
Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

AUTOMATIC RECOGNITION OF CASCADED GUITAR EFFECTS

Jinyue Guo ∗

RITMO, Department of Musicology
University of Oslo

Oslo, Norway
jinyue.guo@imv.uio.no

Brian McFee

Music and Audio Research Laboratory, MARL
New York University

New York, USA
brian.mcfee@nyu.edu

ABSTRACT

This paper reports on a new multi-label classification task for
guitar effect recognition that is closer to the actual use case of gui-
tar effect pedals. To generate the dataset, we used multiple clean
guitar audio datasets and applied various combinations of 13 com-
monly used guitar effects. We compared four neural network struc-
tures: a simple Multi-Layer Perceptron as a baseline, ResNet mod-
els, a CRNN model, and a sample-level CNN model. The ResNet
models achieved the best performance in terms of accuracy and ro-
bustness under various setups (with or without clean audio, seen or
unseen dataset), with a micro F1 of 0.876 and Macro F1 of 0.906
in the hardest setup. An ablation study on the ResNet models fur-
ther indicates the necessary model complexity for the task.

1. INTRODUCTION

The task of guitar effect recognition is to build an algorithm that
recognizes which kinds of effects are used in a given piece of guitar
audio. It is common to see multiple, nonlinear effects cascaded to
produce a rich guitar timbre. This makes it difficult to build an
effective recognition algorithm. Additionally, unlike some other
music information retrieval (MIR) tasks such as pitch tracking or
music tagging, resources for guitar effect recognition are relatively
limited. The lack of data and evaluation standards makes it difficult
to standardize the setup.

As we review in section 2, previous works on guitar effect
recognition have framed it as a typical classfication problem. How-
ever, most previous research tend to form the question as a multi-
class but single-label classification task, which means the models
either work on samples with single effects or consider a group of
effects as one label. However, in practice, different types of linear
or nonlinear effects are often cascaded to create the final output.
A second challenge is that the audio samples only contain a single
sound event, either a single pluck or a single sweep, which makes
the performance unpredictable on common guitar recordings that
usually contain more complex temporal and spectral components.

1.1. Our Contributions

In this paper, we constructed the task of guitar effect recogni-
tion as a multi-label classification task by applying two improve-
ments: First, we created a workflow that renders arbitrary guitar

∗ This paper is based on the master’s thesis research performed by the
first author while studying at New York University
Copyright: c⃝ 2023 Jinyue Guo et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

Figure 1: Proposed method of effect rendering and multi-label
classification.

recordings with all combinations of effects using SoX. Second, we
adapted several Neural Network models that can handle the multi-
label classification task. The models were modified and bench-
marked with several task setups: using the original clean audio
as a hint or not, and zero-shot classification on unseen data dis-
tributions. As a complement of this paper, source-code and result
sheets are provided online12.

2. RELATED WORKS

The question of guitar effect recognition was first formed into a
classification task by Stein et al. [1, 2]. They formed a single-label
classification task by using only one effect at a time [1] or only
classifying the group of effects [2]. The classifiers are built with
hand-crafted audio features such as spectral centroid and cepstral
features, and then feed into a Support Vector machine for clas-
sification. They also introduced a new dataset, IDMT-SMT-Audio-
Effects. The dataset was manually processed using a Digital Audio
Workstation, containing 55,000 samples of processed guitar audio
files, recorded with two electric guitars and two electric basses.
The samples are monophonic or polyphonic, but each includes a
single sound event only.

Schmitt and Schuller [3] continued on the direction of hand-
crafted audio features with a comprehensive research on features,

1https://github.com/fisheggg/SFXlearner
2DOI: 10.5281/zenodo.7973536

DAFx.1

https://www.uio.no/ritmo/english/
https://www.uio.no/ritmo/english/
https://www.uio.no/ritmo/english/
mailto:jinyue.guo@imv.uio.no
https://steinhardt.nyu.edu/marl
mailto:brian.mcfee@nyu.edu
http://creativecommons.org/licenses/by/4.0/
https://github.com/fisheggg/SFXlearner
https://doi.org/10.5281/zenodo.7973536

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Table 1: Effects used, the corresponding pysox function, and parameters. Parameters not listed are default values in pysox.

Effect type Effect name pysox function parameters
Non-linear Overdrive sox.overdrive() gain_db: 5

Distortion sox.overdrive() gain_db: 15
Modulation Chorus sox.chorus() n_voices: 5

Flanger sox.flanger() depth:5,
phase:50

Phaser sox.phaser() default
Tremolo sox.tremolo() default

Ambience Reverb sox.reverb() reverberance: 80
Feedback delay sox.echos() n_echos: 3

delays: [200,400,600]
decays:[0.4,0.2,0.1]

gain_out:0.5
Slapback delay sox.echo() n_echos: 3

delays: [200,400,600]
decays:[0.4,0.2,0.1]

gain_out:0.5
EQs Low boost sox.bass() frequency: 200

gain_db: 10
Low reduct sox.bass() frequency: 200

gain_db: -10
High boost sox.treble() frequency: 8000

gain_db: 20
High reduct sox.treble() frequency: 8000

gain_db: -20

including zero-crossing rate (ZCR), root-mean-square (RMS) en-
ergy, etc. They also introduced the concept of Bag-of-Audio-Words
(BoAW), which generates a codebook of frame-level features. The
classification setup and dataset are the same as Stein et al. [1, 2].

Neural network methods were first introduced to the task by
Jürgens et al. [4] and Comunità, M. et al. [5]. Both of these works
attempted to recognize not only the types of effects but also the pa-
rameters. Since the IDMT-SMT-Audio-Effects dataset did not pro-
vide any parameter information, both of these works have created
their own setups. Jürgens et al. [4] continued to use the afore-
mentioned effect settings [1] and built specific Multi-Layer Per-
ceptron (MLP) [6] parameter regressor for each class after being
classified. On the other hand, Comunità et al. [5] used a different
setting. Instead of using the 10 classes [1], they focused on non-
linear effects. Thirteen overdrive, distortion and fuzz effect units
are selected and tested on unified parameters (Gain and Tone/EQ).
Instead of building specific regressors for each effect, a uniform
Convolutional Neural Network (CNN) is trained to classify the ef-
fects and estimate their parameters.

Meanwhile, some of the latest neural network methods have
been introduced to similar Music Information Retrieval tasks. The
ResNet model [7] was originally proposed for Computer Vision
tasks, but is proven to be also effective on genre recognition [8].
The CRNN model [9] combines the idea of convolutional neural
network and recurrent neural network, achieved great results on
music classification. Unlike the previous models that use spec-
trogram as their input, the Sample-Level CNN model [10, 11]
applied 1-D convolution on raw waveforms and achieved great
results on music auto-tagging. These models have been proven
on solving audio-based multi-label classification problems, but are
not adapted to guitar effect recognition yet.

3. DATA PREPARATION

3.1. Clean Datasets

Instead of recording sounds from physical guitar effect units, we
chose to use clean guitar audio datasets, and manually render audio
effects. There are two main benefits of this process. The first is to
have huge flexibility in controlling the types, numbers, orders, and
parameters of the effects we apply to each audio. The richness of
data variation can contribute to the robustness of the model. The
second benefit is that we can get a clean version of the processed
audio, which can be used as a reference in the model.

We use two different clean guitar datasets in our rendering
progress. GuitarSet [12] contains more than 10,000 seconds
of guitar audio recordings, played by 6 different players in 5 dif-
ferent styles. The variety of this dataset can make our model ro-
bust on the timbre difference of the guitars and play styles of dif-
ferent guitarists. However, the instrument and recording setting
of GuitarSet is fixed. As a complement, the fourth subset of
IDMT-SMT-Guitar dataset [13] contains 384 guitar samples
of 64 different music pieces that are played in 2 different tempi
and 3 different guitar models, and recorded with two different se-
tups. The audio files are sliced into 5-second excerpts with the
tails dropped. After the process, we have 2004 samples from
GuitarSet, and 650 samples from IDMT-SMT-Guitar.

3.2. Effect Selection and Dataset Rendering

We use SoX [14] and its python wrapper pysox [15] to create
the pipeline and render effects to the clean datasets. We chose
13 often-used sound effects, including nonlinear effects, modula-
tion, and EQs. Compared to the standard effect types proposed
by Stein et al. [1], we added EQ effects since they are often used

DAFx.2

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

in pedalboards. The vibrato effect is replaced by chorus, since it
could be considered as a special case of chorus when the number
of voices equals to 1. One limitation here is that SoX only provides
one clipping algorithm, hence the Overdrive and Distortion actu-
ally use the same function but with different values of gain. The
parameters of effects are hand-picked to provide audible changes
to the audio samples and are fixed during the generation process.
Table 1 shows the selected effects.

Using the pysox API, we can create effect chains that con-
tain combinations of effects with various numbers and orders. The
labels are generated as a multi-hot vector in length 13, each el-
ement indicates the presence of one effect. For example, an ar-
ray [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] indicates an effect chain with
overdrive, chorus, and high-reduct EQ. The labels are used as the
ground truth during training and evaluation. We further split the
effects into 6 different groups. Effects within a group are mutu-
ally exclusive: only one effect in the group is chosen in one effect
chain. This is to avoid cancellation, such as applying Low boost
and Low reduct at the same time. Table 2 shows the grouping.

Table 2: Effect groups.

Group number Effect name
1 Overdrive

Distortion
2 Chorus

Flanger
Phaser

Tremolo
3 reverb
4 Feedback delay

Slapback delay
5 Low boost

Low reduct
6 High boost

High reduct

During generation, we can choose the number of groups to ap-
ply, and the pipeline iterates over all combinations of groups, and
combinations of the effects. Let En denote the total number of ef-
fect chains when applying n groups of effects, Gk denote the num-
ber of effects in the k-th group, and Cn

k denote a k-combination
with n elements, we can calculate En using equation 1.

En =
∑

gi∈{Cn
6 }

∑
k∈gi

C1
Gk

(1)

For example, when n = 2, it iterates over the combinations of
two groups: (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5),
(2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (4, 5). Within each set of
groups, the combinations of effects are also iterated. For example
in set (5, 6), the combinations are (Low boost, High boost), (Low
boost, High reduct), (Low reduct, High boost), (Low reduct, High
reduct).

Each 5-second clean sample are rendered with all combina-
tions of effects. We choose to use n = [1, 5] in our generation
process, where n = 1 is the case of single effect recognition and
n = 5 means only one group is not used. As a result, 221 combina-
tions of effects, 442,884 samples from GuitarSet and 143,640
samples from IDMT-SMT-Guitar are created. We further split
GuitarSet samples into a training split of 327,522 samples and

a validation split of 115,362 samples. We made sure the sam-
ples from the same audio source are in the same split to avoid the
’album effect’ [16]. The IDMT-SMT-Guitar samples are only
used during evaluation.

4. EXPERIMENTAL SETUP

We form two different setups: using the rendered audio with the
clean audio (’with_clean’), or using the rendered audio only
(’no_clean’). The ’with_clean’ setup is a simpler task, since the
model can compare the difference between the two signals and ig-
nore unrelated variables, such as the type of guitar or the recording
settings. Additionally, to compare with previous works on single-
effect recognition, a reduced dataset with only n = 1 is used as a
simpler setup.

To compare with previous works that use hand-crafted fea-
tures, we use a traditional Multi-Layer Perceptron (MLP) model
with Mel-Frequency Cepstral Coefficients (MFCC) [17] as input.
The MFCCs are extracted from audio samples at 44, 100Hz with
n_mfcc = 20, n_fft = 4096 and hop_length = 2048. The
MLP has three hidden layers with hidden_dim = 4096, 512, 13
for each layer, and a ReLU function after each layer. The input
shape of MLP is 2× 20×Nf for ’with_clean’, and 20×Nf for
’no_clean’, where Nf = 108 is the number of frames. As for the
DC coefficient in MFCC, since it represents the overall volume of
the audio, the MLP should be able to learn by itself whether the
volume information is related to output labels.

On the other hand, three newly developed Neural Network
models are used: the ResNet model [7], the CRNN model [9]
and the Sample-Level CNN model [10]. We use Mel spectrogram
in dB scale as the input feature map for ResNet and CRNN, ex-
tracted from audio samples at 44, 100Hz with n_fft = 2048,
n_mels = 128, hop_length = 1024. The shape of one spectro-
gram is (128, 216), with each time frame containing the informa-
tion of 23.2ms. For the ‘no_clean’ task, the number of channels
simply equals 1, while for ‘with_clean’ it becomes 2. The Sample-
level CNN model uses raw audio downsampled to 22, 050Hz as in-
put. The kernels and layers are slightly modified to suit the change
of input and output size of our task.

The Models are built and trained using the PyTorch library
[18]. For single-effect recognition, Categorical Cross-Entropy loss
is used, while Binary Cross-Entropy loss is used for multi-effect
recognition. Model weights are updated using Adam optimizer
[19] with a learning rate of 0.001 for a maximum of 500 epochs.
The batch size is set to 64 for baseline, ResNet and CRNN, and 16
for sample-level CNN due to memory limitation. The training set
is shuffled before each epoch, but the random seed is fixed. An
early stopping mechanism is performed if the validation loss over
Guitarset validation split does not decrease for 2.5 epochs. For
inference, the threshold of 0.5 is used. A computer with 16G RAM
and one NVIDIA 2060 super GPU is used for training.

5. EVALUATION

5.1. Single-Effect Results

Table 3 shows the F1 scores of the baseline model and resnet18
model under the two setups. The resnet18 model has outperformed
the baseline model in both setups. For the single effect setup, the
’with_clean’ setup is relatively simple and both models achieved
good performance. However, when the clean signal is removed,

DAFx.3

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

(a) no_clean setup. (b) with_clean setup.

Figure 2: Single-effect confusion matrices of the baseline model under two setups, both on GuitarSet validation split.

the baseline model has a significant performance drop, while resnet18
can still achieve a score above 0.9.

Table 3: Result of single effect recognition, evaluated on
GuitarSet test split.

Model Setup F1 score
baseline with_clean 0.956
resnet18 with_clean 0.999
baseline no_clean 0.742
resnet18 no_clean 0.924

Figure 2 shows the single-effect confusion matrices of the base-
line model under two setups. The characteristics of each effect
class are different since they have different mechanisms. In the
’no_clean’ setup, overdrive and distortion are often confused, the
reason might be that we actually used the same SoX function, only
with different parameters. Since the data samples have different
loudness levels, the clipping ratio varies according to the sample’s
own loudness level, which might cause the confusion. The feed-
back delay and slapback delay are similar, while the former has
a feedback loop that also delays the previous outputs. More sam-
ples of feedback delay are classified as slapback delay, while fewer
slapback delay are classified as feedback delay. The reason might
be for samples without explicit note onsets, the differences be-
tween these two delays are too subtle for MFCCs to catch. Another
confused group is flanger, phaser, and tremolo. Interestingly, it is
the tremolo but not the chorus that is misclassified, since tremolo
is amplitude modulation while chorus, flanger and phaser are all
delay-based modulation. Since the baseline model is a plain MLP
with no inductive bias for shift invariance, it did not capture the
difference between delay modulation and amplitude modulation,
but instead captured the difference in modulation patterns. In the
pysox implementations, the Low Frequency Oscillators (LFO)
are sinusoids in flanger, phaser and tremolo, while for chorus the
LFO shape of each voice is randomly chosen between triangular

and sinusoidal.
With the help of the clean signal, the model gained better per-

formances in most of these groups. The model performed perfectly
on overdrive and distortion when it knows the original loudness
level of the signal. The volume information also helps to clas-
sify tremolo successfully from the other modulations. However,
the model still struggles with feedback delay and slapback delay,
which probably indicates that the MFCCs cannot catch such sub-
tle timbre differences. There are still errors between flanger and
phaser, which is more difficult when the audio sample only con-
tains short impulses.

5.2. Multi-Effect Results

For a multi-label classification problem, we use both micro F1

score and macro F1 score as our evaluation metric. Figure 3 shows
the benchmark of four models under two setups, two datasets.
Among all the setups, the resnet18 and CRNN model outperforms
the baseline model under every setup, while the sample-level CNN
only achieved a better micro F1 score in one setup. The difference
between micro F1 and macro F1 is relatively small for all models
except sample-level CNN, which indicates that the performance of
sample-level CNN is imbalanced between classes.

We can see a performance drop on IDMT-SMT-Guitar com-
pared to the GuitarSet validation split. This indicates that even
though the ‘album effect’ is avoided when splitting GuitarSet, the
two splits are still inherently correlated. The F1 scores of CRNN
and resnet18 on Guitarset validation split even reached 0.999
under ‘with_clean’ setup. Therefore, using IDMT-SMT-Guitar
as the evaluation dataset is more meaningful.

In the hardest and most practical setup (IDMT-SMT-Guitar,
‘no_clean’), the resnet18 model achieved the best performance,
while CRNN is slightly below. The other two models were able to
solve the problem in the simpler setups, but failed in this practical
setup. However, although the performance of resnet18 and CRNN
are similar in the hardest setup, we noticed that resnet18 converges

DAFx.4

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Figure 3: Model benchmark of multi-effect recognition.

much faster than CRNN during training.

Although the performance on GuitarSet validation split
cannot directly represent the model’s actual performance, we can
analyze the robustness of models by comparing their differences
in performance among two datasets. In both setups, the baseline
model has the biggest performance drop on IDMT-SMT-Guitar
dataset, while resnet18 achieves the best robustness among the
four models. All models had a bigger drop in ’no_clean’ since
the task is more difficult.

5.2.1. Per-class analysis

We used the best performing model, resnet18 to analyze the re-
sult for each effect class. Figure 4 shows the confusion matri-
ces of resnet18 model under two setups. The performance under
’no_clean’ setup is acceptable in most of the classes, except over-
drive and distortion. The model achieved F1 scores around 0.93
for these two classes on GuitarSet validation split, but dropped
significantly on IDMT-SMT-Guitarwhile other classes achieved
the same level of performance among two datasets. The reason
might be that we used the same SoX implementation for these two
classes, only with different gain levels. When testing on another
dataset with a different distribution of loudness levels, the distribu-
tion compression rate also varies significantly. On the other hand,
when clean audio is given to the model in ’with_clean’ setup, it is
easier to learn the relationship between input and output gain, and
the model achieved a better performance on the two classes. Other
classes benefit from the additional information as well.

5.3. Ablation study

We performed an ablation study on resnet by removing groups of
convolutional layers at the output end. Since resnet18 already per-
formed well under both setups and both datasets, we want to in-
vestigate the minimum number of layers required to get such per-
formance. The ablation models are trained using the same config-
uration as described in Section 4. For each ablation model, the last
group of convolutional layers is removed, and the number of layers
decreases by 4. Metrics are evaluated on IDMT-SMT-Guitar
dataset.

Table 4: Model complexity and performance for resnet ablations.
Metrics are evaluated on IDMT-SMT-Guitar.

Model Setup Number of Micro Macro
parameters (k) F1 F1

resnet18 with_clean 714.7 0.968 0.970
resnet14 with_clean 188.3 0.963 0.955
resnet10 with_clean 56.2 0.958 0.950
resnet6 with_clean 34.4 0.926 0.917

resnet18 no_clean 714.3 0.876 0.906
resnet14 no_clean 187.9 0.848 0.832
resnet10 no_clean 55.6 0.860 0.844
resnet6 no_clean 34.0 0.830 0.811

Table 4 shows the complexity and performance of the abla-
tion models. The performance drop has a nonlinear relationship
with respect to the number of parameters. We see that resnet14
and resnet10 have similar performance, and resnet10 even slightly
outperformed resnet14 under ’no_clean’ setup. On the other hand,

DAFx.5

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

(a) ’with_clean’ setup (b) ’no_clean’ setup.

Figure 4: Confusion matrices and class-wise F1 scores of resnet18, multi-effect IDMT-SMT-Guitar.

resnet6 has a performance drop of about 0.03 under both setups.
Generally, the performance under ’no_clean’ setup is a fair trade-
off between complexity and performance. For the ’with_clean’
setup, the smallest model is still able to perform relatively well,
since the task is much simpler with the clean signal.

6. CONCLUSION

In this paper, we reconstructed the task of guitar effect recognition
to make it closer to the actual use-case of guitar effect pedals. We
created a workflow that renders arbitrary guitar recordings with
all combinations of effects using SoX, which increases the vari-
ation compared to existing datasets. Secondly, we adapted novel
Neural Network models to solve the multi-label classification task
under two setups, ’with_clean’ and ’no_clean’. The best perform-
ing model is modified from the resnet18 model, achieving a micro
F1 of 0.876 and macro F1 of 0.906 on an unseen dataset under
’no_clean’ setup. Class-wise analysis indicates that the model is
able to distinguish most of the effects except a small confusion on
overdrive and distortion. An ablation study shows that the deep
structure is necessary to achieve the performance, but a trade-off
between complexity and performance is optional. Possible im-
provements include randomizing the effect order and parameters,
or using better effect plugins, even real effect units.

7. REFERENCES

[1] Michael Stein, Jakob Abeßer, Christian Dittmar, and Gerald
Schuller, “Automatic detection of audio effects in guitar and
bass eecordings,” Journal of the Audio Engineering Society,
May 2010.

[2] Michael Stein, Jakob Abeßer, Christian Dittmar, and Gerald
Schuller, “Automatic detection of multiple, cascaded audio

effects in guitar recordings,” in Proc. Digital Audio Effects
(DAFx-10). Graz, Austria, Sep. 2010, pp. 4–7.

[3] Maximilian Schmitt and Björn Schuller, “Recognising guitar
effects - which acoustic features really matter?,” in INFOR-
MATIK 2017. Chemnitz, Germany, 2017, pp. 177–190.

[4] Henrik Jürgens, Reemt Hinrichs, and Jörn Ostermann, “Rec-
ognizing guitar effects and their parameter settings,” in Proc.
Digital Audio Effects (DAFx-20). Vienna, Austria, Sep. 2020.

[5] Marco Comunità, Dan Stowell, and Joshua D. Reiss, “Guitar
effects recognition and parameter estimation with convolu-
tional neural networks,” Journal of the Audio Engineering
Society, vol. 69, no. 7/8, pp. 594–604, Jul. 2021.

[6] Christopher M. Bishop, Neural networks for pattern recog-
nition, pp. 116–161, Oxford university press, 1995.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR). Las Vegas, Nevada, USA, Jun. 2016, pp. 770–778.

[8] Dipjyoti Bisharad and Rabul Hussain Laskar, “Music genre
recognition using residual neural networks,” in 2019 IEEE
Region 10 Conf. (TENCON). Kochi, India, 2019, pp. 2063–
2068.

[9] Keunwoo Choi, György Fazekas, Mark Sandler, and
Kyunghyun Cho, “Convolutional recurrent neural networks
for music classification,” in IEEE Intl. Conf. Acoustics,
Speech and Signal Processing (ICASSP), Mar. 2017, pp.
2392–2396.

[10] Jongpil Lee, Jiyoung Park, Keunhyoung Luke Kim, and
Juhan Nam, “Sample-level deep convolutional neural net-
works for music auto-tagging using raw waveforms,” in
Proc. 14th Sound and Music Computing Conf. (SMC). Es-
poo, Finland, Jul. 2017.

DAFx.6

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

[11] Taejun Kim, Jongpil Lee, and Juhan Nam, “Sample-level cnn
architectures for music auto-tagging using raw waveforms,”
in 2018 IEEE Intl. Conf. Acoustics, Speech and Signal Pro-
cessing (ICASSP). Calgary, Alberta, Canada, 2018, pp. 366–
370.

[12] Qingyang Xi, Rachel M. Bittner, Johan Pauwels, Xuzhou Ye,
and Juan Pablo Bello, “Guitarset: A dataset for guitar tran-
scription.,” in Proc. Intl. Society for Music Information Re-
trieval Conf. (ISMIR). Suzhou, China, 2018.

[13] Christian Kehling, Jakob Abeßer, Christian Dittmar, and
Gerald Schuller, “Automatic tablature transcription of elec-
tric guitar recordings by estimation of score- and instrument-
related parameters,” in Proc. Digital Audio Effects (DAFx-
14), 2014.

[14] Chris Bagwell and SoX contributers, “Sox: Sound exchange,
the swiss army knife of sound processing,” 1991.

[15] Rachel Bittner, Eric Humphrey, and Juan Bello, “Pysox:
Leveraging the audio signal processing power of sox in
python,” in Proc. Intl. Society for Music Information Re-
trieval Conf. (ISMIR) Late Breaking and Demo Papers. New
York City, USA, Aug. 2016.

[16] Brian Whitman, Gary Flake, and Steve Lawrence, “Artist
detection in music with minnowmatch,” in Neural Networks
for Signal Processing XI: Proc. 2001 IEEE Signal Process-
ing Society Workshop, 2001, pp. 559–568.

[17] Beth Logan, “Mel frequency cepstral coefficients for mu-
sic modeling.,” in Proc. Intl. Symposium on Music Infor-
mation Retrieval (ISMIR). Plymouth, Massachusetts, USA,
2000, vol. 270, p. 11.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al., “Py-
torch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Sys-
tems (NeurIPS). Vancouver, Canada, Dec. 2019, vol. 32.

[19] Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[20] Corinna Cortes and Vladimir Vapnik, “Support-vector net-
works,” Machine learning, vol. 20, no. 3, pp. 273–297, 1995.

DAFx.7

	1 Introduction
	1.1 Our Contributions

	2 Related Works
	3 Data preparation
	3.1 Clean Datasets
	3.2 Effect Selection and Dataset Rendering

	4 Experimental Setup
	5 Evaluation
	5.1 Single-Effect Results
	5.2 Multi-Effect Results
	5.2.1 Per-class analysis

	5.3 Ablation study

	6 Conclusion
	7 References

