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ABSTRACT

A Head-Related Transfer Function (HRTF) is able to capture alter-
ations a sound wave undergoes from its source before it reaches the
entrances of a listener’s left and right ear canals, and is imperative
for creating immersive experiences in virtual and augmented real-
ity (VR/AR). Nevertheless, creating personalized HRTFs demands
sophisticated equipment and is hindered by time-consuming data
acquisition processes. To counteract these challenges, various tech-
niques for HRTF interpolation and up-sampling have been pro-
posed. This paper illustrates how Generative Adversarial Net-
works (GANs) can be applied to HRTF data upsampling in the
spherical harmonics domain. We propose using Autoencoding
Generative Adversarial Networks (AE-GAN) to upsample low-
degree spherical harmonics coefficients and get a more accurate
representation of the full HRTF set. The proposed method is bench-
marked against two baselines: barycentric interpolation and HRTF
selection. Results from log-spectral distortion (LSD) evaluation
suggest that the proposed AE-GAN has significant potential for
upsampling very sparse HRTFs, achieving 17% improvement over
baseline methods.

1. INTRODUCTION

Recent advancements in the Metaverse underscore a paradigm shift
in augmented and virtual reality (AR/VR) technologies, also thanks
to the incorporation of immersive audio interactions to augment
user experiences. Binaural audio is a recording and synthesis tech-
nique designed to create an immersive, three-dimensional sound
experience for the listener using only two channels. To achieve a
truly accurate binaural audio experience, it is essential to consider
the Head-Related Transfer Function (HRTF). It is standard practice
to refer to the HRTF when discussing the impulse response (IR) in
the frequency domain, and the Head-Related Impulse Response
(HRIR) when referring to it in the time domain. HRTF embeds the
alterations sound waves undergo from their source to a listener’s
ears, shaped by anatomical and environmental variables. The fi-
delity of HRTF measurements, capturing diverse spatial orienta-
tions, is critical for replicating auditory spatial accuracy, thereby
augmenting the realism perceived in AR/VR simulations.
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Ambisonic is a comprehensive method for capturing, process-
ing, and reproducing spatial sound. Binaural rendering of Am-
bisonic signals via magnitude least squares is particularly bene-
ficial in advanced audio systems applications, where spatial audio
cues are crucial for enhancing user immersion [1]. This integration
proves pivotal across various domains, including interactive de-
sign [2], gaming [3], and educational applications [4], enhancing
the intuitiveness and engagement of virtual environments. How-
ever, Ambisonics-based binaural methods are fundamentally de-
pendent on HRTFs.

Humans utilize both binaural cues (i.e. involving the two ears)
- interaural time differences (ITD) and interaural level differences
(ILD), as well as monaural cues (spectral cues) to localize sound
sources around them. More specifically, above 5-6kHz spectral
cues play a dominant role in front-back discrimination, as well as
vertical localization [5, 6]. However, spectral cues are highly de-
pendent on the listener’s anatomy, particularly the shape of their
pinnae [7]. In addition, studies have demonstrated that utilizing
non-individualized HRTFs can lead to poor performance in sound
localization [8, 9]. Hence, to achieve accurate sound localization,
besides having spatially dense HRTF measurements, the individu-
alization of HRTFs for each listener is also advantageous.

Researchers have developed various approaches to HRTF indi-
vidualization [10]. One such approach involves acoustic measure-
ments [11], where sine sweeps are emitted from specific source
points and then recorded when they reach the listener’s ears, fol-
lowed by a deconvolution to extract the impulse responses. How-
ever, the measurements require sophisticated equipment and the
data collection process is rather time-consuming [12]. Spatial up-
sampling refers to the process of increasing the spatial resolution
of audio. By employing spatial upsampling through directional
equalization, it is possible to substantially improve spatial audio
quality even with limited HRTF datasets [13]. But this technique
is limited by its dependency on initial data quality and potential in-
accuracies in directional cues. An alternative is numerical calcula-
tion approaches [14,15], which utilize anatomical structural infor-
mation to compute individualized HRTFs. Nevertheless, obtaining
an accurate 3D representation of the listener’s anatomical structure
that contains pinnae itself is a challenging problem, which may in-
volve a costly setup such as CT scans [16] and MRI [17].

An initial pilot study on machine learning-based HRTF up-
sampling was conducted by [18], followed by a comprehensive
study employing a GAN-based model for HRTF upsampling in the
frequency domain [19]. In this paper, the authors aim to develop
and assess an innovative approach for HRTF up-sampling using
Spherical Harmonics Transformation(SHT) based Generative Ad-
versarial Network(GAN) models. This paper will first delve into
the current GAN-based up-sampling technique [19] to pinpoint
its drawbacks, particularly regarding the transition to cubic space
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representations. Following this, the authors intend to implement
and refine the SHT-based GAN up-sampling process, transitioning
from low-resolution HRTFs to SHT coefficients, and subsequently
upsample these using AE-GAN. The performance of our proposed
method will be gauged against two baselines (Barycentric Interpo-
lation and HRTF Selection) with LSD as the evaluation metric.

2. RELATED WORK

2.1. Spatial Upsampling of HRTFs

In order to improve the efficiency of HRTF personalization and en-
able scalability, the method of spatial up-sampling has been intro-
duced. This approach involves taking low-resolution HRTF data,
which may have only a few measurements from limited directions,
and up-sampling it to generate high-resolution HRTF data that in-
cludes many more measurements from a wider range of directions.
Barycentric interpolation [20,21] and spherical harmonics interpo-
lation [22, 23] are two common methods for HRTF up-sampling.
Within the context of barycentric interpolation, the HRTF at the
desired direction is computed by taking a weighted average of the
nearest three or four measurements. Barycentric interpolation ef-
fectively yields accurate interpolation results when the input HRTF
data exhibits relatively dense spatial coverage [24].

Considering spherical harmonics interpolation, HRTFs are first
converted into the spherical harmonic domain through a spherical
harmonics transformation (SHT). This transformation represents
the HRTFs as a collection of spherical harmonics along with their
corresponding weights, known as spherical harmonics coefficients.
Spherical harmonics capture the spatial distribution of sound en-
ergy from various directions. Each spherical harmonics captures a
unique pattern of variation in sound intensity across different an-
gles around the listener’s head.

However, when the low-resolution HRTF is spatially sparse,
both barycentric and spherical harmonics interpolations may yield
poor reconstruction results that deviate significantly from the mea-
sured ones. This is because distant neighbors are unsuitable as
correlated references for barycentric interpolation and a lack of
sufficient HRTF data hinders the generation of comprehensive har-
monics for accurate sampling.

2.2. Machine Learning based HRTFs Generation

Recently, there has been a growing number of machine learning
methods proposed to tackle the task of HRTF up-sampling. Ito et
al. [25] explored the similarity between regularized linear regres-
sion and an autoencoder and found that measured HRTFs can be
broken down into source-position-dependent and source-position-
independent factors. Building upon this finding, they devised an
encoder and a decoder such that their weights and biases are re-
lated to the source position. Their loss function incorporates co-
sine distances between the latent variables of each subject at var-
ious source positions. Such a model structure and loss function
effectively encouraged the latent variables to capture the personal-
ized characteristics of the HRTF of each individual. The work pre-
sented in [26] designed a deep belief network to perform HRTF in-
terpolation and extrapolation. In addition to the measured HRTFs
for the left and right ears, the position and anthropometric infor-
mation are also utilized as part of the input data to the network.
They evaluated their network using a test set with 125 data points
to generate the full 1250 data points and promising results were

obtained. However, using 125 data points is still relatively dense.
Ziran et al. [27] developed a dual U-net network architecture to up-
sample low-resolution HRTFs. In their dual U-net network, one is
responsible for producing high-resolution HRTF magnitude spec-
tra from low-resolution magnitude spectra, and the other one is
used to generate high-resolution ITD from sparse measurements.
By combining the magnitude spectra and ITD estimates, HRTFs
with a high spatial resolution can be obtained. Notably, their eval-
uation demonstrated the model’s efficacy in reconstructing HRTF
at 1250 directions from only 23 directions as input measurements.
Nevertheless, they simplified the HRTF data in a two-dimensional
space instead of considering the entire spherical domain.

3. PROPOSED METHOD

3.1. Data Pre-processing

Convolutional Neural Networks (CNNs) are a useful tool for ex-
tracting spatial information from data. However, CNNs are more
suited for data with uniform spacing, such as pixels in an image.
In the context of HRTFs, data points are distributed in a non-
uniform manner on the surface of a sphere. Moreover, the distri-
bution of measurements tends to be denser around the horizontal
plane, while generally, no measurements are available at lower el-
evations. This non-uniform distribution poses unique challenges
for directly applying traditional CNN architectures to HRTF data
analysis. Thuillier et al. [28] proposed spherical CNNs by using
neural processes to learn and predict HRTFs at arbitrary points on
a sphere, addressing the challenges of sparse and irregularly sam-
pled HRTF data. However, Implementing neural process meta-
learners can be computationally intensive. Therefore, the imple-
mentation of SHT on HRTF data offers significant advantages. It
not only circumvents the challenge of adapting CNNs to the non-
uniform nature of HRTF data but also enhances computational ef-
ficiency. The spherical harmonics transformation Fm

l is defined
as

Fm
l =

∫ 2π

0

∫ π

0

f(θ, ϕ)Y m
l (θ, ϕ) sin(ϕ)dϕdθ (1)

where Y m
l (θ, ϕ) are the spherical harmonic functions, l and m

are the degree and order of the spherical harmonic, respectively. θ
and ϕ are the azimuth and elevation angles respectively. f(θ, ϕ)
is the original HRTF data function. The spherical harmonic func-
tions can be real-valued or complex-valued functions. In acoustics,
these are defined as:

Y m
l (θ, ϕ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos(ϕ))ejmθ (2)

where Pm
l (x) are the associated Legendre functions.

The inverse SHT, which reconstructs the function f(θ, ϕ) from
its spherical harmonic coefficients Fm

l , is given by the formula:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

Fm
l Y m

l (θ, ϕ) (3)

Given that sound sources can be imagined as points on an ide-
alized sphere enclosing the listener’s head, this becomes especially
pertinent for HRTF data. The SHT enables the decomposition of
this spatial data into a number of coefficients, each of which cap-
tures a distinct spatial frequency or resolution, while processing
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(a) Encoder Architecture.

(b) Decoder Architecture.

Figure 1: Autoencoder architecture. The blue and green arrows represent the dense connection for Dense Down Blocks and Dense Up
Blocks respectively. The red arrow indicates the concatenation of upsampled feature maps.

HRTFs [29]. This decomposition can significantly simplify the
analysis, and manipulation of HRTFs and even get information
between sample points of HRTFs by making HRTFs continuous.
Sparse measurements of HRTFs are first transformed into low-
resolution SH coefficients via SHT. This process enables the GAN-
based model to perform upsampling of SH coefficients, leverag-
ing their uniform distribution. Subsequently, the upsampled high-
resolution SH coefficients generated by the GAN are converted
back into high-resolution HRTFs using inverse SHT.

3.2. Autoencoder

The autoencoder consists of two networks: an encoder and a de-
coder. The encoder aims to find the latent representation z of the
low-degree spherical harmonics coefficients, capturing the most
salient feature to assist the decoder in generating high-degree co-
efficients.

The encoder’s architecture is shown in Fig.1a. An initial con-
volutional layer extracts low-level features from the input low-
degree coefficients. This is followed by a sequence of residual
blocks, which enable the learning of higher-level features. Lastly,
two fully connected layers are utilized to compress the feature map
into the latent space, obtaining the latent representation z. Batch
normalization is applied to stabilize the training process and serves
as a regularization technique. The activation function used is a
parametric rectified linear unit (PReLU), defined as:

PReLU(x) = max(0, x) + a× min(0, x) , (4)

where a is a learnable parameter. Given a non-zero slop a, it can
effectively alleviate the ’dying ReLU’ problem. This activation
function is also used in the decoder network.

The design of the decoder incorporates the concept of iterative
up and downsampling proposed by [30]. This architecture intro-

duces an error feedback mechanism where reconstruction error is
computed at each stage, thereby enhancing the ability to capture
the intrinsic connection between low-degree and high-degree co-
efficient pairs. The network is built based on four fundamental
blocks illustrated in Fig.2. The up block, shown in Fig.2a, up-
samples the low-resolution feature map Lt−1 to an intermediate
high-resolution output Ht

0, which is then mapped back to a low-
resolution feature map Lt

0. The difference between Lt−1 and Lt
0

is upsampled to get Ht
1 which is then added to Ht

0 to obtain the
final output of this block, Ht. The workflow of a down block is
similar to that of an up block but operates in reverse, as depicted
in Fig.2b. The inter-layer connection in dense up and down blocks
effectively mitigates the vanishing gradient problem, and yields
enhanced features. As illustrated in Fig.2c, the low-resolution fea-
ture maps from previous layers are concatenated along the channel
dimension before being passed into the dense up block.

In this work, an iterative projection unit is designed for pro-
gressive upsampling. As illustrated in Fig.1b, it is composed of the
four fundamental blocks mentioned earlier. Within this unit, the
dense down blocks take concatenated high-resolution feature maps
from all previous upsampling blocks as input, and these skip con-
nections are indicated by the blue arrows. Conversely, the dense
up blocks utilize concatenated low-resolution feature maps from
all previous downsample blocks, with green arrows denoting the
associated skip connections. Finally, the high-resolution feature
maps are concatenated and fed into the last output convolutional
layer, which serves for dimension reduction. After going through
this iterative projection unit, the input feature map will be upscaled
by a factor of 2.

The overview of the designed decoder is presented in Fig.1b.
The latent representation z obtained from the encoder first goes
through a fully connected layer. The resultant 1D vector is then
reshaped so that it is suitable for the convolution operation. Five
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(a) Up Block.

(b) Down Block.

(c) Dense Up Block.

(d) Dense Down Block.

Figure 2: Basic Blocks in Decoder.

iterative projection units are cascaded to upsample the feature map
progressively. And lastly excessive coefficients are trimmed off.

3.3. Discriminator Network

The discriminator aims to validate the authenticity of the input
of spherical harmonics coefficients, determining whether they are
genuine or created by the generator. The discriminator is trained
using a supervised learning approach with real and generated HRTF
data. It assigns a probability to each input, indicating whether it is
real or fake, using a sigmoid activation function. The discriminator
learns to classify real and fake data by updating its weights through
backpropagation to minimize classification error. This iterative
process improves its accuracy in distinguishing between real and
generated HRTF coefficients, effectively learning the underlying
probability distribution of the real data. As shown in Fig.3, the
discriminator consists of 9 convolutional layers for feature extrac-
tion. The triplet enclosed in the bracket denotes the kernel size, the
output channel, and the stride, respectively. Notably, starting from
the second layer, the feature map is downsampled by a factor of 2
every two layers. Each convolutional layer is followed by a batch
normalization layer for the purpose of training stability. An ex-
ception is made for the initial layer, where the application of batch
normalization is avoided due to potential issues such as sample os-
cillation and model instability, as indicated in [31]. The last two
layers are fully connected layers and a sigmoid activation func-
tion as it is suitable for binary prediction. The activation function
employed throughout the architecture is the leaky rectified linear
unit (ReLU), except for the last layer. The leaky ReLU activation
function is a variation of ReLU, defined as:

LeakyReLU(x) = max(0, x) + negative slop × min(0, x) , (5)

where the negative slop is set to 0.2.

3.4. Cost Functions

The loss function LG for the autoencoder has three components:
the cosine similarity loss LG

cos for coefficients, the content loss

λLG
C , and the adversarial loss LG

A. Mathematically, it can be ex-
pressed as follows:

LG = LG
cos + λLG

C + LG
A , (6)

where λ is a weight applied to the content loss term, ensuring that
it will not become too large and disrupt the training process.

3.5. Cosine Similarity Loss

Typically within the autoencoder framework, the focal point of the
loss function lies in the reconstruction process. This commonly
involves employing the mean squared error (MSE) loss to quantify
the disparity between the reconstructed output and the intended
target. For instance, in the realm of image generation, the MSE
loss is computed by evaluating the difference in pixel values. In
this work, a modification is introduced to the MSE loss, incorpo-
rating the cosine similarity. This adjustment, denoted as LG

cos, mea-
sures the likeness between the extrapolated coefficients from the
autoencoder and the original high-degree coefficients for each fre-
quency bin. The resulting similarity measurements are then aver-
aged over the total number of frequency bins present in the HRTF
data. Therefore, LG

cos is defined as:

LG
cos =

√√√√ 1

W

W∑
w=1

(
1− cfwG · cfwH

∥cfwG ∥∥cfwH ∥

)2

, (7)

where cfwG and cfwH represent upsampled coefficients and target
high-degree coefficients respectively, W is the number of frequency
bins in the HRTF, and fw denotes a specific frequency.

3.6. Content Loss

Given that the primary goal of this project is to upsample spa-
tially sparse HRTFs, the task of extrapolating spherical harmonics
coefficients serves as an intermediate step. To effectively guide
the autoencoder to create meaningful coefficients and eventually
to produce realistic HRTFs, the content loss introduced in [19] has
been adopted in the autoencoder loss. The content loss is the sum
of the log-spectral distortion (LSD) metric and the interaural level
difference (ILD) metric:

LG
C = LSD + ILD. (8)

The LSD [32] is a metric used to measure the quality of a synthe-
sized audio signal compared to a reference audio signal. The LSD
loss quantifies this comparison by evaluating the discrepancy be-
tween the target magnitude spectrum HHR and the generated spec-
trum HG at frequency fw and position xn. This computation can
be expressed using the following mathematical formula:

LSD =
1

N

N∑
n=1

√√√√ 1

W

W∑
w=1

(
20log10

|HHR(fw, xn)|
|HG(fw, xn)|

)2

, (9)

where N represents the overall count of positions, fw is a certain
frequency, and xn corresponds to a specific position.

The ILD [23] refers to the difference in magnitudes perceived
by each ear due to the spatial location of a sound source. It is
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Figure 3: Discriminator architecture.

defined as:

ILD =
1

N

N∑
n=1

1

W

W∑
w=1

∣∣∣∣∣
(
20log10

|HLeft
HR (fw, xn)|

|HRight
HR (fw, xn)|

)

−

(
20log10

|HLeft
G (fw, xn)|

|HRight
G (fw, xn)|

)∣∣∣∣∣ , (10)

where HLeft(fw, xn) and HRight(fw, xn) denote the left and right
ear magnitude responses at frequency fw and position xn.

3.7. Adversarial Loss

Lastly, since the overall model structure operates as a generative
adversarial network with the autoencoder acting as the generator,
an adversarial loss is incorporated to measure how realistic the up-
sampled coefficients are to fool the discriminator. The adversarial
loss is defined as the binary cross-entropy loss over M training
samples, expressed as:

LG
A = − 1

M

M∑
m=1

log(1−D(G(cmL ))) , (11)

where G(cmL ) corresponds to the upsampled spherical harmonics
coefficients from the generator, and the term D(G(cmL )) can be
interpreted as the probability assigned by the discriminator, signi-
fying the possibility of the given sample being an authentic high-
degree coefficient. Similarly, the loss function for the discrimina-
tor is defined as:

LD = − 1

M

M∑
m=1

[logD(cmH ) + log(1−D(G(cmL )))] , (12)

where cmH represents a sample of high-degree coefficients.

4. EXPERIMENTAL EVALUATION

4.1. Baselines

The proposed AE-GAN is evaluated on a test set of 41 subjects
from the SONICOM HRTF dataset [11]. Each HRTF in the SON-
ICOM data set contains a total of 793 different positions for each
individual. Each of these measurements was taken around the sub-
ject’s head at a distance of 1.5m, where the azimuth was sampled
every 5° and the elevation ranged from –45° to 90° (sampled every
10° between –30° and 30° and every 15° otherwise). These mea-

surements are available in 44kHz, 48kHz, and 96kHz. To accu-
rately represent these HRTFs in the SH domain within the audible
spectrum (up to 20 kHz), a truncation order of approximately 32
would be needed [33]. That is to say, truncating the order to be-
low 32 could potentially introduce audible artefacts in any binaural
signal rendered with it. The model result is compared against two
baselines:

4.1.1. Baseline-1 - Barycentric interpolation

In this work, the implementation of barycentric interpolation fol-
lows the approach outlined in [19]. Barycentric interpolation is
a powerful technique particularly suited for interpolating values
within a simplex, leveraging weighted averages of the function’s
values at the vertices of the simplex. It is used as one of the base-
lines to compare with our model result. It utilizes the concept of
three barycentric coordinates, which are weights assigned to these
data points. By using these weights, the method provides a way to
interpolate or find an unknown value within the data points based
on the known values around it.

For barycentric interpolation with HRTFs, we first need to
identify the three nearest known points P1, P2, P3 around the tar-
get point Pi on a spherical surface. For each given point (azimuth
and elevation), we determine the optimal triangle for barycentric
interpolation. The triangle that encloses the target point and has
the smallest total distance between its vertices and target point is
called the best triangle. Then, calculate the barycentric coordi-
nates α, β and γ. These represent how much each of the three
points P1, P2, P3 contributes to Pi, ensuring their sum is always
1. Using these weights, we can determine the interpolated HRTF
for Pi. Elevation and azimuth are considered as Cartesian coor-
dinates. The ratio of the areas is calculated using the following
formulas:

α =
(ϕP2 − ϕP3)(θPi − θP3) + (θP3 − θP2)(ϕPi − ϕP3)

(ϕP2 − ϕP3)(θP1 − θP3) + (θP3 − θP2)(ϕP1 − ϕP3)
,

(13)

β = (ϕP3−ϕP1)(θPi−θP3)+(θP1−θP3)(ϕPi−ϕP3)

(ϕP2−ϕP3)(θP1−θP3)+(θP3−θP2)(ϕP1−ϕP3)
, (14)

γ = 1− α− β. (15)

The following adjustments were made to represent elevation
and azimuth as spherical coordinates. The spherical triangle’s sur-
face area is denoted by A = r2E, with r being the sphere’s radius
and E the excess angle. This angle, E, is the surplus of the tri-
angle’s interior angles over the total interior angles of a flat trian-
gle, which is π radians. The connection between the excess angle
E and the triangle side lengths a, b, c is elucidated by L’Huilier’s
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Table 1: A comparison of the mean LSD error (Standard Devia-
tion) for different upsampling factors. The ‘Best’ result of each
upsampling factor has been highlighted

Method
Upsampling (Scale Factor) [No. intial → No. upsampled]

27 → 864
(32)

18 → 864
(48)

12 → 864
(72)

8 → 864
(108)

AE-GAN 5.01 (0.58) 5.11 (0.59) 5.17 (0.56) 6.05 (0.94)
Barycentric 4.89 (0.24) 5.46 (0.27) 6.28 (0.29) 7.22 (0.35)
Selection-1 6.31 (0.59)
Selection-2 8.33 (0.47)

Theorem [34], with s representing the semiperimeter:

tan( 1
4
E) =

√
tan( 1

2
s)tan( 1

2
(s− a))× tan( 1

2
(s− b))tan( 1

2
(s− c)). (16)

Consequently, the weight coefficients are determined as:

α =
EPiP2P3

EP1P2P3
, β =

EP1PiP3

EP1P2P3
, and γ = 1−α−β. (17)

The target HRIR is computed as the weighted linear combina-
tion of the three vertices with weights alpha, beta and gamma:

HRIRPi = αHRIRP1 + βHRIRP2 + γHRIRP3 . (18)

The discrete Fourier transform (DFT) converts the HRIR into
the HRTF after interpolation.

4.1.2. Baseline-2 - non-individual HRTF selection

Additionally, the suggested AE-GAN methodology is compared
to the following HRTF selection method as another baseline. In
this baseline, two HRTFs are chosen from the test set based on
their average LSD error when compared to all other HRTFs in the
test set, as opposed to choosing a HRTF at random. Selection-1
corresponds to the subject whose HRTF yields the lowest average
LSD error, which can be seen as the most generic one. On the other
hand, Selection-2 represents the subject whose HRTF produces the
highest average LSD error, giving some indication to the most.

4.2. LSD metric evaluation

The LSD metric, as defined in equation (9), is calculated for every
measurement and subsequently averaged across all source posi-
tions. The average LSD evaluation results for 41 subjects in the
test set are presented in Table 1. The best performance of each
upscaling factor is highlighted in blue.

From the visual representation of the evaluation outcomes, as
depicted in Fig.4, it can be seen that AE-GAN produces a result
with an LSD of 5.01 that is comparable to that of the barycentric
interpolation (4.89) when the upscale factor is 32. Moreover, the
proposed model surpasses the baseline approach when the initial
HRTF is sparser. These findings are aligned with the outcomes
reported in [19] even though a different HRTF dataset (ARI) was
used. As shown in Table 2, their proposed SRGAN achieves lower
errors when the initial HRTF is more spatially sparse.

As for the HRTF selection, the utilization of Selection-1 and
Selection-2 results in LSD errors of 6.31 and 8.33, respectively.
However, this approach demonstrates inferior performance com-
pared to the proposed AE-GAN in all cases. Notably, Selection-1

Table 2: The LSD evaluation results from [19] using a frequency-
domain GAN approach. The ‘Best’ result of each upsampling fac-
tor has been highlighted

Method
Upsampling (Scale Factor) [No. intial → No. upsampled]

320 → 1280
(4)

80 → 1280
(16)

20 → 1280
(64)

5 → 1280
(256)

SRGAN 3.28 (0.13) 4.86 (0.24) 4.99 (0.27) 5.30 (0.35)
SH 3.54 (0.15) 4.94 (0.20) 5.90 (0.25) 10.36 (0.74)

Barycentric 2.50 (0.20) 3.71 (0.22) 5.18 (0.23) 7.30 (0.33)
Selection-1 6.96 (0.47)
Selection-2 8.20 (0.61)

Figure 4: LSD error comparison.

excels the barycentric interpolation when the upscale factor is 108
(where the mean LSD error is 7.22 for barycentric interpolation)
by a small margin.

In order to gain a deeper comprehension of the locations where
these errors arise for the proposed AE-GAN and barycentric inter-
polation, the visualization of these errors across all source posi-
tions under different upsampling conditions for SubjectID 10 is
provided in Fig.5. The original data points present in the low-
resolution HRTF are indicated by spikes pointing to the azimuth-
elevation plane. The z-axis represents the average LSD error.

From Fig.5a, it can be seen that when upsampling from 27 to
864, most LSD errors come from -40◦ to 0◦ elevation range for
AE-GAN. Conversely, barycentric interpolation is doing slightly
better within this region. However, at higher elevations, consider-
ably high LSD error (above 10) occurs in the case of barycentric
interpolation, whereas AE-GAN manages to keep the errors at a
low level of around 4 decibels. Moreover, with the increasing spar-
sity of the initial low-resolution HRTF, the area of the darker re-
gion grows rapidly when using barycentric interpolation, as shown
in the high-elevation part in 5b and Fig.5c. This is because the
barycentric interpolation could not accurately estimate the value
at the target position when the neighboring measured ones are far
away from the desired location. In contrast, the proposed AE-
GAN has learned from low and high-order coefficient pairs, en-
abling it to reconstruct the spherical harmonics that closely repre-
sent the whole set of HRTF measurements. Therefore, irrespective
of the upscale factor applied and the separation between the mea-
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sured points and the target position, the AE-GAN is able to predict
the values decently. This is evident when comparing the upper plot
in Fig.5b with the upper plot in Fig.5c. The LSD errors spanning
all positions exhibit minimal variation even though 75% of initial
points are removed.

5. CONCLUSIONS

In this paper, the proposed AE-GAN shows great potential for up-
sampling very sparse HRTFs, when more traditional interpolation
methods start failing. Instead of applying deep learning techniques
directly on the unevenly distributed HRTF data, the HRTF data in
the frequency domain is first transformed into the spherical har-
monics domain, where the original spatial and frequency informa-
tion is represented by a set of spherical harmonics and associated
coefficients. The LSD evaluation result suggests that the proposed
deep-learning model is capable of achieving superior results com-
pared to those obtained by the barycentric interpolation when the
HRTFs are extremely sparse, with fewer than 12 measurements.

Future investigations could focus on further reducing the num-
ber of needed measured positions or exploring which are the best
8 positions to get optimal results. This is motivated by the fact that
point position selection is highly related to the quality of represen-
tation of the original HRTFs. Conventional HRTF interpolation
methods, not based on machine learning, merit consideration as
perceptually motivated optimizations. These optimizations, such
as separately interpolating ITDs and HRTF magnitude responses,
then reintroducing interaural phase differences (IPDs) only at low
frequencies (e.g., <1.5 kHz according to the Duplex theory), can
substantially enhance interpolation accuracy. These approaches
could serve as effective baselines, given their likely use in existing
binaural panning tools over naive direct complex-HRTF interpola-
tion methods.
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(a) 27 → 864. (b) 12 → 864. (c) 8 → 864.

Figure 5: Comparison of the proposed AE-GAN (top row) and barycentric interpolation (bottom row) in terms of LSD errors at different
upscale factors for SubjectID 10. The initial source positions before interpolation are shown by spikes on the azimuth-elevation plane.
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