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ABSTRACT

LTFATPY is a software package for accessing the Large Time
Frequency Analysis Toolbox (LTFAT) from Python. Dedicated
to time-frequency analysis, LTFAT comprises a large number of
linear transforms for Fourier, Gabor, and wavelet analysis along
with their associated operators. Its filter bank module is a col-
lection of computational routines for finite impulse response and
band-limited filters, allowing for the specification of constant-Q
and auditory-inspired transforms. While LTFAT has originally
been written in MATLAB/GNU Octave, the recent popularity of
the Python programming language in related fields, such as signal
processing and machine learning, makes it desirable to have LT-
FAT available in Python as well. We introduce LTFATPY, describe
its main features, and outline further developments.

1. INTRODUCTION

Python [1] is one of the most popular programming languages [2]
and is commonly used in audio-related machine learning [3] and
signal processing [4]. Popular extension packages like scipy [5]
and librosa [6] allow for filter design and audio analysis. Some
further packages exist, that are customarily used for the analysis
and processing of audio in scientific applications, e.g. [7, 8, 9].
In addition to that, there are toolboxes originally written in other
programming languages, such as the Sound Field Synthesis Tool-
box [10] and Essentia [11], that are now accessible from Python.

The Large Time Frequency Analysis Toolbox (LTFAT) [12,
13] belongs to this latter class of toolboxes. Originally written in
MATLAB [14] and GNU Octave [15], with a supplementary back-
end in C and C++, LTFAT was originally conceived as a common
ground for research and education on applied harmonic analysis,
with a focus on the discrete Gabor transform [16]. However, dur-
ing the last 20 years, it has been extended and developed into a
wide-ranging collection of flexible, invertible time-frequency rep-
resentations and associated algorithms, in many cases reflecting
the state-of-the-art in applied harmonic analysis and signal pro-
cessing research.

Time-frequency representations often form the basis for train-
ing neural networks (e.g. [17, 18, 19]), and for extracting train-
able features, e.g. mel-frequency cepstral coefficients (MFCC)
(e.g [20]). Implementations of the short-time Fourier transform
(STFT), the discrete wavelet transform [21], and of many other
time-frequency representations exist in Python. However, they
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usually impose unnecessary restrictions on signal analysis, such
as the reliance on fixed time-frequency sampling schemes and on
orthogonal decompositions. While the former can lead to overly
redundant time-frequency representations and a consequential in-
crease in computational resources required to perform the analysis,
the latter can, e.g. in the case of many wavelet transforms algo-
rithms [22], restrict the achievable frequency resolution to a range
that is impractical for audio analysis. Finally, implementations of
time-frequency representations may differ in their precise imple-
mentation. These differences can still affect the comparability of
the results.

Rooted in frame theory [23], LTFAT allows for the nearly ar-
bitrary trade-off between time and frequency resolution and thus
provides a flexibility in the design of invertible time-frequency rep-
resentations that is hard to achieve otherwise. With its wide range
of unified window and wavelet functions and principled treatment
of boundary conditions, it is useful whenever signal analysis be-
yond the STFT and orthogonal wavelet transforms is desired.

In the following, we describe the design considerations for in-
terfacing LTFAT with Python and outline some of its key features
with regards to the analysis and the processing of audio signals.
We conclude with an outlook on planned further developments of
the LTFATPY package.

2. DESIGN CONSIDERATIONS

A previous version of LTFATPY [24] made use of cython [25]
bindings to LTFATs backend to call it from Python. However,
much of LTFAT’s core functionality, such as the constant-Q trans-
form [26], the auditory-inspired filter banks [27], and most of the
tests and demos are part of LTFAT’s MATLAB code, and were
therefore not available in Python.

To facilitate access to those routines while avoiding excessive
code duplication, and given that LTFAT code is fully compatible
with both, MATLAB and GNU Octave, LTFATPY is based on the
oct2py package [28], which was streamlined, adapted and ex-
tended to accommodate for LTFAT. Consequently, the space and
time performance is the same as for LTFAT, except for the over-
head incurred by managing Octave from Python. Importing LT-
FATPY from Python starts an Octave session in the background
that can be managed (i.e., stopped and restarted) by the user. When-
ever an LTFATPY function is called, the input arguments are con-
verted and shared with Octave in the background via .mat files,
which are similarly used to pass the computation results to Python.
.mat files are handled via the scipy package and Octave ar-
rays are translated to numpy arrays [29]. The resulting increase
in computation time, as compared to Python-only routines, varies
and is highly system- and setup-dependent. Even occasional accel-
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eration can be observed in practice, in cases where Octave routines
are considerably faster than their Python equivalents.

Although this approach reduces the need for writing additional
code, LTFAT’s sheer size of roughly 1500 functions renders its
instantaneous, full conversion to a Python package infeasible in
a scientifically oriented development environment. To neverthe-
less ensure a coherent and convergent development process that at
the same time allows for the flexible addition of functionality as
needed, LTFATPY is laid out in a modular fashion and such that
both, single functions and whole modules can be added with lit-
tle Python programming experience required, thus facilitating and
encouraging its ongoing enhancement.

Additional consideration was given to maintaining a similar
syntax across programming languages, as to avoid confusion, keep
the switching overhead for existing LTFAT users low, and to be
able to have a central documentation for the Matlab and the Python
code base. A list of the differences between LTFAT and LTFATPY
can be found in [30].

3. FEATURES

In the following, we detail some of LTFATPY’s key features. An
overview of time-frequency representations available in
common Python packages is depicted in Table 1.

Table 1: Overview of common time-frequency representations
and their availability in common Python packages (Y/N...yes/no,
CWT...continuous wavelet transform).

functionality ltfatpy librosa pyfar [31]
STFT Y Y N

constant-Q Y Y N
gammatone Y N Y

mel Y MFCC N
bark Y N N
CWT Y N N

reassignment all STFT N

3.1. Discrete Gabor transform/STFT

In LTFAT, the STFT is commonly referred to as the discrete Gabor
transform (DGT), where the time-frequency coefficients c[m,n]
of a signal f with length L can be obtained as

c[m,n] =

L−1∑
l=0

f [l]g[l − an]e
−2πiml

M , (1)

with g the window, a the hopsize, or downsampling factor in time,
and M the number of frequency channels. Thus, just like for most
implementations of the STFT, the time-frequency resolution of the
resulting coefficients can be controlled by the ratio between a and
M . A minor difference between LTFAT’s dgt function and most
other implementations is that there are no restrictions on a and M
other than to be positive-valued integers, yielding more freedom
in adjusting the redundancy of the time-frequency coefficients, as
exemplarily depicted in Figure 1. More importantly, LTFAT offers
options beyond deriving the Moore-Penrose pseudo-inverse of the
STFT-matrix for arriving at its inverse. Specifically, the used win-
dows can be designed to be tight, to have a specific length [32],

or other desirable properties with regards to the overall transform-
inversion system [33], e.g., decreasing both the condition number
and the computational complexity as compared to the standard ap-
proach, while still ensuring its invertibility.

Figure 1: The discrete Gabor transform of a bat cry, sampled with
hopsize a = 1 and with the number of frequency channels corre-
sponding to the length of the signal. The white circles indicate the
coefficients that would be obtained for a = 20 and the number
of frequency channels M = 40. Both configurations are stably
invertible.

3.2. Constant-Q transform and overcomplete wavelet filter banks

The toolbox provides two different methods for constructing over-
complete, invertible filter banks with a constant center frequency-
to-bandwith ratio. The invertible constant-Q transform presented
in [26], as well as a discretization of the continuous wavelet trans-
form [34], as depicted in Figure 2. The methods are implemented
as filter bank generators cqtfilters and waveletfilters,
to be used with the filterbank module of LTFAT. Both fil-
ter bank types offer a high degree of flexiblity for customization,
with regards to the filter prototypes, the time-frequency resolution
trade-off, the spacing of center frequencies, and different uniform
and non-uniform downsampling schemes.

3.3. Beyond linear and logarithmic frequency spacing

Equipped with similar configuration options as the constant-Q trans-
forms described above, LTFAT provides the means for construct-
ing auditory-inspired representations via its audfilters func-
tionality [27], thus providing an invertible alternative to the com-
monly used MFCC. The featured auditory scales comprise the mel
[35], bark [36], and equivalent rectangular bandwidth (ERB) [37]
scale. Finally, the specification of nearly arbitrary filter banks via a
warping function and its inverse, via the warpedfilters func-
tion [38], is supported.

3.4. Beyond linear time-frequency processing

Besides analysis and synthesis with linear time-frequency filter
banks, LTFAT offers a number of nonlinear processing methods
built onto the filter banks discussed in the previous sections. Here,
we would like to highlight reassignment and synchrosqueezing,
two methods for computing sparse time-frequency representations
[39]. Synchrosqueezing is illustrated in Figure 3.
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Figure 2: Constant-Q wavelet filter bank (covering the frequency
range from 40 Hz to 8 kHz with 12 bins per octave): coefficients
(top) analyzing female speech (non-uniformly downsampled), the
frequency responses of the individual wavelet filters (middle), and
the frequency response of the overall filter bank (bottom). The
filter bank was scaled for equal-energy per filter, i.e. such that
each filter has the same l2-norm.

4. OUTLOOK

LTFATPY is available from github.com/ltfat/ltfatpy,
the original LTFAT written in GNU Octave can be downloaded
from github.com/ltfat/ltfat/releases. The documen-
tation can be found, along with the associated scientific publica-
tions, on ltfat.org.

LTFATPY currently covers most of LTFAT’s Gabor and Fil-
terbank module, more functionality may be added in the future.
A current list of functions can be found on https://github.
com/ltfat/ltfatpy/blob/main/README.md. Besides
the future release as a Python package [40], a major planned en-
hancement is the addition of bindings from Python to LTFAT’s
C and C++ backend to enable the addition of the phase gradient
heap [41] and the matching pursuit algorithm [42].
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