, its behavior is characterized entirely by its impulse
response, regardless of the driving input. Therefore, it is not neces-
sary to evaluate the performance of the trained model on a separate
validation set.

The results from this simple example demonstrate that the pro-
posed technique, while unable to learn the exact component values
of the reference circuit, was able to learn its RC time constant and
hence reproduce its behavior accurately. As detailed in the follow-
ing sections, this same approach can be scaled up to tackle larger
circuits with multiple parameters and even nonlinearities.

3. PARAMETRIC CIRCUITS

Many circuits of interest have system parameters that can be var-
ied according to user input, for example via the variable resistance
of a potentiometer. The nature of the mapping between the user
parameters and the system parameters can vary in complexity de-
pending on the particular circuit and on the type of control mech-
anism used. For example, the control taper of a potentiometer is
defined by the physical shape of the embedded resistive material,
and may not follow an exact linear or logarithmic relationship. We
therefore need to extend the model presented in Sec. 2.1 to account
for this behavior. We can do this by splitting the system parame-
ters λ into two portions, the static parameters λs and the variable
parameters λv, given by:

λv = fv(Λ) (11)

where Λ are the user-facing variable parameters, usually expressed
as normalized values. The function fv can be represented in the
trainable system by an MLP or similar network. This process is
known as hyperconditioning in the general case [34].

3.1. Case Study: FMV Tone Stack

The next circuit considered in this study is the passive RC network
shown in Fig. 4. This circuit is known in the literature as the FMV
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